JPS63266589A - Detector for number of persons - Google Patents

Detector for number of persons

Info

Publication number
JPS63266589A
JPS63266589A JP62101336A JP10133687A JPS63266589A JP S63266589 A JPS63266589 A JP S63266589A JP 62101336 A JP62101336 A JP 62101336A JP 10133687 A JP10133687 A JP 10133687A JP S63266589 A JPS63266589 A JP S63266589A
Authority
JP
Japan
Prior art keywords
mirror
radial direction
people
concave surface
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62101336A
Other languages
Japanese (ja)
Other versions
JPH0727551B2 (en
Inventor
Shinji Kirihata
慎司 桐畑
Tsunehiko Araki
恒彦 荒木
Takashi Horii
堀井 貴司
Hiroshi Matsuda
啓史 松田
Hidekazu Himesawa
秀和 姫澤
Aritaka Yorifuji
依藤 有貴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP62101336A priority Critical patent/JPH0727551B2/en
Priority to GB8727064A priority patent/GB2199658B/en
Priority to US07/123,105 priority patent/US4849737A/en
Priority to DE19873740115 priority patent/DE3740115A1/en
Publication of JPS63266589A publication Critical patent/JPS63266589A/en
Publication of JPH0727551B2 publication Critical patent/JPH0727551B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To form small-sized detector for the number of persons which has large optical gain by providing a mirror with a concave surface which has focal length much smaller than the distance to an objective plane as a reflecting surface in a radial direction of the circular scan of the mirror, and making the center position of the concave surface in the radial direction of the circular scan nearly coincident with the center of rotation of the mirror. CONSTITUTION:The reflecting surface in the radial direction of the circular scan of the mirror M used for a circular scanning optical system is the concave surface which has the focal length much smaller than the distance to the objective plane. An optical path viewed from the photodetection surface S of an infrared detecting element is reflected by the reflecting surface of the reflecting surface of the mirror M, converged once in front of the mirror M, and diverged again to spread in the radial direction of the circular scan, so that a very wide visual field is obtained. Further, the center position of the circular scan of the concave surface in the radial direction is nearly coincident with the center of rotation of the mirror M, so the scanning optical system is reduced in size greatly.

Description

【発明の詳細な説明】 (技術分野) 本発明は、被検知人体から発せられる赤外線を検出して
人数を検出する赤外線受光式の人数検出装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to an infrared receiving type people detection device that detects the number of people by detecting infrared rays emitted from a detected human body.

(背景技術) 本発明者らは、簡単且つ安価な構成で広い検知領域を有
する高精度の人数検出装置(特願昭61−281301
号)を既に提案している。第13図は、その構成を示す
ブロック図である。この人数検出装置は、赤外線検出素
子2と、前記赤外線検出素子2の視野を円形走査させる
円形走査光学系1と、前記赤外線検出素子2の出力信号
を増幅する前置増幅部3と、前記前置増幅部3の出力信
号を人数検出に必要な信号に変換する信号処理部4と、
前記信号処理部4の出力信号に基づいて人数を判定する
判断部5と、前記判断部5の出力信号から人数情報を出
力する出力部6とから成り、広い検知領域内の人数を高
精度に検出できるようにしたものである。
(Background Art) The present inventors have developed a highly accurate number of people detection device having a wide detection area with a simple and inexpensive configuration (Japanese Patent Application No. 61-281301).
) has already been proposed. FIG. 13 is a block diagram showing its configuration. This number of people detection device includes an infrared detection element 2, a circular scanning optical system 1 that circularly scans the field of view of the infrared detection element 2, a preamplifier 3 that amplifies the output signal of the infrared detection element 2, and a preamplifier 3 that amplifies the output signal of the infrared detection element 2. a signal processing section 4 that converts the output signal of the stationary amplifier section 3 into a signal necessary for detecting the number of people;
Consisting of a determining section 5 that determines the number of people based on the output signal of the signal processing section 4, and an output section 6 that outputs the number of people information from the output signal of the determining section 5, it is possible to accurately determine the number of people within a wide detection area. It is designed to be detectable.

第14図に円形走査光学系の一例を示す、同図(a)に
示すように、赤外線検出素子2の受光面前面より距11
1iRbの位置に回転板10を配置し、回転板10中夫
の回転軸11を赤外線検出素子2の受光面の視野中心C
上に配置し、回転板10をモータ等の駆動機構により回
転させる。第14図(b)に示すように、回転板10に
長さLa、幅Daの長方形状のスリットAを設け、物面
Bから輻射された赤外線のうちスリットAを通過したも
ののみが、赤外線検出素子2に入射するように構成する
。物面上における瞬時視野は、スリットAの形状と相似
であり、回転板10から物面Bまでの距離をRaとする
と、物面上の瞬時視野長Lv、及び視野幅Dvは、次式
のようになる。
FIG. 14 shows an example of a circular scanning optical system. As shown in FIG.
The rotary plate 10 is placed at a position of 1iRb, and the rotating shaft 11 of the rotary plate 10 is aligned with the field of view center C of the light-receiving surface of the infrared detection element 2.
The rotating plate 10 is rotated by a drive mechanism such as a motor. As shown in FIG. 14(b), a rectangular slit A having a length La and a width Da is provided in the rotary plate 10, and only the infrared rays radiated from the object surface B that pass through the slit A are infrared rays. It is configured so that it enters the detection element 2. The instantaneous visual field on the object plane is similar to the shape of the slit A, and if the distance from the rotary plate 10 to the object plane B is Ra, then the instantaneous visual field length Lv and visual field width Dv on the object plane are expressed by the following equation. It becomes like this.

また、円形走査における放射方向において、瞬時視野が
物面Bを見込む視野角をθとすると、θは次式のように
なる。
Further, in the radial direction in circular scanning, if the instantaneous field of view is the viewing angle at which the object surface B is seen, θ is expressed as in the following equation.

上記の瞬時視野が赤外線検出素子2の受光面の視野中心
Cを軸として円形走査され、したがって、円形走査方式
による物面Bを見込む全視野角は2θとなる。
The above-mentioned instantaneous field of view is circularly scanned with the field center C of the light-receiving surface of the infrared detection element 2 as an axis, and therefore, the total viewing angle looking into the object surface B by the circular scanning method is 2θ.

人数検出に当たり、物面上の瞬時視野幅Dvが人数分解
能を決定する主要因となり、人数分解能を上げるために
は、瞬時視野幅Dvは小さい方が良い、従って、スリッ
トAの開口幅Daを小さくする必要があるが、赤外線受
光量がこれに比例して小さくなり、充分なS/N比を得
られない場合が生じる。その場合には、スリットAの部
分にシリンドリカルレンズを配置し、走査方向において
集光作用を持たせ、所定の瞬時視野幅Dvを得ると共に
、必要な光学利得を得るようにする。第14図において
、スリットAの部分に凸面シリンドリカルレンズを配し
た場合、赤外線検出素子2の受光面の直径をdとすると
、物面上の瞬時視野の視野長Lv、視野幅Dvは次式の
ようになる。 −上式から分かるように、瞬時視野幅D
vは、シリンドリカルレンズの開口幅Daによらず、適
当なRb、あるいはdを選択して所定の瞬時視野幅DV
を得ることができる。また、シリンドリカルレンズの開
口幅Daを大きくすることにより光学利得を増大させる
ことができる。
When detecting people, the instantaneous field of view Dv on the object surface is the main factor that determines the number of people resolution.In order to increase the number of people resolution, the smaller the instantaneous field of view Dv, the better.Therefore, the aperture width Da of slit A should be made smaller. However, the amount of infrared light received decreases in proportion to this, and a sufficient S/N ratio may not be obtained. In that case, a cylindrical lens is placed in the slit A to have a condensing effect in the scanning direction to obtain a predetermined instantaneous field of view width Dv and a necessary optical gain. In Fig. 14, when a convex cylindrical lens is placed in the slit A, and if the diameter of the light-receiving surface of the infrared detection element 2 is d, the field length Lv and field width Dv of the instantaneous field on the object surface are calculated by the following equations. It becomes like this. -As can be seen from the above equation, instantaneous visual field width D
v is determined by selecting an appropriate Rb or d to obtain a predetermined instantaneous visual field width DV, regardless of the aperture width Da of the cylindrical lens.
can be obtained. Furthermore, the optical gain can be increased by increasing the aperture width Da of the cylindrical lens.

また、光学利得を得るための他の手段として、第15図
に示すように、凹面シリンドリカルミラーM’を固定し
た回転板10を赤外線検出素子2の受光面の視野中心C
を軸として回転させることも提案されている。シリンド
リカルミラーM°のミラー面から赤外線検出素子2の受
光面までの距離をRb、シリンドリカルミラーM°のミ
ラー面から物面Bまでの距離をRa、シリンドリカルミ
ラーM“のミラー長をLm、ミラー幅をDta、赤外線
検出素子2の受光面直径をdとすると、物面上の瞬時視
野長Lv、及び視野幅Dvは、シリンドリカルレンズを
用いた場合と同様に次式のようになる。
As another means for obtaining optical gain, as shown in FIG.
It has also been proposed to rotate around an axis. The distance from the mirror surface of the cylindrical mirror M° to the light receiving surface of the infrared detection element 2 is Rb, the distance from the mirror surface of the cylindrical mirror M° to the object surface B is Ra, the mirror length of the cylindrical mirror M" is Lm, the mirror width When Dta is the diameter of the light-receiving surface of the infrared detection element 2, and d is the diameter of the light-receiving surface of the infrared detection element 2, the instantaneous visual field length Lv and visual field width Dv on the object surface are expressed by the following equations as in the case of using a cylindrical lens.

Rh + Ra Lv=      □ Lm      −<6)Rb Ra Dv=    □d         ・・・(7)R
b したがって、適当なRb、あるいはdを選択することに
より、所定の瞬時視野幅Dvを得ることができ、シリン
ドリカルミラーM°のミラー幅DI11を大きくするこ
とにより光学利得を増大させることができる0円形走査
における放射方向において、瞬時視野が物面Bを見込む
視野角θは、次式のようになる。
Rh + Ra Lv= □ Lm −<6) Rb Ra Dv= □d ... (7) R
b Therefore, by selecting an appropriate Rb or d, a predetermined instantaneous field width Dv can be obtained, and by increasing the mirror width DI11 of the cylindrical mirror M°, the optical gain can be increased. In the radial direction during scanning, the viewing angle θ at which the instantaneous visual field looks at the object surface B is expressed by the following equation.

また、円形走査方式による物面Bを見込む全視野角は2
θとなる。
In addition, the total viewing angle of the object surface B using the circular scanning method is 2
becomes θ.

広い検知領域を得るためには、円形走査方式において、
物面Bを見込む全視野角を大きく取る必要があり、その
ためには、瞬時における受光面が物面Bを見込む角度θ
を大きく取る必要がある。
In order to obtain a wide detection area, in the circular scanning method,
It is necessary to take a large total viewing angle when looking at object surface B, and to do so, the angle θ at which the light-receiving surface looks at object surface B at an instant must be increased.
It is necessary to take a large value.

(3)、(8)式よりθを大きくするためには、スリッ
ト長あるいはシリンドリカルレンズのレンズ長であるL
a、または、シリンドリカルミラーM“のミラー長し請
を大きく取れば良い、しかしながら、赤外線検出素子2
の入射光に対する指向感度特性上、入射光と受光面視野
中心Cのなす角度が大きくなるにつれて、感度は低下し
、ある角度以上では、感度は零となる。赤外線検出素子
2として用いられる焦電素子の指向感度特性の一例を第
16図に示す、この図から明らかなように、円形走査光
学系において、物面上を見込む全視野角は赤外線検出素
子2の指向感度特性により制限を受け、十分広く取れず
、さらには、視野面において、周辺部はど感度が低下し
検知領域内で感度の不均一性を生じるという問題点があ
った。
From equations (3) and (8), in order to increase θ, the slit length or the lens length of the cylindrical lens L
a, or the mirror length of the cylindrical mirror M" may be increased. However, the infrared detection element 2
According to the directional sensitivity characteristics with respect to incident light, as the angle between the incident light and the center C of the field of view of the light-receiving surface increases, the sensitivity decreases, and the sensitivity becomes zero above a certain angle. An example of the directional sensitivity characteristics of the pyroelectric element used as the infrared detection element 2 is shown in Fig. 16. As is clear from this figure, in the circular scanning optical system, the total viewing angle looking onto the object surface is the same as that of the infrared detection element 2. It is limited by the directional sensitivity characteristics of the sensor, and cannot be made sufficiently wide.Furthermore, in the field of view, the sensitivity in the peripheral area decreases, resulting in non-uniformity in sensitivity within the detection area.

本発明者らは、これらの問題点を解決すべく、第17図
に示すように、一方向が連続的な曲率変化を有する凹面
で、これと垂直な他の方向が凸面である変形鞍形ミラー
M″を、凸面の形成方向を半径方向として回転させるこ
とにより、半径方向の視野を広げることを提案した(′
Pf願昭61−281302号参照)。これにより、均
一な感度分布で広い検知領域を有する人数検出装置を提
供することができたが、より小形で光学利得の大きい光
学系を有する人数検出装置が望まれている。
In order to solve these problems, the present inventors have developed a modified saddle shape in which one direction is a concave surface with a continuous curvature change and the other perpendicular direction is a convex surface, as shown in FIG. We proposed that the field of view in the radial direction be expanded by rotating the mirror M'' with the direction in which the convex surface is formed as the radial direction ('
(See Pf Application No. 61-281302). As a result, it has been possible to provide a people detection device that has a wide detection area with a uniform sensitivity distribution, but there is a desire for a people detection device that is smaller and has an optical system with a large optical gain.

(発明の目的) 本発明は上述のような点に鑑みてなされたものであり、
その目的とするところは、簡単且つ安価な構成で、均一
な感度分布で広い検知領域を有し、光学利得の大きな小
型の人数検出装置を提供するにある。
(Object of the invention) The present invention has been made in view of the above points, and
The purpose is to provide a small number of people detection device that has a simple and inexpensive configuration, has a wide detection area with a uniform sensitivity distribution, and has a large optical gain.

(発明の開示) 本発明に係る人数検出装置にあっては、上記の目的を達
成するために、第1図乃至第13図に示すように、赤外
線検出素子2と、反射面を前記赤外線検出素子2に向け
たミラーMを前記赤外線検出素子2の視野中心Cを軸と
して回転させて前記赤外線検出素子2の視野を円形走査
させる円形走査光学系1と、前記赤外線検出素子の出力
信号を増幅する前置増幅部3と、前記前置増幅部3の出
力信号を人数検出に必要な信号に変換する信号処理部4
と、前記信号処理部4の出力信号に基づいて人数を判定
する判断部5と、前記判断部5の出力信号から人数情報
を出力する出力部6とから成る人数検出装置において、
前記ミラーMの円形走査方向についての反射面は連続的
な曲率変化を有する凹面であり、円形走査の半径方向に
ついての反射面は物面までの距離に比べて充分に小さい
焦点距離を有する凹面であって、該凹面の円形走査の半
径方向についての中心位置が前記ミラーの回転中心と略
一致していることを特徴とするものである。
(Disclosure of the Invention) In order to achieve the above object, the number of people detecting device according to the present invention has an infrared detecting element 2 and a reflective surface as shown in FIGS. a circular scanning optical system 1 that circularly scans the field of view of the infrared detection element 2 by rotating a mirror M facing the element 2 around the field of view center C of the infrared detection element 2; and a circular scanning optical system 1 that amplifies the output signal of the infrared detection element 2. a preamplifier 3 that converts the output signal of the preamplifier 3 into a signal necessary for detecting the number of people.
A number of people detecting device comprising a determining unit 5 that determines the number of people based on the output signal of the signal processing unit 4, and an output unit 6 that outputs number of people information from the output signal of the determining unit 5,
The reflecting surface of the mirror M in the circular scanning direction is a concave surface having a continuous curvature change, and the reflecting surface in the radial direction of the circular scanning is a concave surface having a sufficiently small focal length compared to the distance to the object surface. The mirror is characterized in that the center position of the circular scan of the concave surface in the radial direction substantially coincides with the rotation center of the mirror.

本発明にあっては、このように、円形走査光学系1に用
いるミラーMにおける円形走査の半径方向についての反
射面は物面までの距離に比べて充分に小さい焦点距離を
有する凹面としたので、赤外線検出素子2の受光面Sか
ら見た光路は、第5図に示すように、ミラーMの反射面
にて反射し、ミラーMの前面で一度集光された後、再び
発散して円形走査の放射方向に広がるものであり、した
がって非常に広い視野を得ることができるものである。
In the present invention, as described above, the reflecting surface in the radial direction of circular scanning in the mirror M used in the circular scanning optical system 1 is a concave surface having a sufficiently small focal length compared to the distance to the object surface. As shown in FIG. 5, the optical path seen from the light-receiving surface S of the infrared detection element 2 is reflected by the reflective surface of the mirror M, is once condensed in front of the mirror M, and then diverges again into a circular shape. It extends in the radial direction of scanning and therefore provides a very wide field of view.

つまり、変形鞍形ミラーM″″を用いた従来例にあって
は、円形走査の半径方向についての反射面を凸面とする
ことにより放射方向についての視野を広げており、この
反射面を凹面とした場合には、放射方向についての視野
は狭くなると考えていたが、本発明のように、物面まで
の距離に比べて充分に小さい焦点距離を有する凹面とし
た場合には、物面からの赤外線がミラーMの前面で一度
集光されるので、放射方向についての視野を広げること
ができるのである。また、この凹面の円形走査の半径方
向についての中心位置がミラーMの回転中心と略一致す
るようにしたので、第8図(a)に示すように、従来例
(同図(b))に比べて、走査光学系を飛躍的に小形化
することができるものである。
In other words, in the conventional example using the modified saddle-shaped mirror M'''', the field of view in the radial direction is expanded by making the reflecting surface in the radial direction of circular scanning a convex surface, and this reflecting surface is made into a concave surface. It was thought that the field of view in the radial direction would become narrower if Since the infrared rays are once focused in front of the mirror M, the field of view in the radiation direction can be expanded. In addition, since the center position in the radial direction of the circular scanning of this concave surface is made to approximately coincide with the rotation center of the mirror M, as shown in FIG. 8(a), the conventional example (FIG. 8(b)) In comparison, the scanning optical system can be dramatically downsized.

以下、本発明の実施例について説明する。Examples of the present invention will be described below.

x1匠1 第1図は本発明の一実施例に用いるミラーMの形状を示
す斜視図である。このミラーMは、X−X″線方向の反
射面は凹面で、x−x’線に直交する方向の反射面は連
続的な曲率変化を有する凹面であり、全体としてトーリ
ックミラーを変形した形状を有する。第2図は、第1図
のミラーMのX−X′線についての断面を示す図であり
、斜線を施した部分がミラー面である。ミラーMの反射
面を赤外線検出素子2の受光面Sに向けると共に、赤外
線検出素子2の視野中心Cを軸として、ミラーMをx−
x’線方向を半径方向として回転駆動させることにより
、赤外線検出索子2の視野を円形走査させることができ
る。x−x’線方向の凹面は瞬時視野を放射方向に拡大
する作用を有し、x−x’線に直交する方向の反射面は
走査方向での集光作用を有する。物面側の点B1から入
射する入射光は、ミラ一端点M1を介して受光面Sに入
射し、物面側の点B2から入射する入射光は、ミラ一端
点M2を介して受光面Sに入射するものとする0点B1
からミラ一端点M1への入射光がX軸に垂直であるとす
ると、点B2からミラ一端点M2への入射光とY軸のな
す角θが瞬時視野における放射方向についての瞬時視野
角となる。ミラー面は円弧状とし、その曲率中心をNと
する。
x1 Takumi 1 FIG. 1 is a perspective view showing the shape of a mirror M used in an embodiment of the present invention. This mirror M has a concave reflecting surface in the direction of the X-X'' line, and a concave surface having a continuous curvature change in the reflecting surface in the direction perpendicular to the xx' line, and the overall shape is a modified toric mirror. FIG. 2 is a diagram showing a cross section of the mirror M in FIG. The mirror M is directed toward the light-receiving surface S of the infrared detecting element 2, and the mirror M is
By rotationally driving the x'-ray direction as the radial direction, the field of view of the infrared detection probe 2 can be circularly scanned. The concave surface in the xx' line direction has the effect of expanding the instantaneous field of view in the radial direction, and the reflective surface in the direction perpendicular to the xx' line has the function of condensing light in the scanning direction. The incident light that enters from point B1 on the object side enters the light receiving surface S via the mirror one end point M1, and the incident light that enters from the object surface side point B2 enters the light receiving surface S via the mirror one end point M2. 0 point B1 shall be incident on
Assuming that the incident light from point B2 to the mirror end point M1 is perpendicular to the X axis, the angle θ formed by the incident light from point B2 to the mirror end point M2 and the Y axis is the instantaneous viewing angle in the radial direction in the instantaneous visual field. . The mirror surface has an arc shape, and the center of curvature is N.

受光面Sはミラー面の中央直下に配置する。すなわち、
第2図に示すように、X−Y座標を取り、点M1の座標
を(x + 、 y + )、点M2の座標を(X2゜
Y2)、受光面Sの座標を(Xs、Ys)とすると、X
2=  XI           ・・・(9)Xs
=O・・・(10) となるように設定する。これにより、ミラーMtt走査
光学系の回転板に効率的に配置でき、小形で光学利得の
大きい光学系を提供できる。ミラーMの断面形状は、そ
のX軸方向の長さと、受光面Sの位置と、所望の瞬時視
野角θとを設定することにより、一意的に定まり、曲率
中心Nが決定される。
The light receiving surface S is arranged directly below the center of the mirror surface. That is,
As shown in Figure 2, take the X-Y coordinates, and calculate the coordinates of point M1 as (x + , y + ), the coordinates of point M2 as (X2°Y2), and the coordinates of light receiving surface S as (Xs, Ys). Then, X
2=XI...(9)Xs
=O...(10) Set so that. Thereby, the mirror can be efficiently arranged on the rotary plate of the Mtt scanning optical system, and a compact optical system with a large optical gain can be provided. The cross-sectional shape of the mirror M is uniquely determined by setting its length in the X-axis direction, the position of the light-receiving surface S, and a desired instantaneous viewing angle θ, and the center of curvature N is determined.

第3図において、ミラー面を示す円弧上で始径NM1か
ら角度tの点をMLとする。物面上の点Pからの入射光
が点MLを介して、受光面Sに入射するものとし、点M
1における法6ntを元に、受光面Sからミラー面にお
ける点Mtまでの距離Rhと、点Mtから物面上の点P
までの距@ Raが求まる。ここで、距1iiRbは、
ミラー面の点Mtの位置によって変動する。すなわち、 Rb=Rb(t)           ・・・(11
)である、ミラーMの走査方向についての凹面は円弧状
として、物面上の点Pからの入射光を受光面Sに集光さ
せるためには、ミラー面上の点Mtにおいて、次式を満
たす焦点距離ftを有する凹面を走査方向に形成すれば
よい。
In FIG. 3, a point at an angle t from the starting diameter NM1 on the circular arc representing the mirror surface is designated as ML. It is assumed that incident light from a point P on the object surface enters the light receiving surface S via the point ML, and the point M
1, the distance Rh from the light-receiving surface S to the point Mt on the mirror surface, and from the point Mt to the point P on the object surface.
Find the distance to @Ra. Here, the distance 1iiRb is
It varies depending on the position of point Mt on the mirror surface. That is, Rb=Rb(t)...(11
), the concave surface of the mirror M in the scanning direction is arcuate, and in order to condense the incident light from the point P on the object surface onto the light receiving surface S, at the point Mt on the mirror surface, the following equation is written. What is necessary is just to form a concave surface having a focal length ft that satisfies the scanning direction.

焦点距離rtを持つためには、ミラー面上の点Mtにお
いて、曲率半径Rtが、 Rt=2ft            ・・・(13)
となるように、凹面を形成すればよい、ミラー面上、点
MLはミラーMの走査方向の中央にあり、線分NMtの
延長線上に凹面曲率中心Ntを置き、線分NtMtが曲
率半径Rtに一致するような凹面を形成すれば良い。
In order to have the focal length rt, the radius of curvature Rt at the point Mt on the mirror surface is Rt=2ft (13)
On the mirror surface, a point ML is located at the center of the scanning direction of the mirror M, and the center of concave curvature Nt is placed on an extension of the line segment NMt, and the line segment NtMt has a radius of curvature Rt. It is sufficient to form a concave surface that matches the .

(11)、(12)、(13)式より、となり、Rh(
t)は連続的に変化し、曲率半径Rtも連続的に変化さ
せる必要がある。さらに、ピントの合わせる物面Bを、
水平面に平行な面とし、ミラー面上の点MLからピント
の合致した平面までの距離をRとすると、距離Rと距w
IRaの関係は、線分1丁と法線ntのなす角をθH2
線分M〒Pと受光面視野中心Cのなす角をθFとすると
、となり、距911 Raも連続的に変化する。このよ
うに、ピントの合わせる面をも考慮に入れて曲率半径を
連続的に変化させてミラーMの走査方向の凹面を形成す
れば良い。
From equations (11), (12), and (13), we get Rh(
t) changes continuously, and the radius of curvature Rt also needs to change continuously. Furthermore, the object surface B to be focused on is
If the plane is parallel to the horizontal plane and the distance from the point ML on the mirror surface to the plane in focus is R, then the distance R and the distance w
The relationship of IRa is that the angle between one line segment and the normal line nt is θH2
If the angle between the line segment M〒P and the center of field of view of the light-receiving surface C is θF, then the distance 911Ra also changes continuously. In this way, the concave surface of the mirror M in the scanning direction may be formed by continuously changing the radius of curvature, taking into consideration the surface to be focused.

第4図に本実施例のミラーMの放射方向についての断面
形状の具体例を示す、受光面視野中心Cからミラ一端点
Ml、M2までの距離を各々151m、受光面Sからミ
ラ一端点Mlまでの視野中心方向距離を3On++a、
凹面曲率半径を28.5…Inとし、円弧の始径NMI
が水平面となす角を76゜7175°とすると、物面上
の点B2からの入射光が視野中心Cとなす角は71.6
464°となり、ミラーMを介して物面Bを見込む角度
は71,6464°となり、走査光学系における物面B
に対する全視野角は、143.2928°となる。第5
図に本実施例のミラーMによる物面Bからの集光状況を
示す。
FIG. 4 shows a specific example of the cross-sectional shape of the mirror M in the present embodiment in the radial direction. The distance to the center of the field of view is 3On++a,
The radius of concave curvature is 28.5...In, and the starting diameter of the arc is NMI
If the angle that it makes with the horizontal plane is 76°7175°, then the angle that the incident light from point B2 on the object surface makes with the center of visual field C is 71.6°.
464°, and the angle at which the object plane B is viewed through the mirror M is 71,6464°.
The total viewing angle is 143.2928°. Fifth
The figure shows the state of convergence of light from the object surface B by the mirror M of this embodiment.

第6図はミラーMの連続的に曲率が変化する走査方向の
凹面の曲率半径を示したものであり、ミラー面上の位置
は、始径NMIからの角度tにより表している。ミラー
Mの端点Ml、M2における曲率半径はそれぞれ64.
2108m輪、45.4898a+mである。また、走
査方向についてのミラー幅は30111Mとした。
FIG. 6 shows the radius of curvature of the concave surface of the mirror M in the scanning direction whose curvature changes continuously, and the position on the mirror surface is expressed by the angle t from the starting diameter NMI. The radius of curvature at the end points Ml and M2 of the mirror M is 64.
It has 2108m wheels and 45.4898a+m. Further, the mirror width in the scanning direction was set to 30111M.

第7図に上記走査光学系の直下3糟の床面に人体が直立
した場合の人体からの入射パワーの計算結果を示す、横
軸は、視野中心Cからの人体の水平距離であり、縦軸は
、入射パワーの相対値である。黒丸でプロットした特性
は、第17図に示す変形鞍形ミラーM″を用いた場きの
特性であり、白丸でプロットした特性は、第1図に示す
ミラーMを用いた場合の特性である。第7図を見れば、
本実施例のミラーMを用いることにより、光学利得が飛
躍的に向上していることが分かる。
Figure 7 shows the calculation result of the incident power from the human body when the human body stands upright on the floor in three rows directly below the scanning optical system.The horizontal axis is the horizontal distance of the human body from the center of visual field C, and the vertical axis The axis is the relative value of the incident power. The characteristics plotted with black circles are the characteristics when using the modified saddle-shaped mirror M'' shown in FIG. 17, and the characteristics plotted with white circles are the characteristics when using the mirror M shown in FIG. 1. .If you look at Figure 7,
It can be seen that by using the mirror M of this example, the optical gain is dramatically improved.

第8図に、ミラーMを回転板10に配置した状況を示す
、同図(a)に示すように、ミラーMを設置する場合、
回転板10を円形とすると、最低で42.4饋mの直径
を有する円板となる。これに対し、第17図に示す変形
鞍形ミラーM″では、最低で72.1wl11の直径を
有する回転板10が必要となる(同図(b)参照)。す
なわち、本発明のミラーMを用いることにより、光学系
を著しく小形にすることができる。
FIG. 8 shows a situation where the mirror M is placed on the rotary plate 10. When the mirror M is installed as shown in FIG. 8(a),
If the rotary plate 10 is circular, it will have a minimum diameter of 42.4 m. On the other hand, the modified saddle-shaped mirror M'' shown in FIG. 17 requires a rotary plate 10 having a diameter of at least 72.1wl11 (see FIG. By using this, the optical system can be made significantly smaller.

ここで、前記光学系を用いる人数検出装置の全体構成を
第13図のブロック図に基づいて説明する0円形走査光
学系1にて集光された赤外線エネルギーは、赤外線検出
素子2にて受光され、電気信号に変換される。赤外線検
出素子2の出力は前置増幅部3で増幅された後、信号処
理部4内の帯域フィルターに入力して、不安定な低周波
成分と不必要な高周波成分をカットし、S/N比を向上
させる。帯域フィルターの出力はA/D変換されて、判
断部5を構成するマイクロコンピュータに出力される。
Here, the overall configuration of the number of people detection device using the above optical system will be explained based on the block diagram of FIG. , converted into an electrical signal. The output of the infrared detection element 2 is amplified by the preamplifier 3 and then input to the bandpass filter in the signal processing unit 4 to cut unstable low frequency components and unnecessary high frequency components, and improve the S/N. improve the ratio. The output of the bandpass filter is A/D converted and output to the microcomputer that constitutes the judgment section 5.

このマイクロコンピュータは円形走査光学系1の回転に
同期して1回転毎にA/D変換された波形を逐次取り込
む0判断部5においては、予め検知領域内に人体が存在
しない場合の出力波形が参照波形データとしてメモリー
内に記憶されており、入力波形は、メモリー内の参照波
形と比較され、人体の有無及び人数が同時に判断される
0本実施例では、入力波形データと参照波形データとで
比較演算を行い、その結果を新たに比較処理波形データ
とし、比較処理波形データにおいて、極大値を検出し、
極大値の数を人数としてカウントしている。比較処理波
形データにおいて、検出人数がOの場かには、現在の入
力波形データが参照波形データとして更新され、メモリ
ー内に記憶される。このように参照波形データを用いて
入力波形データと比較演算を行うことにより、検知領域
内の環境変化に左右されることなく、高精度な人数検出
を行うことができる。出力部6においては、判断部5か
ら与えられた人数情報を元に、人数情報を表示するよう
になっている。会議室などでは、室外に人数あるいは混
雑度を表示することにより、室外で他者が室内使用状況
を把握できるようにする。また、個人が使用している部
屋においては、人数情報「0人」、「1人」、「2Å以
上」を元に、室内状況を″不在”、“在室”、“来客”
として室外に表示することにより、他者が容易かつ端的
に室内状況を把握することができる。さらに、人数情報
を元に、空調など各種環境施設を安定且つ有効に動作さ
せることができる。
This microcomputer is synchronized with the rotation of the circular scanning optical system 1 and sequentially captures the A/D converted waveform for each rotation. In the 0 judgment section 5, the output waveform when there is no human body within the detection area is determined in advance. The input waveform is stored in the memory as reference waveform data, and the input waveform is compared with the reference waveform in the memory to determine the presence or absence of a human body and the number of people at the same time.In this embodiment, the input waveform data and the reference waveform data are Perform a comparison calculation, use the result as new comparison processing waveform data, detect the local maximum value in the comparison processing waveform data,
The number of maximum values is counted as the number of people. In the comparison processing waveform data, if the detected number of people is O, the current input waveform data is updated as reference waveform data and stored in the memory. By performing comparison calculations with the input waveform data using the reference waveform data in this way, it is possible to detect the number of people with high precision without being affected by environmental changes within the detection area. The output section 6 displays the number of people information based on the number of people information given from the judgment section 5. In a conference room, etc., the number of people or the degree of congestion is displayed outside the room so that others can grasp the usage status of the room. In addition, in rooms used by individuals, the room status is determined as ``absent'', ``occupied'', or ``visitor'' based on the number of people information ``0 person'', ``1 person'', and ``more than 2 Å''.
By displaying the information outside the room, others can easily and simply grasp the indoor situation. Furthermore, various environmental facilities such as air conditioning can be operated stably and effectively based on the information on the number of people.

及1匠λ 第9(21Iは本発明の他の実施例に係る人数検出装置
に用いるミラーMの放射方向についての断面図である。
21I is a sectional view in the radial direction of a mirror M used in a number of people detection device according to another embodiment of the present invention.

このミラーMは、放射方向についての凹面に楕円形状を
用いており、放射方向についての瞬時視野角を広げてい
る。物面側の点B1からの入射光はミラ一端点M1を介
して受光面Sに入射し、物面側の点B2からの入射光は
ミラ一端点M2を介して受光面Sに入射するものとする
。ここで、第9図に示すように、x−Y座標を取り、点
M1の座標を(X+、Y+>、点M2の座標を(X、、
Y2)、受光面Sの座標を(Xs、Ys)とすると、X
2=−X、           ・・・(16)XS
=O・・・(17) となるように設定すれば、すなわち、ミラ一端点Ml、
M2の中央に視野中心Cを置き、視野中心C上に赤外線
受光素子2の受光面Sを配置すれば、走査光学系の回転
板にミラーMを効率的に配置でき、小形で光学利得の大
きい光学系を提供することができる。
This mirror M has an elliptical concave surface in the radial direction, and widens the instantaneous viewing angle in the radial direction. Incident light from point B1 on the object surface side enters the light receiving surface S via one end point M1 of the mirror, and incident light from point B2 on the object surface side enters the light receiving surface S via one end point M2 of the mirror. shall be. Here, as shown in FIG.
Y2), and if the coordinates of the light-receiving surface S are (Xs, Ys), then
2=-X, ...(16)XS
=O...(17) If it is set as follows, that is, one end point Ml,
If the field of view center C is placed in the center of M2 and the light-receiving surface S of the infrared receiving element 2 is placed on the field of view center C, the mirror M can be efficiently placed on the rotating plate of the scanning optical system, resulting in a small size and a large optical gain. An optical system can be provided.

n、、n2は、ミラーMの端点Ml、M2における法線
ベクトルであり、物面側の点B1からミラ一端点M1へ
入射する光線と、物面側の点B2からミラ一端点M2へ
入射する光線との交点をQとすると、凹面は点S、Qを
2つの焦点とする楕円形状にすれば良いことが分かる0
点S、Qを結ぶ線分SQの中点をNとすると、点Nが楕
円形状の中心となる。この楕円形状は、ミラーMのX軸
方向の長さと、受光面Sの位置と、所望の瞬時視野角θ
とから一意的に定まる。
n, , n2 are the normal vectors at the end points Ml and M2 of the mirror M, and the rays enter from point B1 on the object surface side to one end point M1 of the mirror, and the rays enter from point B2 on the object surface side to one end point M2 of the mirror. Letting the intersection point with the ray of light be Q, we can see that the concave surface should have an elliptical shape with two focal points at points S and Q.0
If the midpoint of the line segment SQ connecting points S and Q is N, point N becomes the center of the ellipse. This elliptical shape is determined by the length of the mirror M in the X-axis direction, the position of the light receiving surface S, and the desired instantaneous viewing angle θ.
It is uniquely determined from .

第10図は本実施例のミラーMの放射方向についての断
面形状の具体例を示す。視野中心Cからミラ一端点Ml
、M2までの水平方向距離を各々15mm、受光面Sか
らミラ一端点M1までの鉛直方向距離を30+mとする
。楕円形状の焦点は、点S、Qであり、点Qはミラ一端
点M1の直下22曽論に位置する。楕円形状は次式で示
される。
FIG. 10 shows a specific example of the cross-sectional shape of the mirror M of this embodiment in the radiation direction. From the visual field center C to the mirror end point Ml
, M2 are each 15 mm in the horizontal direction, and the vertical distance from the light receiving surface S to one end point M1 of the mirror is 30+m. The focal points of the elliptical shape are points S and Q, and point Q is located 22 degrees directly below the mirror end point M1. The elliptical shape is expressed by the following equation.

点S、Qを通る直線をX軸とし、楕円形状の中心Nを原
点とするX−Y座標をとることにより、この楕円形状は
、a= 27.7705 (+sm)、b=26.43
77(mm)となる、この楕円形上の任意の点M(X、
Y)は、αをパラメータとして次式で表される。
By setting the straight line passing through points S and Q as the X axis, and taking the X-Y coordinates with the center N of the ellipse as the origin, this ellipse shape can be calculated as follows: a = 27.7705 (+sm), b = 26.43
Any point M(X,
Y) is expressed by the following formula using α as a parameter.

X =a −cosa           −(19
)Y = b−sinα−= (20) 点M1でα=47.2436°、点M2でα=118.
041°である。放射方向の瞬時視野角θは、70.7
977°となる。したがって、走査光学系における物面
Bに対する全視野角は141゜5954°となる。
X = a −cosa −(19
)Y = b-sin α-= (20) α = 47.2436° at point M1, α = 118.
It is 041°. The instantaneous viewing angle θ in the radial direction is 70.7
It becomes 977°. Therefore, the total viewing angle of the scanning optical system with respect to the object plane B is 141°5954°.

第11図は本実施例のミラーMを用いた場合における物
面Bからの集光状況を示す、物面Bから受光面Sへの入
射光は全て焦点Qを通過する。そのため、走査光学系を
保護するために、透光部に赤外線透過材を用いた保護カ
バーを装着した場合に、走査光学系の回転に応じて焦点
Qが通過する部分のみを窓とすれば良く、赤外線透過材
が少量で済み、構造的にも強固なものとなる。保護カバ
ーの形状は走査光学系全体を覆うようなものであれば良
く、特に限定するものではないが、例えば、半球状の凸
面を下方に向けたドーム状の形状とし、その中心部をミ
ラーMの回転中心軸上に配すると共に、焦点Qが通過す
る所定の高さの部分(及びその近傍)のみを環状の窓部
とし、この窓部に赤外線透過材を配し、その他の部分は
軽量で強固な遮光性材料で形成すれば良い。
FIG. 11 shows the state of convergence from the object surface B when the mirror M of this embodiment is used. All the light incident on the light receiving surface S from the object surface B passes through the focal point Q. Therefore, in order to protect the scanning optical system, if a protective cover made of infrared transmitting material is attached to the light-transmitting part, only the part through which the focal point Q passes according to the rotation of the scanning optical system should be made into a window. , only a small amount of infrared transmitting material is required, and the structure is strong. The shape of the protective cover is not particularly limited as long as it covers the entire scanning optical system. It is arranged on the rotation center axis of the lens, and only the part at a predetermined height (and its vicinity) through which the focal point Q passes is an annular window part, and an infrared transmitting material is arranged in this window part, and the other parts are lightweight. It can be made of a strong light-shielding material.

なお、第9図に示す凹面形成方向と直交する方向の凹面
は、連続的な曲率変化を有する凹面であり、走査方向に
ついての集光作用を有する。この凹面の連続的な曲率変
化については、実施例1の場合と同様にして決定される
。第12図は、蕗1を始径として、始径からの角度tと
走査方向凹面の曲率半径との関係を示す、走査方向につ
いてのミラー幅は30eamとした0本実施例にあって
も、実施例1の場合と同様に、光学利得が向上し、光学
系を小形化できる。
The concave surface shown in FIG. 9 in the direction orthogonal to the direction in which the concave surface is formed is a concave surface that has a continuous change in curvature, and has a light condensing effect in the scanning direction. This continuous curvature change of the concave surface is determined in the same manner as in the first embodiment. FIG. 12 shows the relationship between the angle t from the starting diameter and the radius of curvature of the concave surface in the scanning direction, with the butterbur 1 as the starting diameter. Even in this embodiment, where the mirror width in the scanning direction is 30 eam, As in the case of Example 1, the optical gain is improved and the optical system can be made smaller.

(発明の効果) 本発明は上述のように、赤外線検出素子の視野を円形走
査させるためのミラーの円形走査方向についての反射面
は連続的な曲率変化を有する凹面とし、円形走査の半径
方向についての反射面は物面までの距離に比べて充分に
小さい焦点距離を有する凹面としたので、簡単且つ安価
に構成でき、広い検出領域にわたり大きな光学利得と均
一な感炭分布を得ることができ、しかも、円形走査の半
径方向についての凹面の半径方向の中心位置がミラーの
回転中心と略一致するようにしたので、走査光学系の回
転半径が小さくなり、走査光学系の小形fヒが可能であ
るという効果がある。
(Effects of the Invention) As described above, in the present invention, the reflecting surface of the mirror in the circular scanning direction for circularly scanning the field of view of the infrared detecting element is a concave surface having a continuous curvature change, and Since the reflective surface of is a concave surface with a sufficiently small focal length compared to the distance to the object surface, it can be constructed easily and inexpensively, and a large optical gain and uniform carbon sensitivity distribution can be obtained over a wide detection area. Moreover, since the radial center position of the concave surface in the radial direction of circular scanning is made to approximately coincide with the rotation center of the mirror, the rotation radius of the scanning optical system becomes small, making it possible to make the scanning optical system compact. There is an effect that there is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に用いるミラーの斜視図、第
2図乃至第4区は同上の断面図、第5図は同上のミラー
による集光状況を示す説明図、第6図は同上のミラーの
曲率半径の変化を示す図、第7図は同上のミラーの集光
力を示す特性図、第8図は同上のミラーの回転板への取
り付は状況を示す説明図、第9図及び第10図は本発明
の他の実施例に用いるミラーの断面図、第11図は同上
のミラーによる集光状況を示す説明図、第12図は同上
のミラーの曲率半径の変化を示す図、第13図は従来例
のブロック図、第14図(a)は従来例に用いる光学系
の概略構成図、同図(b)は同上の要部底面図、第15
図(a)は他の従来例に用いる光学系の概略構成図、同
図(b)は同上の要部底面図、第16図は同上に用いる
赤外線検出素子の指向特性図、第17図はさらに他の従
来例に用いる変形鞍形ミラーの斜視図である。 1は円形走査光学系、2は赤外線検出素子、3は前置増
幅部、4は信号処理部、5は判断部、6は出力部、Mは
ミラーである。
FIG. 1 is a perspective view of a mirror used in an embodiment of the present invention, FIGS. 2 to 4 are cross-sectional views of the same, FIG. Fig. 7 is a characteristic diagram showing the light-gathering power of the mirror shown above; Fig. 8 is an explanatory drawing showing how the mirror is attached to the rotary plate; 9 and 10 are cross-sectional views of mirrors used in other embodiments of the present invention, FIG. 11 is an explanatory diagram showing the state of convergence by the same mirror, and FIG. 12 is a diagram showing changes in the radius of curvature of the same mirror. 13 is a block diagram of the conventional example, FIG. 14(a) is a schematic configuration diagram of the optical system used in the conventional example, FIG. 14(b) is a bottom view of the main parts of the same, and FIG.
Figure (a) is a schematic configuration diagram of an optical system used in another conventional example, Figure (b) is a bottom view of the main parts of the same, Figure 16 is a directivity characteristic diagram of the infrared detection element used in the same, and Figure 17 is FIG. 7 is a perspective view of a modified saddle-shaped mirror used in yet another conventional example. 1 is a circular scanning optical system, 2 is an infrared detecting element, 3 is a preamplification section, 4 is a signal processing section, 5 is a judgment section, 6 is an output section, and M is a mirror.

Claims (1)

【特許請求の範囲】[Claims] (1)赤外線検出素子と、反射面を前記赤外線検出素子
に向けたミラーを前記赤外線検出素子の視野中心を軸と
して回転させて前記赤外線検出素子の視野を円形走査さ
せる円形走査光学系と、前記赤外線検出素子の出力信号
を増幅する前置増幅部と、前記前置増幅部の出力信号を
人数検出に必要な信号に変換する信号処理部と、前記信
号処理部の出力信号に基づいて人数を判定する判断部と
、前記判断部の出力信号から人数情報を出力する出力部
とから成る人数検出装置において、前記ミラーの円形走
査方向についての反射面は連続的な曲率変化を有する凹
面であり、円形走査の半径方向についての反射面は物面
までの距離に比べて充分に小さい焦点距離を有する凹面
であって、該凹面の円形走査の半径方向についての中心
位置が前記ミラーの回転中心と略一致していることを特
徴とする人数検出装置。
(1) an infrared detection element and a circular scanning optical system that rotates a mirror with a reflective surface facing the infrared detection element around the center of the field of view of the infrared detection element to circularly scan the field of view of the infrared detection element; a preamplifier that amplifies the output signal of the infrared detection element; a signal processor that converts the output signal of the preamplifier into a signal necessary for detecting the number of people; and a signal processor that calculates the number of people based on the output signal of the signal processor. In the number of people detection device, which includes a judgment unit that makes a judgment, and an output unit that outputs number of people information from an output signal of the judgment unit, the reflective surface of the mirror in the circular scanning direction is a concave surface having a continuous change in curvature; The reflecting surface in the radial direction of the circular scan is a concave surface having a sufficiently small focal length compared to the distance to the object surface, and the center position of the concave surface in the radial direction of the circular scan is approximately the rotation center of the mirror. A device for detecting the number of people, characterized in that they match.
JP62101336A 1986-11-26 1987-04-24 People detection device Expired - Fee Related JPH0727551B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62101336A JPH0727551B2 (en) 1987-04-24 1987-04-24 People detection device
GB8727064A GB2199658B (en) 1986-11-26 1987-11-19 Person-number detecting system
US07/123,105 US4849737A (en) 1986-11-26 1987-11-19 Person-number detecting system
DE19873740115 DE3740115A1 (en) 1986-11-26 1987-11-26 PERSONNEL DETECTION ARRANGEMENT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62101336A JPH0727551B2 (en) 1987-04-24 1987-04-24 People detection device

Publications (2)

Publication Number Publication Date
JPS63266589A true JPS63266589A (en) 1988-11-02
JPH0727551B2 JPH0727551B2 (en) 1995-03-29

Family

ID=14297994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62101336A Expired - Fee Related JPH0727551B2 (en) 1986-11-26 1987-04-24 People detection device

Country Status (1)

Country Link
JP (1) JPH0727551B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002077693A1 (en) * 2001-03-21 2002-10-03 Raytheon Company Ultra-wide field of view concentric scanning sensor system with a flat piece-wise detector array
JP2014534435A (en) * 2011-10-28 2014-12-18 ヴラームス インステリング ヴール テクノロギシュ オンデルゾーク エヌ.ヴイ. (ヴイアイティーオー) Infrared presence detector for detecting the presence of an object in a surveillance area

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002077693A1 (en) * 2001-03-21 2002-10-03 Raytheon Company Ultra-wide field of view concentric scanning sensor system with a flat piece-wise detector array
US6570715B2 (en) 2001-03-21 2003-05-27 Raytheon Company Ultra-wide field of view concentric scanning sensor system with a piece-wise focal plane array
JP2014534435A (en) * 2011-10-28 2014-12-18 ヴラームス インステリング ヴール テクノロギシュ オンデルゾーク エヌ.ヴイ. (ヴイアイティーオー) Infrared presence detector for detecting the presence of an object in a surveillance area

Also Published As

Publication number Publication date
JPH0727551B2 (en) 1995-03-29

Similar Documents

Publication Publication Date Title
US4849737A (en) Person-number detecting system
US4962311A (en) Device for determining the direction of incident laser radiation
JP3052686B2 (en) Laser distance measuring device
EP0876586A1 (en) Quadrant light detector
JPH023150B2 (en)
JPH08506193A (en) Device and method for diffusion-assisted localization for visual detection of pens
US4479056A (en) Motion detector for space surveillance
CN110926437B (en) Reflector device for determining and/or marking the position of an object point
US20200408520A1 (en) Retroreflectors
US4043672A (en) Method and apparatus for detecting the direction of incidence of electromagnetic radiation
JPS63266589A (en) Detector for number of persons
CN110927697A (en) Retroreflector including fisheye lens
CN111595444B (en) Moving target spectrum tracking measurement remote sensing system and method
JPS63134982A (en) Person number detector
US6121606A (en) Multi detector close packed array rosette scan seeker
JP2634830B2 (en) Person detection device
JPS63134986A (en) Person number detector
JP3127185B2 (en) Optical device
JPS63134985A (en) Person number detector
JPS63134983A (en) Person number detector
JP3534281B2 (en) Detection device
JP2552270B2 (en) Person detection device
JPH1068806A (en) Converging mirror and detection device using it
JPH02116991A (en) Detector for the number of persons
JPS63134988A (en) Person number detector

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees