JPS6326839B2 - - Google Patents

Info

Publication number
JPS6326839B2
JPS6326839B2 JP57068992A JP6899282A JPS6326839B2 JP S6326839 B2 JPS6326839 B2 JP S6326839B2 JP 57068992 A JP57068992 A JP 57068992A JP 6899282 A JP6899282 A JP 6899282A JP S6326839 B2 JPS6326839 B2 JP S6326839B2
Authority
JP
Japan
Prior art keywords
pressure
plug
lower plug
heating device
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57068992A
Other languages
Japanese (ja)
Other versions
JPS5825405A (en
Inventor
Takeshi Kanda
Yoichi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP6899282A priority Critical patent/JPS5825405A/en
Publication of JPS5825405A publication Critical patent/JPS5825405A/en
Publication of JPS6326839B2 publication Critical patent/JPS6326839B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/001Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a flexible element, e.g. diaphragm, urged by fluid pressure; Isostatic presses
    • B30B11/002Isostatic press chambers; Press stands therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 この発明は、高圧高温ガス雰囲気下で粉末成形
焼結あるいは拡散接合等の高圧高温処理を行なう
際に使用する高圧高温炉に関するものである。 近年、技術開発の進展にともなつて、物体に高
圧高温ガス雰囲気下で種々の処理を施こす技術が
研究され、様々な分野で工業的に採用されようと
している。 粉体の成形と焼結を高圧高温のガス雰囲気の中
で一挙におこなつて製品を得る熱間静水圧成形法
(Hot Isostatic Compacting Processあるいは
Hot Isostatic Pressing Process)もその一つで
あり、この方法によつて成形、焼結された製品に
は、 a 従来の焼結法を用いる場合よりも低い温度で
高密度化が達せられ、したがつて過度の結晶成
長による粒粗大化が防止されて、ち密な組織を
うることができる。 b あらゆる材料について、理論値に近い密度が
えられ、しかも組織が均一である。 c 金型成形にむかない球形粉末を十分に高密度
化することができる。 d 粉体の機械的、物理的性質が改善される。 e 微細組織であるため、たとえば、高速度鋼の
工具などでは性能が向上する。 f 通常の金型成形プレスのように、プレス能力
によつて制限されることがないので大きな寸法
のものを製造できる。 g 有害不安定な材料を取扱つても、保健上の被
害を最低におさえることができる。 h 金属とセラミツクスなどとの種々の複合材料
を製造することができる。 i 材料歩留りの向上、欠陥品の減少によつて、
材料費を低減することができる。 等の数々の利点がある。 又、粉体の成形焼結以外にも、物体を高圧高温
ガス雰囲気下におくと、その内部欠陥が除去でき
じん性及び抗折力を増大させることができるとい
う利点を利用して、焼結工具材料等を高圧高温処
理するという利用法、あるいは、タービンブレー
ドを本体と接合させる場合に、両者を高圧高温ガ
ス雰囲気下において拡散接合させて極めて強固な
結合を得るという利用法が考えられている。 しかしながら、このように幾多の利点を有しな
がら、現在尚工業的に採用されないのは、この方
法の最大の欠点、すなわち生産性が極めて悪いと
いう欠点がいまだに解決されないまま残されてい
るからである。 製品の製造コストの低減を計るために、サイク
ルタイムの短縮は現今の緊急課題となつている
が、この課題に対処する解決策として英国特許第
1291459号に示される技術が提案されている。 以下、第1図により、英国特許第1291459号に
示される技術を、この発明の先行技術として説明
する。 第1図において、高圧室1は高圧シリンダ2、
上部プラグ3および下部プラグ4によつて構成さ
れ、上部プラグ3に設けられた圧力導入孔5を通
して高圧室1内に導入されたガスは、上部密封リ
ング6および下部密封リング7によつて高圧室1
内に気密に保持されている。高圧室1内には処理
室8および加熱装置9を囲む側部、上部および下
部断熱外装10,11,12が配置され、側部お
よび上部断熱外装10,11は上部プラグ3より
懸垂され、さらに上部断熱外装11には加熱装置
9が懸垂されている。上部プラグ3には加熱装置
9に電力を供給するための電極13が電気的絶縁
かつ気密状態で設けられており、加熱装置9と電
極13とはブツシユ14を介して上部断熱外装1
1を貫通する電力供給導体15によつて接続され
ている。被処理体16は下部断熱外装12上に設
置されている。 以上の構成を有する装置において、被処理体1
6を予じめ高圧室1外で、別途用意した予熱炉
(図示せず)において予熱した後、下部プラグ4
上に下部断熱外装12を介して載置し、高圧室1
の下方より被処理体16、下部断熱外装12、下
部プラグ4を一体的に高圧室1内に挿入し、しか
るのち、圧力導入孔5より高圧ガスを導入して、
処理室8内に高圧高温ガス雰囲気を作り出して被
処理体16を加圧加熱して最終製品とする。 すなわち、第1図に示す装置においては、高圧
室1内で加熱する以前に、予熱炉内で被処理体1
6が予熱されている為に、高圧室1内での加熱時
間が短縮され、以つて、サイクルタイムの短縮を
計ることができるというものである。 しかしながら、この装置においても、確かに、
サイクルタイムの短縮を計ることができるという
利点はあるにしても、通常の高圧高温処理設備の
他に、予熱炉が必要になり設備費が高くなるとい
う欠点の他に、予熱後の被処理体16の搬送が大
気中で行なわれる為に、その放熱による熱損失が
極めて大きくなるという欠点を有し、さらに致命
的なことには、予熱後の高温処理体16を下部断
熱外装12を介して下部プラグ4上に載置して、
高圧室1内に挿入する際、被処理体16の放熱に
より高圧シリンダ2の下部内壁面が過熱され、さ
らに、高圧シリンダ2内壁面の過熱により下部密
封リング7が損傷をうけるという極めて重大な欠
点を有しているのである。 すなわち、この高圧高温処理装置が最もよく用
いられる圧力範囲は2000Kg/cm2前後であるが、
2000Kg/cm2とう極めて高圧力を保持する必要のあ
る高圧シリンダ2が過熱されることは、その寿命
の大巾な低下をきたし、破壊の危険性もある。高
圧高温処理装置において、最も高価な部分は高圧
シリンダ2であり、この高圧シリンダ2の寿命の
低下は設備費の増大と製品コストの増大につなが
り、さらに、圧力媒体として高圧ガスを使用する
関係上、2000Kg/cm2という高圧力の下での高圧シ
リンダの破壊による事故が、どのようなものであ
るかは想像を絶するものである。 又、下部密封リング7の損傷も高圧ガスのシー
ルが行なえなくなり、高圧を発生できなくなるば
かりか、同様の事故につながる危険性がある。 わが国では10Kg/cm2以上のガスを高圧ガスと称
し、取扱上の保安について、高圧ガス取締法によ
つて規制されていることは周知のとおりである。
この法律制定の趣旨は、第1条に述べられている
ように、高圧ガスによる災害の防止、公共の安全
の確保を目的としている。したがつて、高圧ガス
用装置の構造強度については、きわめて詳細な基
準が設けられ、とくに安全の面において二重三重
の厳重な規制をして災害事故の防止に万全を規す
るよう考慮されている。しかし一般に高圧ガス取
締法で明確な基準が与えられているのは1000Kg/
cm2までであつて、これをこえると製造装置が十分
安全であることを通商産業大臣が認めるに十分な
設計、製造技術を示すことが必要である。 現在、高圧高温処理装置が最もよく用いられる
圧力範囲は2000Kg/cm2前後であるが、この場合、
設備が据付けられる都道府県が監督官庁であり、
設備のための許可申請をするとともに、とくに
1000Kg/cm2をこえる部分の耐圧強度、安全性につ
いは通商産業省の確認を受けなければならない。 すなわち、このように安全性をきびしく追求さ
れるこの種装置において、いかにサイクルタイム
の短縮を計ることができるといえども、高圧シリ
ンダ2の過熱、さらに、下部密封リング7の損傷
の危険性がある第1図に示される如き装置を採用
することは極めて問題がある。 この発明は、叙上の問題点に鑑みてなされたも
のであつて、サイクルタイムの短縮が可能でしか
も高圧シリンダ等の装置各部への悪影響がない安
全性の高い高圧高温炉を提供することを目的と
し、その特徴は高圧シリンダ、同高圧シリンダの
上下開口部をそれぞれ密封する上部プラグ、下部
プラグとによつて劃成される高圧室内に、断熱外
装と、同断熱外装の内側に加熱装置とを有し、前
記下部プラグ上に載置せる被処理体に高圧高温ガ
ス雰囲気下で焼結あるいは接合等の処理を行なう
高圧高温炉において、前記下部プラグ、加熱装
置、断熱外装及び被処理体を前記高圧シリンダ外
へ常時一体的に取出し可能に設けるとともに、前
記断熱外装及び下部プラグによつて劃成される処
理室を開閉自在に設けた点に存する。 ここで、上記構成において常時一体的取出し可
能とは本発明構成の炉の使用に際し、故障、補修
など特別の場合の取り出し可能ではなく、一体的
に取り出すことが通常処理における通常の使用態
様であることを云う。 本発明炉はかかる意味における常時一体的取り
出し可能であることによりその作用を達成する。 以下、図示の実施例によつてこの発明を詳説す
る。 第2図は、この発明になる高圧高温炉の実施例
を示すものであつて、第2図によつてこの発明を
説明する。 第2図において、高圧室21は高圧シリンダ2
2、上部プラグ23および下部プラグ24によつ
て構成され、上部プラグ23に設けられた圧力導
入孔25を通して高圧室21内に導入されたガス
は、上部密封リング26および下部密封リング2
7によつて高圧室21内に気密に保持される。上
部プラグ23および下部プラグ24に作用する軸
方向力は、両プラグ23,24を高圧シリンダ2
2にねじつけることによつて支持してもよく、あ
るいはプレスによつて支持する機構を採用しても
よい。 下部プラグ24上に設置される加熱装置28
は、加熱要素29を金属性円筒30内に電気的絶
縁状態で保持することによつて構成される。又、
加熱要素29への電力供給は、下部プラグ24に
電気的絶縁かつ気密状態で設けられた電極31を
通して行なわれる。加熱装置28を含め処理室3
2を囲む断熱外装33は、気体浸透性の小さな材
料のほぼ同心の倒立型コツプ34および35とリ
ング36とによつて構成され、内部にはセラミツ
クスフアイバーのような繊維状断熱材37が充填
される。 以上の構成を有するこの発明になる高圧高温炉
の1つの使用例を以下に示す。 まず、下部プラグ24を断熱外装33、加熱装
置28とともに高圧室21外へ取出し、下部プラ
グ24上に載置せる断熱外装33を下部プラグ2
4より持ち上げて、処理室32内を開放し、断熱
材43を介して下部プラグ24上に載置せる被処
理体48を取り出して、新たな被処理体48を挿
入した後、断熱外装33を下部プラグ24上に載
置して処理室32を遮断し、電極31を通じて処
理室32内の加熱要素29に電力を供給して処理
室32内を昇温させて、被処理体48を予熱し、
所定の温度まで被処理体48が予熱されたところ
で、下部プラグ24、被処理体48、断熱外装
3、加熱装置28を一体的に高圧室21内に挿入
し、下部密封リング27によつて高圧室21内を
密封した後、上部プラグ23に設けた圧力導入孔
25より高圧室21及び処理室32の真空吸引を
行ない、しかるのちガス置換を行なう。ガス置換
の終了後引続き圧力導入孔25よりガスを供給す
るとともに加熱装置28に引続き電力を供給して
高圧高温下での被処理体48の処理作業を行な
う。 又、予熱用の加熱装置を別に備えている設備に
おいては、予じめ予熱された被処理体48を高圧
室21外で、下部プラグ24と断熱外装33とに
よつて劃成される処理室32内に収容し、そのま
ま高圧室21内へ、あるいは、加熱装置28に電
力を供給して被処理体48を保熱・加熱してから
高圧室21内へ挿入することもでき、さらに、予
熱を必要としないような時には、高圧室21外で
被処理体48を処理室32内へ収容してそのまま
高圧室21内へ挿入することもでき、所望の使用
法が採用できる。 すなわち、以上の如き発明によれば、予熱を行
なう場合には、その加熱装置として、高圧高温処
理に用いる加熱装置28が利用できるので、別途
予熱炉等の加熱手段を設ける必要がなく、設備費
が安価になり、さらに、予熱中、予熱後も被処理
体48が断熱外装33と下部プラグ24とによつ
て劃成される処理室32内に置かれる為に、放熱
による熱損失を著しく減少でき、しかも予熱後の
高温被処理体48を高圧室21内に挿入する場合
にも被処理体48が断熱外装33によつて遮蔽さ
れている為に、高圧シリンダ22の下部内壁面が
過熱されることもなく、又、下部密封リング27
が損傷をうけることもなく、高圧シリンダ22及
び下部密封リング27の寿命も著しく伸びること
になり、安全性も飛躍的に向上する。 尚、断熱外装33は、倒立型コツプ34,35
によつて一体的に構成されたものを使用する例を
示したが、筒状の側部断熱外装と板状の上部断熱
外装に分割構成されたものを使用しても、同様の
効果が得られるが、実施例の如く倒立型コツプ3
4,35によつて一体的に構成された断熱外装
3を使用すれば、断熱外装33は伝導および輻射
伝熱に対する有効な熱遮蔽体としての役割を果す
ばかりでなく、高温高圧下の熱伝達において主要
な部分をなす対流伝熱に対して特に優れた断熱機
能を発揮する。 又、分割構成された断熱外装を使用する場合の
被処理体の出入れは、側部断熱外装及び上部断熱
外装を下部プラグより持ち上げて行なつてもよい
し、上部断熱外装のみをとりはずして行なつても
よい。 すなわち、上記発明によれば、極めて短かいサ
イクルタイムの高圧高温処理プロセスが、装置各
部への悪影響を与えることなく、安全にかつ経済
的に実施される。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-pressure, high-temperature furnace used when performing high-pressure, high-temperature processing such as powder compacting and sintering or diffusion bonding in a high-pressure, high-temperature gas atmosphere. In recent years, with the progress of technological development, techniques for subjecting objects to various treatments in high-pressure, high-temperature gas atmospheres have been researched and are about to be adopted industrially in various fields. Hot Isostatic Compacting Process or
The Hot Isostatic Pressing Process is one such method, and products formed and sintered using this method can: a) achieve high density at lower temperatures than when using traditional sintering methods; As a result, grain coarsening due to excessive crystal growth is prevented, and a dense structure can be obtained. b Densities close to theoretical values can be obtained for all materials, and the structure is uniform. c) It is possible to sufficiently increase the density of spherical powder that is not suitable for molding. d The mechanical and physical properties of the powder are improved. e The microstructure improves performance, for example, in high-speed steel tools. f Unlike ordinary mold-forming presses, large-sized products can be manufactured because they are not limited by press capacity. g. Health hazards can be kept to a minimum even when handling hazardous and unstable materials. h Various composite materials of metals, ceramics, etc. can be manufactured. i By improving material yield and reducing defective products,
Material costs can be reduced. There are many advantages such as. In addition to shaping and sintering powders, sintering is also possible by taking advantage of the fact that placing an object in a high-pressure, high-temperature gas atmosphere can remove internal defects and increase toughness and transverse rupture strength. Consideration is being given to using it to subject tool materials to high-pressure, high-temperature treatment, or when joining turbine blades to the main body, by diffusion bonding the two in a high-pressure, high-temperature gas atmosphere to obtain an extremely strong bond. . However, although it has many advantages, it is not currently being adopted industrially because the biggest drawback of this method, namely extremely low productivity, remains unsolved. . In order to reduce the manufacturing costs of products, shortening cycle times has become an urgent issue, and the British patent no.
A technique shown in No. 1291459 has been proposed. Hereinafter, with reference to FIG. 1, the technology shown in British Patent No. 1291459 will be explained as prior art to this invention. In FIG. 1, a high pressure chamber 1 is a high pressure cylinder 2,
Composed of an upper plug 3 and a lower plug 4, gas introduced into the high pressure chamber 1 through a pressure introduction hole 5 provided in the upper plug 3 is passed through an upper sealing ring 6 and a lower sealing ring 7 to the high pressure chamber 1. 1
kept airtight inside. Inside the high pressure chamber 1, side, upper and lower heat insulating sheaths 10, 11 and 12 surrounding the processing chamber 8 and heating device 9 are disposed, and the side and upper heat insulating sheaths 10, 11 are suspended from the upper plug 3. A heating device 9 is suspended from the upper heat insulating sheath 11 . An electrode 13 for supplying power to the heating device 9 is provided on the upper plug 3 in an electrically insulated and airtight manner, and the heating device 9 and the electrode 13 are connected to the upper heat insulating exterior 1 through a bush 14.
1 by a power supply conductor 15 passing through it. The object to be processed 16 is placed on the lower heat insulating sheath 12 . In the apparatus having the above configuration, the object to be processed 1
After preheating the lower plug 4 in a separately prepared preheating furnace (not shown) outside the high pressure chamber 1,
The high pressure chamber 1 is placed on top through the lower heat insulation exterior 12
The object to be treated 16, the lower heat insulating sheath 12, and the lower plug 4 are integrally inserted into the high pressure chamber 1 from below, and then high pressure gas is introduced from the pressure introduction hole 5.
A high-pressure, high-temperature gas atmosphere is created in the processing chamber 8, and the object to be processed 16 is pressurized and heated to produce a final product. That is, in the apparatus shown in FIG. 1, the workpiece 1 is heated in the preheating furnace before being heated in the high pressure chamber 1
6 is preheated, the heating time in the high pressure chamber 1 is shortened, and thus the cycle time can be shortened. However, even with this device, it is true that
Although it has the advantage of being able to shorten cycle time, it also requires a preheating furnace in addition to normal high-pressure, high-temperature processing equipment, which increases equipment costs. 16 is transported in the atmosphere, which has the drawback that heat loss due to heat radiation becomes extremely large.More fatally, the high-temperature processing object 16 after preheating is transported through the lower heat insulating exterior 12. Place it on the lower plug 4,
When inserted into the high-pressure chamber 1, the lower inner wall surface of the high-pressure cylinder 2 is overheated due to the heat radiation of the object to be treated 16, and furthermore, the lower sealing ring 7 is damaged due to the overheating of the inner wall surface of the high-pressure cylinder 2, which is a very serious drawback. It has. In other words, the pressure range in which this high-pressure, high-temperature treatment equipment is most often used is around 2000Kg/ cm2 ;
Overheating the high-pressure cylinder 2, which needs to maintain an extremely high pressure of 2000 kg/cm 2 , will significantly shorten its lifespan and pose a risk of destruction. The most expensive part in high-pressure, high-temperature processing equipment is the high-pressure cylinder 2, and a reduction in the lifespan of this high-pressure cylinder 2 leads to an increase in equipment costs and product costs.Furthermore, since high-pressure gas is used as the pressure medium, It is hard to imagine what kind of accident would occur due to the destruction of a high-pressure cylinder under a high pressure of 2000Kg/cm 2 . Furthermore, if the lower sealing ring 7 is damaged, it will no longer be possible to seal high-pressure gas, and not only will high pressure not be generated, but there is a risk that it will lead to a similar accident. In Japan, gas of 10 kg/cm 2 or more is called high pressure gas, and it is well known that safety in handling is regulated by the High Pressure Gas Control Law.
As stated in Article 1, the purpose of this law is to prevent disasters caused by high-pressure gas and ensure public safety. Therefore, very detailed standards have been established for the structural strength of high-pressure gas equipment, and in particular strict regulations have been put in place in terms of safety to ensure that all possible measures are taken to prevent disasters and accidents. There is. However, in general, the High Pressure Gas Control Law provides a clear standard for 1000 kg/
cm2 , and beyond this, it is necessary to demonstrate sufficient design and manufacturing technology for the Minister of International Trade and Industry to recognize that the manufacturing equipment is sufficiently safe. Currently, the pressure range in which high-pressure, high-temperature treatment equipment is most commonly used is around 2000Kg/ cm2 , but in this case,
The prefecture where the equipment is installed is the regulatory authority;
In addition to applying for permits for equipment, esp.
The pressure resistance and safety of parts exceeding 1000 kg/cm 2 must be confirmed by the Ministry of International Trade and Industry. In other words, in this type of equipment where safety is strictly pursued, no matter how much the cycle time can be shortened, there is a risk of overheating of the high pressure cylinder 2 and further damage of the lower sealing ring 7. Employing a device such as that shown in FIG. 1 is extremely problematic. This invention was made in view of the above-mentioned problems, and aims to provide a highly safe high-pressure, high-temperature furnace that can shorten the cycle time and has no adverse effects on the high-pressure cylinder and other parts of the equipment. Its characteristics include a high-pressure chamber formed by a high-pressure cylinder, an upper plug and a lower plug that seal the upper and lower openings of the high-pressure cylinder, respectively, an insulated exterior, and a heating device inside the insulated exterior. In a high-pressure, high-temperature furnace in which a process such as sintering or bonding is performed on a workpiece placed on the lower plug in a high-pressure, high-temperature gas atmosphere, the lower plug, heating device, heat-insulating exterior, and workpiece are placed on the lower plug. The present invention is provided in such a manner that it can be integrally removed from the high-pressure cylinder at any time, and that a processing chamber defined by the heat-insulating exterior and the lower plug is provided so as to be openable and closable. Here, in the above configuration, the phrase "can be taken out integrally at all times" means that when using the furnace of the present invention, it is not possible to take out the furnace in special cases such as failure or repair, but that taking it out in one piece is a normal mode of use in normal processing. That's what I'm saying. In this sense, the furnace of the present invention achieves its function by being able to take out the entire unit at all times. Hereinafter, the present invention will be explained in detail with reference to illustrated embodiments. FIG. 2 shows an embodiment of the high-pressure, high-temperature furnace according to the present invention, and the present invention will be explained with reference to FIG. In FIG. 2, the high pressure chamber 21 is the high pressure cylinder 2.
2. Consisting of an upper plug 23 and a lower plug 24, the gas introduced into the high pressure chamber 21 through the pressure introduction hole 25 provided in the upper plug 23 passes through the upper sealing ring 26 and the lower sealing ring 2.
7 in a hermetically sealed manner within the high pressure chamber 21. The axial force acting on the upper plug 23 and the lower plug 24 causes both plugs 23 and 24 to move toward the high pressure cylinder 2.
It may be supported by screwing it to 2, or a mechanism may be adopted in which it is supported by a press. Heating device 28 installed on the lower plug 24
is constructed by holding the heating element 29 in electrical isolation within a metallic cylinder 30. or,
The heating element 29 is supplied with electrical power through an electrode 31 which is electrically insulated and hermetically arranged on the lower plug 24 . Processing chamber 3 including heating device 28
A heat insulating exterior 33 surrounding the heat insulating shell 33 is composed of substantially concentric inverted tips 34 and 35 made of a material with low gas permeability and a ring 36, and the inside is filled with a fibrous heat insulating material 37 such as ceramic fiber. Ru. An example of the use of the high-pressure, high-temperature furnace of the present invention having the above configuration will be shown below. First, the lower plug 24 is taken out of the high pressure chamber 21 together with the heat insulating sheath 33 and the heating device 28, and the heat insulating sheath 33 placed on the lower plug 24 is placed on the lower plug 2.
4 to open the inside of the processing chamber 32, take out the object to be processed 48 to be placed on the lower plug 24 via the heat insulating material 43, insert a new object to be processed, and then remove the heat insulating exterior 33 . It is placed on the lower plug 24 to shut off the processing chamber 32, and supplies power to the heating element 29 in the processing chamber 32 through the electrode 31 to raise the temperature in the processing chamber 32, thereby preheating the object to be processed 48. ,
When the object to be processed 48 has been preheated to a predetermined temperature, the lower plug 24, the object to be processed 48, and the heat insulating exterior 3
3. After inserting the heating device 28 integrally into the high pressure chamber 21 and sealing the inside of the high pressure chamber 21 with the lower sealing ring 27, the high pressure chamber 21 and the processing chamber are sealed through the pressure introduction hole 25 provided in the upper plug 23. 32 vacuum suction is performed, and then gas replacement is performed. After the gas replacement is completed, gas is continuously supplied from the pressure introduction hole 25 and power is continuously supplied to the heating device 28 to perform processing work on the object to be processed 48 under high pressure and high temperature. In addition, in equipment equipped with a separate heating device for preheating, the preheated object 48 is placed outside the high pressure chamber 21 in the processing chamber formed by the lower plug 24 and the heat insulating exterior 33 . 32 and inserted into the high-pressure chamber 21 as is, or the object to be processed 48 can be heat-retained and heated by supplying power to the heating device 28 and then inserted into the high-pressure chamber 21. When this is not necessary, the object to be processed 48 can be accommodated in the processing chamber 32 outside the high pressure chamber 21 and inserted into the high pressure chamber 21 as it is, and a desired method of use can be adopted. That is, according to the invention as described above, when performing preheating, the heating device 28 used for high pressure and high temperature treatment can be used as the heating device, so there is no need to separately provide a heating means such as a preheating furnace, and the equipment cost is reduced. In addition, since the object to be processed 48 is placed in the processing chamber 32 formed by the heat insulating exterior 33 and the lower plug 24 during and after preheating, heat loss due to heat radiation is significantly reduced. Moreover, even when the preheated high-temperature processing object 48 is inserted into the high-pressure chamber 21, the lower inner wall surface of the high-pressure cylinder 22 is not overheated because the processing object 48 is shielded by the heat-insulating exterior 33 . Also, the lower sealing ring 27
The high-pressure cylinder 22 and the lower sealing ring 27 will not be damaged, and the life of the high-pressure cylinder 22 and the lower sealing ring 27 will be significantly extended, and safety will be dramatically improved. In addition, the heat insulating exterior 33 is an inverted cup 34, 35.
Although we have shown an example of using an integrally constructed one, the same effect can also be obtained by using one that is divided into a cylindrical side heat insulating sheath and a plate-like upper insulating sheath. However, as in the example, an inverted cup 3
A heat insulating exterior 3 integrally constituted by 4 and 35
3, the insulated sheath 33 not only serves as an effective thermal shield against conductive and radiant heat transfer, but is also particularly effective against convective heat transfer, which is a major part of heat transfer at high temperatures and pressures. Demonstrates heat insulation function. Furthermore, when using a heat insulating sheath with a split configuration, the object to be processed can be taken in and out by lifting the side insulating sheath and the top insulating sheath from the lower plug, or by removing only the top insulating sheath. It's okay to get old. That is, according to the above invention, a high-pressure, high-temperature treatment process with an extremely short cycle time can be carried out safely and economically without adversely affecting each part of the apparatus.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の高圧高温炉を示す正断面図、第
2図はこの発明の実施例を示す正断面図であり、
21は高圧室、22は高圧シリンダ、23は上部
プラグ、24は下部プラグ、25は圧力導入孔、
26は上部密封リング、27は下部密封リング、
28加熱装置、31は電極、32は処理室、33
は断熱外装、48は被処理体をそれぞれ示してい
る。
FIG. 1 is a front sectional view showing a conventional high-pressure high-temperature furnace, and FIG. 2 is a front sectional view showing an embodiment of the present invention.
21 is a high pressure chamber, 22 is a high pressure cylinder, 23 is an upper plug, 24 is a lower plug, 25 is a pressure introduction hole,
26 is an upper sealing ring, 27 is a lower sealing ring,
28 heating device, 31 electrode, 32 processing chamber, 33
numeral 48 indicates a heat insulating exterior, and 48 indicates an object to be processed.

Claims (1)

【特許請求の範囲】[Claims] 1 高圧シリンダ、同高圧シリンダの上下開口部
をそれぞれ密封する上部プラグ、下プラグとによ
つて劃成される高圧室内に、断熱外装と、同断熱
外装の内側に加熱装置とを有し、前記下部プラグ
上に載置せる被処理体に高圧高温ガス雰囲気下で
焼結あるいは接合等の処理を行なう高圧高温炉に
おいて、前記下部プラグ、加熱装置、断熱外装及
び被処理体とを前記高圧シリンダ外へ常時一体的
に取出し可能に設けるとともに、前記断熱外装及
び下部プラグによつて劃成される処理室を開閉自
在に設けたことを特徴とする高圧高温炉。
1 A high-pressure cylinder, a high-pressure chamber formed by an upper plug and a lower plug that seal the upper and lower openings of the high-pressure cylinder, respectively, has an insulating exterior and a heating device inside the insulating exterior; In a high-pressure, high-temperature furnace in which a workpiece placed on a lower plug is subjected to a process such as sintering or bonding in a high-pressure, high-temperature gas atmosphere, the lower plug, heating device, heat-insulating exterior, and workpiece are placed outside the high-pressure cylinder. A high-pressure, high-temperature furnace characterized in that a processing chamber defined by the heat-insulating exterior and the lower plug is provided so as to be freely openable and closable.
JP6899282A 1982-04-23 1982-04-23 High pressure high temperature furnace Granted JPS5825405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6899282A JPS5825405A (en) 1982-04-23 1982-04-23 High pressure high temperature furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6899282A JPS5825405A (en) 1982-04-23 1982-04-23 High pressure high temperature furnace

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP5053175A Division JPS5846524B2 (en) 1975-04-24 1975-04-24 Hishiyori Tai Nikou Atsukou Onshiyorio Okonau Houhou Narabini Douhouhou Nishiyousuru Kouatsukou Onro

Publications (2)

Publication Number Publication Date
JPS5825405A JPS5825405A (en) 1983-02-15
JPS6326839B2 true JPS6326839B2 (en) 1988-05-31

Family

ID=13389662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6899282A Granted JPS5825405A (en) 1982-04-23 1982-04-23 High pressure high temperature furnace

Country Status (1)

Country Link
JP (1) JPS5825405A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6129299U (en) * 1984-07-25 1986-02-21 東北金属工業株式会社 Hot isostatic press equipment
JPH0424397Y2 (en) * 1987-07-02 1992-06-09

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51124610A (en) * 1975-04-24 1976-10-30 Kobe Steel Ltd A method of performing high-pressure high-temperature treatment on mat erials to be treated and a hgih- pressure high-temperature furnace use d in the same method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51124610A (en) * 1975-04-24 1976-10-30 Kobe Steel Ltd A method of performing high-pressure high-temperature treatment on mat erials to be treated and a hgih- pressure high-temperature furnace use d in the same method

Also Published As

Publication number Publication date
JPS5825405A (en) 1983-02-15

Similar Documents

Publication Publication Date Title
EP0145417B2 (en) Hot isostatic pressing
JPS5871301A (en) Method and device for hot hydrostatic molding
JPS5839707A (en) High density sintering method for powder molding
US5010220A (en) Process and apparatus for heating bodies at high temperature and pressure utilizing microwave energy
JPH0336490A (en) Equilateral press and equilateral press method therefor in microwave heating
US4719078A (en) Method of sintering compacts
US4368074A (en) Method of producing a high temperature metal powder component
JPS5846524B2 (en) Hishiyori Tai Nikou Atsukou Onshiyorio Okonau Houhou Narabini Douhouhou Nishiyousuru Kouatsukou Onro
JPS6225677Y2 (en)
JPS6326839B2 (en)
US4178178A (en) Method of sealing hot isostatic containers
CN114478012A (en) Carbon part manufacturing method and carbon part manufactured by same
US4904538A (en) One step HIP canning of powder metallurgy composites
US4704252A (en) Isostatic hot forming of powder metal material
US20100155993A1 (en) High Throughput System and Methods of Spark Plasma Sintering
CN214920480U (en) High-efficiency discharge plasma sintering mold
JP4271817B2 (en) Electric sintering die
CN209820120U (en) Magnetic field coupling direct current's pressure fritting furnace
US3679807A (en) Die-furnace, especially for the fabrication of sintered products
JP2535408B2 (en) Hot isostatic pressing apparatus and processing method
US7763204B2 (en) Manufacturing process and apparatus
CN115894033B (en) Preparation method of large-size magnesium fluoride moderated body
KR102215427B1 (en) MANUFACTURING METHOD OF A ZnS SINTERED MEMBER FOR INFRARED TRANSMITTANCE AND THE ZnS SINTERED MEMBER
CN110277177B (en) Method for closing gap between fuel pellet and cladding in target
JPS5822307A (en) Method of hot hydrostatic pressure press treatment using hydraulic pressure