JPS63267893A - Layered type heat exchanger - Google Patents

Layered type heat exchanger

Info

Publication number
JPS63267893A
JPS63267893A JP11481287A JP11481287A JPS63267893A JP S63267893 A JPS63267893 A JP S63267893A JP 11481287 A JP11481287 A JP 11481287A JP 11481287 A JP11481287 A JP 11481287A JP S63267893 A JPS63267893 A JP S63267893A
Authority
JP
Japan
Prior art keywords
heat exchanger
manifold
fiber
outer cylinder
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11481287A
Other languages
Japanese (ja)
Inventor
Tsukasa Wada
司 和田
Satoshi Yasuda
聡 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11481287A priority Critical patent/JPS63267893A/en
Publication of JPS63267893A publication Critical patent/JPS63267893A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

PURPOSE:To simplify the whole of a heat exchanger, to facilitate manufacture, and to reduce the weight and the cost, by a method wherein an outer cylinder and a manifold mechanism are formed by fiber-reinforced plastic. CONSTITUTION:The outer peripheral surface of a heat exchanger body 7 and the outer peripheral surface of each of elements 22 of manifold mechanisms 21a and 21b are integrally covered with an outer cylinder 25, and the outer cylinder 25 is formed by fiber-reinforced plastic. First, the manifold mechanisms 21a and 21b are adhered and connected to the two end surfaces of the heat exchanger body 7, and an uncured fiber-reinforced plastic layer is formed on the outer peripheral surface of the heat exchanger body 7 of the bonded substance and the outer peripheral surface of each of the elements 22 of the manifold mechanisms 21a and 21b thereof. In this case, through regulation of a direction of fiber, the coefficient of thermal expansion of a finally produced outer cylinder 25 is coincided with that of the heat transfer body 7. As noted above, an uncured fiber plastic layer is formed in a given thickness, and thereafter, the plastic layer is thermally cured.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、1層型熱交換器に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a single layer heat exchanger.

(従来の技術) 従来、冷凍装置等に組込む小形の熱交換器として積層型
熱交換器が知られている。この積層型熱交換器の主要部
は9通常、第3図に示すように。
(Prior Art) Conventionally, a stacked heat exchanger is known as a small heat exchanger that is incorporated into a refrigeration system or the like. The main parts of this stacked heat exchanger are shown in Figure 3.

熱、伝導の良好なアルミニュウムの薄板等で、たとえば
円板状に形成された伝熱板1と、111M強化プラスチ
ックの薄板等で上記伝熱板1と同径に形成された断熱板
2とを第4図に示すように交互に積層した積層体構成と
なっている。各断熱板2には第1の流体を通流させるた
めのスリット状の孔3が放射状に形成されており、これ
ら孔3相互間に第2の流体を通流させるための孔4がそ
れぞれ形成されている。また、伝熱板1の前記孔3に対
応する位置には複数の孔5が形成されており、さらに孔
4に対応する位置にも複数の孔6が形成されている。そ
して、断熱板2の孔3と伝熱板1の孔5、断熱板2の孔
4と伝熱板1の孔6とがそれぞれ連通するように両板1
,2を接着剤で貼り合わせ、かつ伝熱板1と断熱板2と
が交互に位置するように次々に貼り合わせて第4図に示
すような熱交換器本体7を形成したものとなっている。
A heat exchanger plate 1 made of, for example, a disk-shaped thin plate of aluminum having good heat and conductivity, and a heat insulating plate 2 formed of a thin plate of 111M reinforced plastic or the like with the same diameter as the heat exchanger plate 1. As shown in FIG. 4, it has a laminate structure in which layers are alternately stacked. Each heat insulating plate 2 has slit-like holes 3 formed in a radial manner for allowing a first fluid to flow therethrough, and holes 4 for allowing a second fluid to flow between these holes 3. has been done. Further, a plurality of holes 5 are formed at positions corresponding to the holes 3 of the heat exchanger plate 1, and a plurality of holes 6 are further formed at positions corresponding to the holes 4. Then, both plates 1 are arranged so that the holes 3 of the heat insulating plate 2 and the holes 5 of the heat exchanger plate 1 and the holes 4 of the heat insulating plate 2 and the holes 6 of the heat exchanger plate 1 communicate with each other.
. There is.

したがって、熱交換器本体7中には第5図に示すように
、孔3と孔5とを交互に接続した第1の流体通路8と、
孔4と孔6とを交互に接続した第2の流体通路9とが積
層方向に平行に延びた状態に存在していることになる。
Therefore, as shown in FIG. 5, the heat exchanger main body 7 includes first fluid passages 8 in which the holes 3 and 5 are connected alternately,
This means that second fluid passages 9 in which holes 4 and holes 6 are alternately connected extend in parallel to the stacking direction.

この熱交換器本体7を使用するに当たっては、第1の流
体通路8に図中実線矢印で示すように高温の流体を通流
させるとともに第2の流体通路9に図中破線矢印で示す
ように低温の流体を通流させ9両流体間で伝熱板1を介
して熱交換させるようにしている。
When using this heat exchanger main body 7, high temperature fluid is passed through the first fluid passage 8 as shown by the solid line arrow in the figure, and high temperature fluid is passed through the second fluid passage 9 as shown by the broken line arrow in the figure. A low-temperature fluid is passed through the two fluids, and heat is exchanged between the two fluids via a heat exchanger plate 1.

ところで、熱交換器本体7が上記のように構成される積
層型熱交換器にあっては1本体の保護。
By the way, in the case of a laminated heat exchanger in which the heat exchanger main body 7 is configured as described above, only one main body is protected.

本体からの流体漏れ対策、設置の容易化等の而から2通
常、熱交換器本体7を第6図に示すように金属製の耐圧
容器10内に収容し、この耐圧容器10内で上述した第
1および第2の流体通路8゜9にマニホールド機構11
を接続する構造となっている。そして、このように耐圧
容器10内への収容および耐圧容器10内でのマニホー
ルド機構11による接続に際しては9次のような点を考
慮に入れるようにしている。すなわち、熱交換器本体7
は9通常、伝熱板1と断熱板2とを接着剤を介して数1
00枚積層したものとなっている。このため熱交換器本
体7の熱膨張量あるいは熱収縮量と耐圧容器10のそれ
とを合わせることが困難で。
In order to prevent fluid leakage from the main body and to facilitate installation, the heat exchanger main body 7 is usually housed in a metal pressure vessel 10 as shown in FIG. The manifold mechanism 11 is connected to the first and second fluid passages 8°9.
It has a structure that connects. In this manner, the following points are taken into consideration when housing the product in the pressure-resistant container 10 and connecting it with the manifold mechanism 11 within the pressure-resistant container 10. That is, the heat exchanger body 7
9 Usually, the heat exchanger plate 1 and the heat insulating plate 2 are connected by the number 1 through adhesive.
00 sheets are laminated. Therefore, it is difficult to match the amount of thermal expansion or contraction of the heat exchanger body 7 with that of the pressure vessel 10.

この問題を解決するために、熱交換器本体7の外径に比
べて耐圧容器10の内径を大′きく設定している。この
ように設定すると、必然的に、熱交換一本体7の外周面
と耐圧容器10の内周面との間を間隙12が生じること
になる。一方、マニホールド機構11としては、構造の
簡単化を図るために熱交換器本体7の端面とこれに対向
する耐圧容器10の側壁との間に存在する空間13を一
方の流路として用いる構造のものが使用される。このた
め、上記一方の流路を通流する流体の一部が熱交換器本
体7内を通らず、熱交換器本体7の外周面と耐圧容器1
0の内周面との間に存在する間隙12を通ってバイパス
する虞れがある。もしバイパス路が形成されると、必然
的に熱交換効率が低下することになる。したがって、何
等かの手段で間隙12を実質的になくす必要がある。ま
た、熱交換器本体7は、接着剤と言った厚みの不確定な
ものを介在させた積層体であるため、得られた熱交換器
本体7の積層方向の長さは1つずつ異なったものになり
易い。したがって、何等かの手段で。
In order to solve this problem, the inner diameter of the pressure vessel 10 is set larger than the outer diameter of the heat exchanger body 7. With this setting, a gap 12 will inevitably be created between the outer circumferential surface of the heat exchanger main body 7 and the inner circumferential surface of the pressure vessel 10. On the other hand, in order to simplify the structure, the manifold mechanism 11 has a structure in which the space 13 existing between the end face of the heat exchanger main body 7 and the side wall of the pressure vessel 10 opposing this is used as one flow path. things are used. Therefore, a part of the fluid flowing through one of the channels does not pass through the inside of the heat exchanger body 7, and the outer peripheral surface of the heat exchanger body 7 and the pressure vessel 1
There is a possibility that it may be bypassed through the gap 12 that exists between the inner peripheral surface of 0 and the inner peripheral surface of 0. If a bypass path is formed, the heat exchange efficiency will inevitably decrease. Therefore, it is necessary to substantially eliminate the gap 12 by some means. In addition, since the heat exchanger body 7 is a laminate in which something with an uncertain thickness such as an adhesive is interposed, the length of the obtained heat exchanger body 7 in the stacking direction differs one by one. It's easy to become a thing. Therefore, by any means.

上述した不揃いが組み立てに影響を与えないようにする
必要もある。さらに、あらゆる場所で使用できるように
するには、充分な耐震性を備える必要もある。このよう
に耐圧容器10内に熱交換器本体7を安定に設置するに
は上述した全ての要件を備えていなければならない。
It is also necessary to ensure that the above-mentioned irregularities do not affect assembly. Furthermore, in order to be able to use it in any location, it must also have sufficient earthquake resistance. In order to stably install the heat exchanger main body 7 in the pressure vessel 10 as described above, all the above-mentioned requirements must be met.

このようなことから、従来の積層型熱交換器にあっては
、耐圧容器10をステンレス鋼等の金属材で形成すると
ともに一方のマニホールド機構11の外周面を第6図中
Aで示すように耐圧容器10に溶接付けすることによっ
て間隙12への回り込みを回避させ、さらに他方のマニ
ホールド機構11にベローズ14を介在させることによ
って熱交換器本体7の積層方向長さの不揃いの吸収およ
び耐震性の向上化を図る構造が採用されている。
For this reason, in the conventional laminated heat exchanger, the pressure vessel 10 is made of a metal material such as stainless steel, and the outer peripheral surface of one manifold mechanism 11 is made of a metal material such as stainless steel. By welding the heat exchanger body 7 to the pressure vessel 10, it is possible to avoid it from entering the gap 12, and by interposing the bellows 14 in the other manifold mechanism 11, it is possible to absorb uneven lengths in the stacking direction of the heat exchanger main body 7 and improve earthquake resistance. A structure has been adopted to improve the performance.

しかしながら、上記のように構成された従来の積層型熱
交換器にあっては、耐圧容器10を金属材で形成してい
るので、この耐圧容器1oを介しての伝熱量が多く、こ
れが原因して熱交換効率が低いと言う問題があった。ま
た、ベローズ14を使用しているので、金体の高価化お
よび複雑化を招き、しかも信頼性が低いと言う問題もあ
った。
However, in the conventional laminated heat exchanger configured as described above, since the pressure vessel 10 is formed of a metal material, a large amount of heat is transferred through the pressure vessel 1o, and this is the cause. The problem was that the heat exchange efficiency was low. Further, since the bellows 14 is used, the metal body becomes expensive and complicated, and there are also problems in that reliability is low.

(発明が解決しようとする問題点) 上述の如く、従来の積層型熱交換器にあっては、熱交換
効率が低いばかりか、構造が複雑で製作にも困難が伴い
、しかも全体が高価格化する問題があった。
(Problems to be Solved by the Invention) As mentioned above, conventional laminated heat exchangers not only have low heat exchange efficiency, but also have a complicated structure and are difficult to manufacture, and are expensive as a whole. There was a problem of

そこで本発明は、上述した問題点を全て解消できる積層
型熱交換器を提供することを目的としている。
Therefore, an object of the present invention is to provide a laminated heat exchanger that can solve all of the above-mentioned problems.

[発明の構成] (問題点を解決するための手段) 本発明は、外商と、この外筒内に収容され。[Structure of the invention] (Means for solving problems) The present invention is housed within the outer cylinder.

伝熱板と断熱板とを交互に、かつ相互間に接着剤を介在
させて積層した積層体中に上記伝熱板、上記断熱板およ
び上記接着剤によって仕切られた流体通路を積層方向に
形成してなる熱交換器本体と。
A fluid passage partitioned by the heat transfer plates, the heat insulating plates, and the adhesive is formed in the stacking direction in a laminate in which heat transfer plates and heat insulating plates are laminated alternately with an adhesive interposed between them. and the heat exchanger body.

この熱交換器本体の前記流体通路を外部配管に接続する
ために上記熱交換器本体の積層方向両端面にそれぞれ接
続された少なくとも一対のマニホールド機構とを備えて
なるM4層型熱交換器において。
An M4-layer heat exchanger comprising at least a pair of manifold mechanisms respectively connected to both end faces of the heat exchanger body in the stacking direction for connecting the fluid passages of the heat exchanger body to external piping.

前記外筒およびマニホールド機構を繊維強化プラスチッ
クで形成している。
The outer cylinder and the manifold mechanism are made of fiber-reinforced plastic.

(作用) [ff強化プラスチック層は一般に金属材に比べて熱伝
導率が小さい。したがって、外筒を介しての伝熱量を少
なくできるので、熱交換効率を向上させることができる
。また、#A維プラスチック層は、基材の繊維方向を調
整することによって熱膨張率を調整できる。したがって
、予め熱交換器本体と、!IN強化プラスチック製のマ
ニホールドi横とを製作しておき、熱交換器本体の両端
面にマニホールド機構を当てがった状態で熱交換器本体
の外周およびマニホールド機構の外周に熱交換器本体の
熱膨張率に合うように繊維方向を調整しながら未硬化の
繊維強化プラスチツク層を設けた後、これを熱硬化させ
れば、熱交換器本体との間に熱膨張率差がなり、シかも
熱交換器本体の外周面との間に間隙が存在しない外筒を
形成できることになる。また、上記のようにして熱交換
器本体形成後に、この本体に適合するように外筒を形成
することが可能となるので、熱交換器本体の積層方向の
長さが不揃いであっても同等支障がない。
(Function) [ff Reinforced plastic layers generally have lower thermal conductivity than metal materials. Therefore, since the amount of heat transferred via the outer cylinder can be reduced, the heat exchange efficiency can be improved. Further, the coefficient of thermal expansion of the #A fiber plastic layer can be adjusted by adjusting the fiber direction of the base material. Therefore, with the heat exchanger body in advance! A manifold made of IN reinforced plastic is manufactured in advance, and with the manifold mechanism applied to both end faces of the heat exchanger body, the heat of the heat exchanger body is applied to the outer periphery of the heat exchanger body and the outer periphery of the manifold mechanism. If an uncured fiber-reinforced plastic layer is provided while adjusting the fiber direction to match the expansion coefficient, and then thermally cured, there will be a difference in the coefficient of thermal expansion between the plastic layer and the heat exchanger body. This means that it is possible to form an outer cylinder with no gap between it and the outer peripheral surface of the exchanger main body. In addition, after forming the heat exchanger body as described above, it is possible to form the outer cylinder to fit the body, so even if the lengths of the heat exchanger body in the stacking direction are uneven, the same There is no problem.

したがって、ベローズのように信頼性の低い要素の使用
を不要化でき、しかも製作の容易化にも寄与できる。
Therefore, the use of unreliable elements such as bellows can be eliminated, and it can also contribute to easier manufacturing.

(実施例) 以下1図面を参照しながら実施例を説明する。(Example) An embodiment will be described below with reference to one drawing.

第1図は本発明の一実施例に係る積層型熱交換器を示す
もので、第6図と同一部分は同一符号で示しである。
FIG. 1 shows a stacked heat exchanger according to an embodiment of the present invention, and the same parts as in FIG. 6 are designated by the same symbols.

すなわち1図中7は従来の積層型熱交換器と同様に構成
された熱交換器本体である。この熱交換器本体7の両端
面には、熱交換器本体7内に形成された2系統の流体通
路を外2部配管に接続するためのマニホールド機構21
a、21bが接着材等を介して接続されている。マニホ
ールド機構21a、21bは、繊維強化プラスチックで
形成された要素22.23.24で構成され、これら各
要素は接着材等を介して図示関係に接続されている。
That is, 7 in FIG. 1 is a heat exchanger main body configured similarly to a conventional laminated heat exchanger. A manifold mechanism 21 is provided on both end surfaces of the heat exchanger body 7 for connecting two fluid passages formed in the heat exchanger body 7 to two external pipes.
a and 21b are connected via an adhesive or the like. The manifold mechanisms 21a and 21b are composed of elements 22, 23, and 24 made of fiber-reinforced plastic, and these elements are connected in the illustrated relationship via an adhesive or the like.

一方、熱交換器本体7の外周面およびマニホールド機構
21a、21bにおける各要素22の外周面は、外筒2
5によって一体に覆われている。
On the other hand, the outer peripheral surface of the heat exchanger main body 7 and the outer peripheral surface of each element 22 in the manifold mechanisms 21a and 21b are
It is integrally covered by 5.

外筒25は、繊維強化プラスチックで形成されたもので
、具体的には次のように設けられている。
The outer cylinder 25 is made of fiber-reinforced plastic, and is specifically provided as follows.

すなわち、まず熱交換器本体7の両端面にマニホールド
i構21a、21bを接着接続し、この結合物における
熱交換器本体7の外周面および各マニホールド21a、
21bの各要素22の外周面に未硬化繊維強化ブしスチ
ック層を設ける。このとき、[I方向等を調整して最終
的に形成される外v!425の熱膨張率を熱交換器本体
7の熱膨張率に一致させるようにする。上記のように未
硬化の繊維プラスチック層を所定の厚みに設け、その後
このプラスチック層を熱硬化させている。
That is, first, the manifold i structures 21a and 21b are adhesively connected to both end surfaces of the heat exchanger main body 7, and the outer circumferential surface of the heat exchanger main body 7 and each manifold 21a,
An uncured fiber-reinforced brush stick layer is provided on the outer peripheral surface of each element 22 of 21b. At this time, the outside v which is finally formed by adjusting the I direction etc. The coefficient of thermal expansion of 425 is made to match the coefficient of thermal expansion of the heat exchanger body 7. As described above, an uncured fiber plastic layer is provided to a predetermined thickness, and then this plastic layer is thermoset.

上記のように構成された積層型熱交換器では。In the stacked heat exchanger configured as above.

外筒25およびマニホールド機構21a、21bがIl
維強化プラスチックで形成されているので。
The outer cylinder 25 and the manifold mechanisms 21a and 21b are
It is made of fiber-reinforced plastic.

外筒やマノホールド機構が金属材で形成された場合に比
べて、これらを介しての伝熱量を少なくできる。したが
って、熱交換効率を向上させることができる。また、繊
維強化プラスチツク層は、基材の繊維方向を調整するこ
とによって熱膨張率を調整できるので、上記のように予
め熱交換器本体7と、繊維強化プラスチック類のマニホ
ールド機構21a、21bとを製作しておき、熱交換器
本体7の両端面にマニホールド機構21a、21bを当
てがった状態で熱交換器本体7の外周およびマニホール
ド11M21a、21bの外周に熱交換器本体7の熱膨
張率に合うようにm維方向を調整しながら未硬化のII
N強化プラスチック層を設けた後、これを熱硬化させれ
ば、熱交換器本体7との間に熱膨張率差がなり、シかも
熱交換器本体7の外周面との間に間隙が存在しない外筒
25を形成することができる。したがって、熱膨張率の
違いによって起こる不具合を容易に解消することができ
る。また、熱交換器本体7を形成後に、この本体7に適
合するように外筒25を形成することが可能となるので
、熱交換器本体7の8!ill!方向の長さの不揃いに
容易に対応できる。したがって。
Compared to the case where the outer cylinder and manifold mechanism are formed of metal materials, the amount of heat transferred through these can be reduced. Therefore, heat exchange efficiency can be improved. Furthermore, since the coefficient of thermal expansion of the fiber-reinforced plastic layer can be adjusted by adjusting the fiber direction of the base material, the heat exchanger main body 7 and the manifold mechanisms 21a and 21b of fiber-reinforced plastics are assembled in advance as described above. With the manifold mechanisms 21a and 21b applied to both end surfaces of the heat exchanger body 7, the thermal expansion coefficient of the heat exchanger body 7 is applied to the outer periphery of the heat exchanger body 7 and the outer periphery of the manifolds 11M21a and 21b. uncured II while adjusting the m-fiber direction to match the
If the N-reinforced plastic layer is heat-cured after being provided, there will be a difference in thermal expansion coefficient between the layer and the heat exchanger body 7, and a gap may exist between the layer and the outer peripheral surface of the heat exchanger body 7. It is possible to form an outer cylinder 25 that does not Therefore, problems caused by differences in thermal expansion coefficients can be easily resolved. Further, after forming the heat exchanger main body 7, it is possible to form the outer cylinder 25 to fit the heat exchanger main body 7. ill! Easily accommodates uneven lengths in different directions. therefore.

ベローズのように信頼性の低い要素の使用を不要化でき
、製作の容易化も図れ、そのうえ全体の軽量化および積
層方向の寸法を短くすることが可能となる。なお、実験
によると、熱交換器本体の外径、全長を等しくして従来
の熱交換器と熱交換効率を比較したところ、3ONm/
hの流量で95%から97%に向上させることができた
The use of unreliable elements such as bellows can be eliminated, manufacturing can be facilitated, and the overall weight can be reduced and the dimensions in the stacking direction can be shortened. In addition, according to experiments, when comparing the heat exchange efficiency with a conventional heat exchanger by making the outer diameter and overall length of the heat exchanger body the same, it was found that the heat exchange efficiency was 3ONm/
It was possible to improve the flow rate from 95% to 97% at a flow rate of h.

第2図は本発明の別の実施例に係る積層型熱交換器を示
すもので、第1図と同一部分は同一符号で示しである。
FIG. 2 shows a stacked heat exchanger according to another embodiment of the present invention, in which the same parts as in FIG. 1 are designated by the same reference numerals.

したがって1重複する部分の説明は省略する。Therefore, explanation of the overlapping portion will be omitted.

この実施例が第1図に示した実施例と異なる点は、マニ
ホールド機構121a、121bの構成にある。
This embodiment differs from the embodiment shown in FIG. 1 in the configuration of manifold mechanisms 121a and 121b.

マニホールド機構121a、121bは、それぞれ繊維
強化プラスチック材で外形が円板状に形成された要素1
22.123を主体にして構成されている。要素122
,123には、これら要素122.123を位置合わせ
して積層し、この状態で熱交換器本体7の両端面に当て
がっだとき熱交換器本体7に設けられた2系統の流体通
路に接続される流路孔が形成されている。そして、これ
ら要素122,123の外周面は外@25によって共通
に覆われている。なお9図中124゜125は同じく繊
維強化プラスチツク材で形成され、要素123の流路孔
に接着材等を介して接続された接続管を示している。
The manifold mechanisms 121a and 121b each include an element 1 made of a fiber-reinforced plastic material and having a disk shape.
It is mainly composed of 22.123. element 122
, 123, these elements 122 and 123 are aligned and stacked, and when applied to both end surfaces of the heat exchanger body 7 in this state, two fluid passages provided in the heat exchanger body 7 are connected. A flow passage hole to be connected is formed. The outer circumferential surfaces of these elements 122 and 123 are commonly covered by an outer layer 25. Note that in FIG. 9, reference numerals 124 and 125 indicate a connecting pipe, which is also made of fiber-reinforced plastic material and is connected to the channel hole of the element 123 via an adhesive or the like.

このような構成であると、前記実施例と同様の効果が得
られるとともに板状の要素122゜123を組み合わせ
てマニホールド機構121a。
With such a configuration, the same effects as in the previous embodiment can be obtained, and the plate-like elements 122 and 123 are combined to form the manifold mechanism 121a.

121bを構成しているので、マニホールド機構121
a、121bが占める容積を少なくでき。
121b, the manifold mechanism 121
The volume occupied by a and 121b can be reduced.

これによって全体の軸方向長さを短くきるばかりかマニ
ホールド機構121a、121bでの圧力損失を少なく
できる。
This not only shortens the overall axial length but also reduces pressure loss in the manifold mechanisms 121a and 121b.

なお1本発明は上述した実施例に限定されるものではな
い。す−なわち、上述した各実施例では熱交換器本体を
円柱状に構成しているが、角柱状に構成してもよい。
Note that the present invention is not limited to the embodiments described above. That is, in each of the embodiments described above, the heat exchanger main body is configured in a cylindrical shape, but it may also be configured in a prismatic shape.

[発明の効果] 以上述べたように2本発明によれば、熱交換器本体以外
の要素を繊維強化プラスチックで形成しているので、熱
交換器本体の熱膨張率および積層方向の長さの不揃いに
容易に対応でき、全体の単純化、製作の容易化、全体の
軽量化、低価格化を図れるばかりか、熱交換器としての
効率向上化も図ることができる。
[Effects of the Invention] As described above, according to the second invention, since elements other than the heat exchanger main body are formed of fiber reinforced plastic, the coefficient of thermal expansion and the length in the stacking direction of the heat exchanger main body can be reduced. It is possible to easily deal with irregularities, simplify the entire structure, make it easier to manufacture, reduce the overall weight, and lower the price, as well as improve the efficiency of the heat exchanger.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る積層型熱交換器の縦断
面図、第2図は本発明の他の実施例に係る積層型熱交換
器の縦断面図、第3図は積層型熱交換器の熱交換器本体
を構成する要素の分解斜視図、第4図は熱交換器本体の
斜視図、第5図は第4図におけるx−X線に沿って切断
し矢印方向に見た局部的な図、第6図は従来の積層型熱
交換器の縦断面図である。 7・・・熱交換器本体、21a、21b、121a。 121b・・・マニホールド機構、25・・・外筒。 出願人代理人 弁理士 鈴江武彦 第3図    第4図 第5図 第 6 因
FIG. 1 is a vertical cross-sectional view of a laminated heat exchanger according to an embodiment of the present invention, FIG. 2 is a vertical cross-sectional view of a laminated heat exchanger according to another embodiment of the present invention, and FIG. Fig. 4 is a perspective view of the heat exchanger main body, and Fig. 5 is an exploded perspective view of the elements constituting the heat exchanger main body of a type heat exchanger. The local view, FIG. 6, is a longitudinal sectional view of a conventional stacked heat exchanger. 7... Heat exchanger main body, 21a, 21b, 121a. 121b... Manifold mechanism, 25... Outer cylinder. Applicant's agent Patent attorney Takehiko Suzue Figure 3 Figure 4 Figure 5 Figure 6 Reason

Claims (2)

【特許請求の範囲】[Claims] (1)外筒と、この外筒内に収容され、伝熱板と断熱板
とを交互に、かつ相互間に接着剤を介在させて積層した
積層体中に上記伝熱板、上記断熱板および上記接着剤に
よって仕切られた流体通路を積層方向に形成してなる熱
交換器本体と、この熱交換器本体の前記流体通路を外部
配管に接続するために上記熱交換器本体の積層方向両端
面にそれぞれ接続された少なくとも一対のマニホールド
機構とを備えてなる積層型熱交換器において、前記外筒
およびマニホルド機構が繊維強化プラスチックで形成さ
れてなることを特徴とする積層型熱交換器。
(1) An outer cylinder, and a laminate that is housed in the outer cylinder and has heat transfer plates and heat insulating plates stacked alternately with an adhesive interposed between them, and includes the heat transfer plate and the heat insulating plate. and a heat exchanger body formed by forming fluid passages partitioned by the adhesive in the stacking direction, and both ends of the heat exchanger body in the stacking direction for connecting the fluid passages of the heat exchanger body to external piping. What is claimed is: 1. A laminated heat exchanger comprising at least a pair of manifold mechanisms connected to respective surfaces, wherein the outer cylinder and the manifold mechanism are made of fiber-reinforced plastic.
(2)前記外筒は、前記熱交換器本体の積層方向両端面
に前記マニホールド機構を当てがった構造物の外周に未
硬化の繊維プラスチック層を設けた後、このプラスチッ
ク層を熱硬化させて形成されたものであることを特徴と
する特許請求の範囲第1項記載の積層型熱交換器。
(2) The outer cylinder is formed by providing an uncured fiber plastic layer on the outer periphery of the structure in which the manifold mechanism is applied to both end faces of the heat exchanger main body in the stacking direction, and then heat-curing this plastic layer. 2. The laminated heat exchanger according to claim 1, wherein the laminated heat exchanger is formed by:
JP11481287A 1986-12-26 1987-05-13 Layered type heat exchanger Pending JPS63267893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11481287A JPS63267893A (en) 1986-12-26 1987-05-13 Layered type heat exchanger

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP31537786 1986-12-26
JP61-315377 1986-12-26
JP11481287A JPS63267893A (en) 1986-12-26 1987-05-13 Layered type heat exchanger

Publications (1)

Publication Number Publication Date
JPS63267893A true JPS63267893A (en) 1988-11-04

Family

ID=26453477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11481287A Pending JPS63267893A (en) 1986-12-26 1987-05-13 Layered type heat exchanger

Country Status (1)

Country Link
JP (1) JPS63267893A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997047936A1 (en) * 1996-06-08 1997-12-18 Noell-Krc Energie-Und Umwelttechnik Gmbh Device for cooling hot gasses

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997047936A1 (en) * 1996-06-08 1997-12-18 Noell-Krc Energie-Und Umwelttechnik Gmbh Device for cooling hot gasses

Similar Documents

Publication Publication Date Title
JP2544701B2 (en) Plate type heat pipe
US4073340A (en) Formed plate type heat exchanger
US4310960A (en) Method of fabrication of a formed plate, counterflow fluid heat exchanger and apparatus thereof
US5628363A (en) Composite continuous sheet fin heat exchanger
US20090101321A1 (en) Heat Exchanger
US4134195A (en) Method of manifold construction for formed tube-sheet heat exchanger and structure formed thereby
JP2000329493A (en) Lamination-type heat exchanger
US5626188A (en) Composite machined fin heat exchanger
US4934454A (en) Pressure sealed laminated heat exchanger
WO1996032618A1 (en) Carbon/carbon composite parallel plate heat exchanger and method of fabrication
JP7110390B2 (en) Diffusion bonded heat exchanger
JPS63267893A (en) Layered type heat exchanger
JPH0829077A (en) Laminated plate type heat exchanger
JP3040873B2 (en) Spiral heat exchanger
JPH0138239B2 (en)
JPS59202395A (en) Stacked-type heat exchanger
JP2741950B2 (en) Stacked heat exchanger
JP2510115Y2 (en) Stacked heat exchanger
JPH0435736Y2 (en)
WO2022059437A1 (en) Heat exchanger
JPH0223994Y2 (en)
JP2590457B2 (en) Horizontal stacked heat exchanger
WO2021248360A1 (en) Method for manufacturing heat conduction device, heat conduction device, method for manufacturing motor, and motor
JPS60101488A (en) Layered type heat exchanger
JP2000337782A (en) Plate type heat exchanger and heat storage tank