JPS63266619A - Thin film magnetic head - Google Patents

Thin film magnetic head

Info

Publication number
JPS63266619A
JPS63266619A JP10089487A JP10089487A JPS63266619A JP S63266619 A JPS63266619 A JP S63266619A JP 10089487 A JP10089487 A JP 10089487A JP 10089487 A JP10089487 A JP 10089487A JP S63266619 A JPS63266619 A JP S63266619A
Authority
JP
Japan
Prior art keywords
yoke
head
magnetic
insulator
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10089487A
Other languages
Japanese (ja)
Inventor
Ryoji Namikata
量二 南方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP10089487A priority Critical patent/JPS63266619A/en
Publication of JPS63266619A publication Critical patent/JPS63266619A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3916Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide
    • G11B5/3919Arrangements in which the active read-out elements are coupled to the magnetic flux of the track by at least one magnetic thin film flux guide the guide being interposed in the flux path

Abstract

PURPOSE:To obtain a thin film magnetic head having a good high frequency characteristic, good linearity and a wide dynamic range by providing a magnetic resistance effect element (MR element) near a magnetic flux introducing path (yoke) continuously formed without having a divide part. CONSTITUTION:An MR element 7 is formed in an insulator 11 at a process to laminate it in the order of an insulator/an MR element/an insulator on a lower part yoke 9. On the insulator 11, an upper part yoke 8 to introduce a magnetic flux to the MR element 7 is overlapped and the upper part yoke 11 is connected with the lower part yoke 9 in a side mutually facing with a head gap and formed in a continuous body. Namely, since the MR element 7 is arranged near the yoke 8, a signal generated in the yoke 8 can be detected even in the MR element 7 and for the yoke 8 facing with the MR element 7, it is not necessary to provide a gap such as a conventional head. Thus, without damaging a function as a magnetic head, the magnetic circuit resistance of the whole head can be reduced, the high frequency characteristic can be improved and also the linearity of the head and a dynamic range are improved.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、強磁性薄膜の磁気抵抗効果を応用した磁気抵
抗効果素子(以下MR素子と称す。)を用いて、磁気記
録媒体に記録された信号の検出を行なう薄膜磁気ヘッド
に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is a method for recording data on a magnetic recording medium using a magnetoresistive element (hereinafter referred to as an MR element) that applies the magnetoresistive effect of a ferromagnetic thin film. The present invention relates to a thin-film magnetic head that detects signals generated by the magnetic field.

〈従来の技術〉 MR素子を用いた薄膜磁気ヘッドは、巻線型の磁気ヘッ
ドと比較して多くの利点があることが知られている。即
ちMR素子は、磁気記録媒体に記録された信号磁界を受
けることによって抵抗変化を電圧変化として取シ出すこ
とができるため、磁気記録媒体の移送速度に依存せずに
信号磁界を再生できるという利点および磁気記録媒体の
移送速度が低速の場合も巻線型の磁気ヘッドよシ高出力
であるという利点がある。
<Prior Art> It is known that a thin film magnetic head using an MR element has many advantages over a wire-wound magnetic head. In other words, the MR element can extract resistance changes as voltage changes by receiving a signal magnetic field recorded on a magnetic recording medium, so it has the advantage of being able to reproduce the signal magnetic field without depending on the transfer speed of the magnetic recording medium. Another advantage is that even when the transport speed of the magnetic recording medium is low, the output is higher than that of a wire-wound magnetic head.

MR素子を用いたこの種の薄膜磁気ヘッドは、高記録密
度の磁気記録媒体に対して使用するために、通常磁気記
録媒体に近接させるべく、MR素子はヘッドの先端に露
出した形になっており、その両側又は片側にシールド用
高透磁率磁性体を具備している。高透磁率磁性体を基板
として多チャンネル薄膜磁気ヘッドを構成する場合、下
側のシールド用高透磁率磁性体としてNi−Znフェラ
イト又はMnZnフェライトを使用し、一方上側のシー
ルド用高透磁率磁性体としては加工上の容易さからパー
マロイなどの金属高透磁率磁性体を使用している。
This type of thin-film magnetic head using an MR element is used for high-density magnetic recording media, so the MR element is usually exposed at the tip of the head in order to be close to the magnetic recording medium. A high magnetic permeability magnetic material for shielding is provided on both sides or one side. When constructing a multi-channel thin film magnetic head using a high permeability magnetic material as a substrate, Ni-Zn ferrite or MnZn ferrite is used as the high permeability magnetic material for the lower shield, while the high permeability magnetic material for the upper shield is used. For ease of processing, a metal with high magnetic permeability such as permalloy is used.

このような薄膜磁気ヘッドは、例えば50KBPI以上
の高記録密度の磁気記録媒体にも適用し得るためにはギ
ャップ長を0.5μm以下に設計する必要がある。
Such a thin film magnetic head needs to be designed with a gap length of 0.5 μm or less in order to be applicable to a magnetic recording medium with a high recording density of, for example, 50 KBPI or more.

処でこのような狭ギャップの中にMR素子を構成した場
合、磁気記録媒体の走行によってヘッド先端が磁気記録
媒体と接触した際に、媒体上の湿気を帯びたほこフ又は
上側シールド用高透磁率磁性体の微少な剥離物体等によ
ってMR素子が短絡され、出力が出ない状態がしばしば
発生した。また磁気記録媒体が導電性をもつ金属強磁性
媒体の場合は、それによってもMR素子の短絡が発生し
た。このような問題とは別に、感度の向上を計るべくM
R素子は300〜700八程度の非常に薄い膜厚となっ
ていたので、MR素子部をヘッド先端に露出して設けた
場合、耐久性に問題があった。
However, when an MR element is constructed in such a narrow gap, when the head tip comes into contact with the magnetic recording medium as it travels, the moisture on the medium or the highly transparent upper shield The MR element was often short-circuited by a minute peeled-off object of the magnetic material, resulting in no output. Further, when the magnetic recording medium is a metal ferromagnetic medium having electrical conductivity, this also causes a short circuit in the MR element. Apart from these problems, M
Since the R element had a very thin film thickness of about 300 to 700 mm, there was a problem in durability when the MR element was provided exposed at the tip of the head.

このような問題を改善すべく、MR素子部をヘッド先端
から離し、磁気記録媒体にて発生した磁束を磁束導入路
(以下単にヨー表と呼ぶ)によってMR素子に導く構造
の薄膜磁気ヘッド(YMRヘッド)が提案されている。
In order to improve this problem, we developed a thin film magnetic head (YMR) that has a structure in which the MR element is separated from the tip of the head and the magnetic flux generated in the magnetic recording medium is guided to the MR element through a magnetic flux introduction path (hereinafter simply referred to as a yaw table). head) is proposed.

第5図はYMRヘッドの側面図で、上部ヨークは前部と
後部に分割され、MR素子1は上ヨーク前部2と上ヨー
ク後部3間のギャップに位置させて設けられ、下シール
ド用高透磁率磁性体4を支持基板として作製されている
。上ヨーク前部2の先端は高透磁率磁性体4との間に所
定のギャップを成し、スペース6を隔てて磁気記録媒体
5に摺接する。
FIG. 5 is a side view of the YMR head, in which the upper yoke is divided into a front part and a rear part, and an MR element 1 is located in the gap between the upper yoke front part 2 and the upper yoke rear part 3, and the lower shield height is It is manufactured using a magnetic permeability material 4 as a support substrate. The front end of the upper yoke 2 forms a predetermined gap with the high permeability magnetic material 4, and comes into sliding contact with the magnetic recording medium 5 with a space 6 in between.

〈発明が解決しようとする問題点〉 上記構造のヨークタイプMRヘッドでは、ヘッド全体の
磁気回路抵抗はMR素子部で制限されてあま)低くする
ことができず、しかもMR素子とヨークの結合部は電気
的に絶縁する必要からギャップが設けられるため特に高
周波領域においてヘッドの効率が低下するという欠点が
ある。さらにまたヨークで導いた信号磁束はMR素子に
集中するためMR素子の磁束密度はヨークの磁束密度に
比して著しく高くなる。その結果MR素子の応答が2乗
特性のため再生信号の線形性が悪くなるとともに、その
ダイナミックレンジも狭くなフ大きな信号磁界に対して
不利となる。
<Problems to be Solved by the Invention> In the yoke type MR head with the above structure, the magnetic circuit resistance of the entire head is limited by the MR element and cannot be made too low. Since a gap is provided due to the need for electrical insulation, there is a drawback that the efficiency of the head decreases particularly in a high frequency range. Furthermore, since the signal magnetic flux guided by the yoke concentrates on the MR element, the magnetic flux density of the MR element becomes significantly higher than the magnetic flux density of the yoke. As a result, the response of the MR element is a square-law characteristic, which deteriorates the linearity of the reproduced signal, and its dynamic range is also narrow, which is disadvantageous for large signal magnetic fields.

〈問題点を解決するための手段〉 本発明は磁気記録媒体からの磁束をMR素子に伝達する
ための上下ヨーク部と該上下ヨーク部の間に満たされた
絶縁体と、該絶縁体中に埋設されたMR素子薄膜とから
成る薄膜磁気ヘッドにおいて、該MR素子を分割部分を
もつことなく連続して形成したヨークに近接して設ける
<Means for Solving the Problems> The present invention includes upper and lower yoke parts for transmitting magnetic flux from a magnetic recording medium to an MR element, an insulator filled between the upper and lower yoke parts, and an insulator in the insulator. In a thin film magnetic head comprising a buried MR element thin film, the MR element is provided close to a yoke that is continuously formed without having a divided portion.

〈作 用〉 MR素子をヨークに近接させて配置するため、ヨークに
発生した信号をMR素子にても検出することができ、ま
たMR素子に対向するヨークは従来ヘッドのようにギャ
ップを設ける必要がなく、従って磁気ヘッドとしての機
能を損うことなく、ヘッド全体の磁気回路抵抗の低減下
を可能とし、高周波特性の改善をはかるとともに、ヘッ
ドの線形性およびダイナミックレンジの改善を図る。
<Function> Since the MR element is placed close to the yoke, the signal generated in the yoke can also be detected by the MR element, and there is no need to provide a gap between the yoke facing the MR element as in conventional heads. Therefore, it is possible to reduce the magnetic circuit resistance of the entire head without impairing its function as a magnetic head, and to improve the high frequency characteristics as well as the linearity and dynamic range of the head.

〈実施例1〉 wI1図において、支持基板としての下部ヨーク9はM
n−Znフェライト又はNi−Znフェライト等の磁性
基板、或いは非磁性基板上にパーマロイ、センダスト又
はアモルファス磁性膜等を形成した基板を利用する。該
下部ヨーク9の表面にはS i(h e AIIgOs
  等の絶縁体11がP−CVD或いはスパッタリング
等の成膜技術によって形成される。該絶縁体11は記録
媒体10に対向するヘッドギャップ部分で極めて薄く形
成されているが、記録媒体対向部から離れた位置では、
後述する上部ヨークからMR素子に効率よ−〈磁束を伝
達させるため、磁気ヨークの中央部を持ち上げるために
厚く形成される。上記厚い部分の絶縁体11内にMR素
子薄膜7が埋設される。該MR素子薄膜7はNiFe系
やNiCo系の合金膜が用いられ通常蒸着あるいはスパ
ッタリング等の方法によシ形成される。絶縁体11を形
成する工程でMR素子7は下部ヨーク9上に絶縁体/M
R素子/絶縁体の順に積層することによフ絶縁体ll中
に形成される。上記MR素子7を挾持する絶縁体11の
いずれか一方の側の絶縁体11は膜厚が薄く形成される
。本実施例においては図中上側絶縁体が薄く形成され、
該薄い絶縁体上にMR素子7に磁束を導くための上部ヨ
ーク8が重ねられる。
<Example 1> In Fig. wI1, the lower yoke 9 as a support substrate is M
A magnetic substrate such as n-Zn ferrite or Ni-Zn ferrite, or a substrate in which permalloy, sendust, or an amorphous magnetic film is formed on a nonmagnetic substrate is used. On the surface of the lower yoke 9, S i (h e AIIgOs
The insulator 11 is formed by a film forming technique such as P-CVD or sputtering. The insulator 11 is formed extremely thin in the head gap portion facing the recording medium 10, but at a position away from the recording medium facing portion,
In order to efficiently transmit magnetic flux from the upper yoke, which will be described later, to the MR element, the magnetic yoke is thickly formed to lift the center of the yoke. The MR element thin film 7 is embedded in the thick portion of the insulator 11. The MR element thin film 7 is made of a NiFe-based or NiCo-based alloy film, and is usually formed by a method such as vapor deposition or sputtering. In the step of forming the insulator 11, the MR element 7 is coated with an insulator/M on the lower yoke 9.
It is formed in the insulator 1 by laminating the R element/insulator in this order. The insulators 11 on either side of the insulators 11 that sandwich the MR element 7 are formed to have a thin film thickness. In this example, the upper insulator in the figure is formed thinly,
An upper yoke 8 for guiding magnetic flux to the MR element 7 is superimposed on the thin insulator.

該上部ヨーク8は、パーマロイ、センダスト或いはアモ
ルファス磁性膜等で形成され、ヘッドギャップと相対向
する側で上記下部ヨーク9と接続され、連続体をなして
形成されている。
The upper yoke 8 is made of permalloy, sendust, or an amorphous magnetic film, and is connected to the lower yoke 9 on the side facing the head gap, forming a continuous body.

上記構造の薄膜磁気ヘッドにおいて、磁気記録媒体10
で発生した磁界は上部ヨーク8を通ってMR素子7に導
びかれる。上部ヨーク8を通る信号磁束がMR素子7に
分流されて検出されることになるため、従来のヨークタ
イプMRヘッドに比べて上部ヨーク8を通る磁束の収束
効率は悪くなるが、ヘッド全体の磁9CUgJ路抵抗は
ヨーク部が一体になっているため従来のヨークタイプM
Rヘッドに比べて著しく小さくなる。従って特に信号磁
界の小さくなる高周波領域においては上記構造の磁気ヘ
ッドは従来のヨークタイプMRヘッドよりもはるかに多
くの信号磁束を上部ヨーク8に導びくことができ、結果
としてMR素子7に分流される信号磁束も多くなる。一
方、低周波においては、信号磁界は十分大きいため従来
のヨークタイプMRヘッドの方がよフ多くの信号磁束を
検出するが、不必要に多くの信号磁束を収束するためM
R素子の線形性が劣化したフ、ダイナミックレンジが狭
くなるなどの欠点が生じる。しかし上記実施例の構造に
よれば高周波領域では感度の向上がはかれ、低周波領域
では不必要な信号の増加を抑制できるため、よシ平坦な
周波数特性が得られるとともにダイナミックレンジも広
くなる。また従来のヨークタイプMRヘッドのように上
部ヨークに窓がないため磁束の飛び込みによる再生波形
の非対称性も生じないため波形等化が容易となる利点も
ある。
In the thin film magnetic head having the above structure, the magnetic recording medium 10
The magnetic field generated is guided to the MR element 7 through the upper yoke 8. Since the signal magnetic flux passing through the upper yoke 8 is shunted to the MR element 7 and detected, the efficiency of convergence of the magnetic flux passing through the upper yoke 8 is lower than in conventional yoke type MR heads, but the magnetic flux of the entire head is The 9CUgJ road resistance is different from the conventional yoke type M because the yoke part is integrated.
It is significantly smaller than the R head. Therefore, especially in the high frequency region where the signal magnetic field is small, the magnetic head with the above structure can guide much more signal magnetic flux to the upper yoke 8 than the conventional yoke type MR head, and as a result, the signal magnetic flux is shunted to the MR element 7. The signal magnetic flux generated also increases. On the other hand, at low frequencies, the signal magnetic field is large enough that the conventional yoke type MR head detects more signal magnetic flux.
As the linearity of the R element deteriorates, there are drawbacks such as a narrowing of the dynamic range. However, according to the structure of the above embodiment, the sensitivity is improved in the high frequency range and the increase in unnecessary signals can be suppressed in the low frequency range, so that a fairly flat frequency characteristic is obtained and the dynamic range is widened. Further, since there is no window in the upper yoke unlike in the conventional yoke type MR head, there is no asymmetry in the reproduced waveform due to intrusion of magnetic flux, which has the advantage of facilitating waveform equalization.

〈5!施例2〉 第2図において、前記実施例1と同様に中央部が持ち上
げられた絶縁体11内にMR素子7aが埋設されている
。本実施例のMR素子7aは複数個設けられ、これらの
MR素子間は電気的に直列に接続される。埋設された複
数のMR素子7a上に上部ヨーク8を重ねて薄膜磁気ヘ
ッドを構成する。
<5! Embodiment 2> In FIG. 2, an MR element 7a is embedded in an insulator 11 whose central portion is raised as in the first embodiment. A plurality of MR elements 7a of this embodiment are provided, and these MR elements are electrically connected in series. An upper yoke 8 is superimposed on a plurality of buried MR elements 7a to form a thin film magnetic head.

本実施例の薄膜磁気ヘッド構造では複数のMR素子を設
けることができ、MR素子の線形性、ダイナミックレン
ジを維持したまま容易に出力の向上を図ることができる
In the thin film magnetic head structure of this embodiment, a plurality of MR elements can be provided, and the output can be easily improved while maintaining the linearity and dynamic range of the MR elements.

〈実施例3〉 実施例1及び実施例2における薄膜磁気ヘッドは、上部
ヨーク8を全体に渡ってほぼ同じ膜厚に形成した構造で
あるが、本実施例は第3図に示す如<’、MR素子7と
対向する領域8aの上部ヨーク8の膜厚を他の領域8b
に比べて薄く形成する。
<Example 3> The thin film magnetic head in Example 1 and Example 2 has a structure in which the upper yoke 8 is formed to have approximately the same thickness over the entirety, but in this example, as shown in FIG. , the film thickness of the upper yoke 8 in the region 8a facing the MR element 7 is set as that of the other region 8b.
Form thinner than .

MR素子対向部分の膜厚を薄くすることによシ、MR素
子7に分流される信号磁束を増加させることができる。
By reducing the film thickness of the portion facing the MR element, the signal magnetic flux shunted to the MR element 7 can be increased.

尚上部ヨークの膜厚を余り薄くしすぎるとヘッド全体の
磁気回路抵抗が増加して逆に信号磁束が低下し、本来の
動作に支障をきたす惧れがあるため、使用する周波数領
域に応じて適した厚さに設計することが望ましい。
If the film thickness of the upper yoke is made too thin, the magnetic circuit resistance of the entire head will increase and the signal magnetic flux will decrease, which may impede the original operation. It is desirable to design it to an appropriate thickness.

〈実施例4〉 上記各実施例はMR素子を上部ヨーク8側に近接して配
置した構造を示したが、第4図に示す如く非磁性基板1
2上に下部ヨーク部3をパーマロイ、センダスト或いは
アモルファス磁性膜等で形成し、薄い絶縁体を介して下
部ヨーク13に近接させ、MR素子7を形成する。MR
素子7上に厚い絶縁体を介して上部ヨーク8を堆積させ
て薄膜磁気ヘッドを構成する。
<Embodiment 4> Each of the above embodiments shows a structure in which the MR element is arranged close to the upper yoke 8 side, but as shown in FIG.
A lower yoke portion 3 is formed on 2 using permalloy, sendust, an amorphous magnetic film, etc., and is brought close to the lower yoke 13 via a thin insulator to form an MR element 7. M.R.
An upper yoke 8 is deposited on the element 7 via a thick insulator to form a thin film magnetic head.

本実施例の構造では、信号磁束は下部ヨーク13で導か
れMR素子7に分流し、前記実施例工と同じ効果を奏す
る。
In the structure of this embodiment, the signal magnetic flux is guided by the lower yoke 13 and branched to the MR element 7, producing the same effect as in the previous embodiment.

尚上記実施例を組合せて薄膜磁気ヘッドを構成し得るこ
とはrうまでもない。
It goes without saying that a thin film magnetic head can be constructed by combining the above embodiments.

〈発明の効果〉 以上本発明によれば、ヨークタイプMR磁気へラドにお
いても、高周波特性が良好で、線形性がよくダイナミッ
クレンジの広い薄膜磁気ヘッドを得ることができ、従来
の構造のものと異なった波形等化の容易な再生出力を得
ることができる。またヨーク部の加工も従来構造に比し
て著しく容易となる。
<Effects of the Invention> According to the present invention, it is possible to obtain a thin film magnetic head with good high frequency characteristics, good linearity and a wide dynamic range even in a yoke type MR magnetic head, which is superior to the conventional structure. Easy reproduction output with different waveform equalization can be obtained. Furthermore, machining of the yoke portion is significantly easier than in the conventional structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は本発明に係るヨークタイプMRヘッド
の側面断面図、第5図は従来のヨークタイプMRヘッド
の側面断面図を示す。 7:MR素子  8:上部ヨーク  9:下部高透磁率
磁性体  11:絶縁体  12:非磁性基板  13
:下部ヨーク
1 to 4 are side sectional views of a yoke type MR head according to the present invention, and FIG. 5 is a side sectional view of a conventional yoke type MR head. 7: MR element 8: Upper yoke 9: Lower high permeability magnetic material 11: Insulator 12: Non-magnetic substrate 13
:Lower yoke

Claims (1)

【特許請求の範囲】 1、磁気記録媒体からの磁束を磁気抵抗効果素子に伝達
するための上下ヨークと、該上下ヨーク間の空間に満さ
れた絶縁体と、該絶縁体中に埋設されたMR素子とから
なる薄膜磁気ヘッドにおいて、 MR素子を一方のヨークに近接させて配置し、MR素子
が近接するヨーク部分は連続体からなることを特徴とす
る薄膜磁気ヘッド。 2、前記MR素子は複数体からなり互いに直列接続され
てなることを特許とする請求の範囲第1項記載の薄膜磁
気ヘッド。 3、前記ヨークはMR素子対向領域が他の領域に比べて
薄い膜厚に形成されてなることを特徴とする請求の範囲
第1項記載の薄膜磁気ヘッド。
[Claims] 1. Upper and lower yokes for transmitting magnetic flux from a magnetic recording medium to a magnetoresistive element, an insulator filling a space between the upper and lower yokes, and an insulator embedded in the insulator. A thin film magnetic head comprising an MR element, characterized in that the MR element is arranged close to one yoke, and the yoke portion where the MR element is close is made of a continuous body. 2. The thin film magnetic head according to claim 1, wherein the MR element is comprised of a plurality of elements connected in series. 3. The thin film magnetic head according to claim 1, wherein the yoke is formed to have a thinner film thickness in the MR element facing region than in other regions.
JP10089487A 1987-04-23 1987-04-23 Thin film magnetic head Pending JPS63266619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10089487A JPS63266619A (en) 1987-04-23 1987-04-23 Thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10089487A JPS63266619A (en) 1987-04-23 1987-04-23 Thin film magnetic head

Publications (1)

Publication Number Publication Date
JPS63266619A true JPS63266619A (en) 1988-11-02

Family

ID=14286042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10089487A Pending JPS63266619A (en) 1987-04-23 1987-04-23 Thin film magnetic head

Country Status (1)

Country Link
JP (1) JPS63266619A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337814A (en) * 1989-07-04 1991-02-19 Matsushita Electric Ind Co Ltd Composite type thin-film magnetic head and production thereof
FR2724482A1 (en) * 1994-09-13 1996-03-15 Commissariat Energie Atomique MAGNETIC HEAD WITH LONGITUDINAL MULTILAYER MAGNETORESISTANCE UNDERLYING
FR2724481A1 (en) * 1994-09-13 1996-03-15 Commissariat Energie Atomique PLANAR MAGNETIC HEAD WITH LONGITUDINAL MULTILAYER MAGNETORESISTOR

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337814A (en) * 1989-07-04 1991-02-19 Matsushita Electric Ind Co Ltd Composite type thin-film magnetic head and production thereof
FR2724482A1 (en) * 1994-09-13 1996-03-15 Commissariat Energie Atomique MAGNETIC HEAD WITH LONGITUDINAL MULTILAYER MAGNETORESISTANCE UNDERLYING
FR2724481A1 (en) * 1994-09-13 1996-03-15 Commissariat Energie Atomique PLANAR MAGNETIC HEAD WITH LONGITUDINAL MULTILAYER MAGNETORESISTOR
EP0702358A1 (en) * 1994-09-13 1996-03-20 Commissariat A L'energie Atomique Magnetic head with multilayered underlying longitudinal magnetoresistance
WO1996008814A1 (en) * 1994-09-13 1996-03-21 Commissariat A L'energie Atomique Planar magnetic head comprising a longitudinal multilayered magnetoresistor

Similar Documents

Publication Publication Date Title
US5168409A (en) Integrated magnetic head having a magnetic layer functioning as both a magnetic shield and a magnetic pole
US5434826A (en) Multilayer hard bias films for longitudinal biasing in magnetoresistive transducer
US4255772A (en) Read/write magnetic head assembly with magnetoresistive sensor
JPH05290331A (en) Thin-film magnetic converter
US4617600A (en) Magnetic head having a thin strip of magnetoresistive material as a reading element
JP2545596B2 (en) Thin film magnetic head
JPS63266619A (en) Thin film magnetic head
US6028749A (en) Magnetic head having a multilayer structure and method of manufacturing the magnetic head
JPH07201021A (en) Composite magnetic head
JPH03286413A (en) Magneto-resistance effect type head
JPH07153036A (en) Magnetoresistance effect type magnetic head
JPS61177616A (en) Thin film magnetic head
JPS62141620A (en) Thin film magnetic head
JPS60103512A (en) Thin film magnetic head
JPS5856223A (en) Thin film magnetic head
JP2878738B2 (en) Recording / reproducing thin film magnetic head
JPS6154012A (en) Magneto-resistance effect head
JPS604275Y2 (en) magnetic head
JPH05266437A (en) Magnetoresistance effect type head
JPS63138515A (en) Thin film magnetic head and its reproduction system
JPS60113313A (en) Magneto-resistance effect head
JPS5919221A (en) Magneto-resistance effect element
JPH09134508A (en) Magnetoresistive magnetic head
JPH06267027A (en) Magnetoresistance effect type thin film magnetic head
JPS6363117A (en) Thin film magnetic head