JP3127185B2 - Optical device - Google Patents

Optical device

Info

Publication number
JP3127185B2
JP3127185B2 JP05250698A JP25069893A JP3127185B2 JP 3127185 B2 JP3127185 B2 JP 3127185B2 JP 05250698 A JP05250698 A JP 05250698A JP 25069893 A JP25069893 A JP 25069893A JP 3127185 B2 JP3127185 B2 JP 3127185B2
Authority
JP
Japan
Prior art keywords
mirror
incident light
detector
optical
condenser lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05250698A
Other languages
Japanese (ja)
Other versions
JPH07107035A (en
Inventor
久幸 迎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP05250698A priority Critical patent/JP3127185B2/en
Publication of JPH07107035A publication Critical patent/JPH07107035A/en
Application granted granted Critical
Publication of JP3127185B2 publication Critical patent/JP3127185B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、中心付近の分解能が
高い広範囲位置検出装置や、広い角度範囲の位置検出と
狭い角度範囲の高精度位置検出を同時または交互に必要
とするような、入射光の方向を検知する光学装置に関す
るものであり、例えば衛星間光通信機器のように遠方に
配置した光信号発生源から広い角度範囲で発せられる位
置信号を受信し追尾駆動しながら、狭い角度範囲に発せ
られる光通信信号を受信するような場合に使用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wide-angle position detecting device having a high resolution near the center and an incident light system which requires simultaneous or alternate detection of a wide angle range and high accuracy of a narrow angle range. The present invention relates to an optical device for detecting the direction of light, and receives a position signal emitted from an optical signal source located far away, such as an inter-satellite optical communication device, over a wide angle range, and performs a tracking operation to form a narrow angle range. It can be used when receiving an optical communication signal emitted from a computer.

【0002】[0002]

【従来の技術】図4は従来の光学装置の一例を示す図で
ある。図において1は主鏡、2は上記主鏡1の鏡面と対
向する位置に置かれた副鏡、3は上記副鏡2の鏡面と対
向する位置に置かれた集光レンズ、4は上記集光レンズ
と対向しかつ上記副鏡2と反対側に配置された検出器、
5は上記検出器4の中央部に結像する入射光の中心軸を
示す光学装置光軸中心、6は主鏡1の幾何学的中心位置
を起点として鏡面の法線を示す主鏡中心軸、7は上記主
鏡1に対して外部から入射してくる光の軌跡を法絡線と
して示した入射光である。従来の光学装置は上記のよう
に構成され、入射光7は光学装置の外部から上記主鏡1
に入射し、主鏡1で反射した後に副鏡2で再度反射し集
光レンズ3で集光される。更に、上記検出器4は入射光
7が上記主鏡1及び副鏡2で反射した後に上記集光レン
ズ3で屈折してから結像する距離に配置されており、入
射光7と上記光学装置光軸中心5との成す角度に応じた
位置に検出信号を発生するので入射光7の入射角度を検
知可能となる。従来の検出器4としては中央部で必要と
される分解能特性を、必要とされる検出範囲全域で有す
るものを用いていた。
2. Description of the Related Art FIG. 4 is a view showing an example of a conventional optical device. In the figure, 1 is a primary mirror, 2 is a secondary mirror placed at a position facing the mirror surface of the primary mirror 1, 3 is a condenser lens placed at a position facing the mirror surface of the secondary mirror 2, and 4 is a collecting lens. A detector facing the optical lens and disposed on the side opposite to the secondary mirror 2;
Reference numeral 5 denotes the center of the optical axis of the optical device, which indicates the central axis of the incident light that forms an image at the center of the detector 4. Reference numerals 7 denote incident light, which indicates the trajectory of light incident on the primary mirror 1 from the outside as a normal line. The conventional optical device is configured as described above, and the incident light 7 is transmitted from outside the optical device to the primary mirror 1.
After being reflected by the primary mirror 1, it is reflected again by the secondary mirror 2 and collected by the condenser lens 3. Further, the detector 4 is arranged at a distance where the incident light 7 is reflected by the primary mirror 1 and the secondary mirror 2 and then refracted by the condenser lens 3 before forming an image. Since the detection signal is generated at a position corresponding to the angle formed with the optical axis center 5, the incident angle of the incident light 7 can be detected. As the conventional detector 4, a detector having a resolution characteristic required at the center in the entire required detection range is used.

【0003】図5は従来の光学装置の別の一例を示す図
である。図において1〜7は図4と同様であり、8は入
射光7が副鏡2で反射した後に入射する位置に、入射光
7に対して傾斜して配置されたハーフミラーである。ま
た、3aは副鏡2を反射した入射光7がハーフミラー8
を反射してから入射する位置に配置された第1の集光レ
ンズ、3bは副鏡2を反射した入射光7がハーフミラー
8を透過してから入射する位置に配置された第2の集光
レンズ、4aは第1の集光レンズ3aに対向してハーフ
ミラー8と反対側に配置された第1の検出器、4bは第
2の集光レンズ3bに対向してハーフミラー8と反対側
に配置された第2の検出器、7aは副鏡2を反射した入
射光7のうちで上記ハーフミラー8を反射した部分を示
す第1の入射光、7bは副鏡2を反射した入射光7のう
ちで上記ハーフミラー8を透過した部分を示す第2の入
射光である。
FIG. 5 is a diagram showing another example of a conventional optical device. In the drawing, 1 to 7 are the same as those in FIG. 4, and 8 is a half mirror arranged at a position where the incident light 7 is incident after being reflected by the sub mirror 2 and inclined with respect to the incident light 7. 3a is a case where the incident light 7 reflected by the secondary mirror 2 is a half mirror 8
A first condenser lens 3b disposed at a position where the light is reflected and then incident is a second condenser disposed at a position where the incident light 7 reflected by the sub mirror 2 is transmitted after passing through the half mirror 8 and then incident. An optical lens, 4a, is a first detector, which is disposed on the opposite side to the half mirror 8 opposite to the first condenser lens 3a, and 4b is opposite to the half mirror 8, opposite to the second condenser lens 3b. A second detector 7a is disposed on the side, 7a is a first incident light indicating a portion of the incident light 7 reflected by the secondary mirror 2 and reflected by the half mirror 8, and 7b is an incident light reflected by the secondary mirror 2 This is the second incident light that indicates a portion of the light 7 that has passed through the half mirror 8.

【0004】上記のように構成された従来の光学装置で
は、主鏡1で反射した入射光7は副鏡2を反射した後に
1部分がハーフミラー8で反射して第1の集光レンズ3
aで集光し第1の検出器4a上に結像する。上記第1の
集光レンズ3aと第1の検出器4aとしては、集光レン
ズ3aにいかなる角度で入射した光も画素数の限られた
検出器4aでもれなく検知するので、分解能は低いが広
い角度範囲にわたり検出可能という特徴を有する設定と
していた。一方副鏡2を反射した入射光7の残りの部分
はハーフミラー8を通過して第2の集光レンズ3bに入
射し第2の検出器4b上に結像する。上記第2の集光レ
ンズ3bと第2の検出器4bとしては、集光レンズ3b
に限られた角度で入射した光のみを検出器4bで検知す
る設定にしており、狭い角度範囲しか検出できないが分
解能が高いという特徴を有する設定となっていた。
In the conventional optical device constructed as described above, the incident light 7 reflected by the main mirror 1 is reflected by the sub-mirror 2 and then partially reflected by the half mirror 8 to reflect the first condensing lens 3.
The light is condensed at a and forms an image on the first detector 4a. The first condenser lens 3a and the first detector 4a detect light incident on the condenser lens 3a at any angle by the detector 4a having a limited number of pixels, so that the resolution is low but wide. The setting is such that it can be detected over an angle range. On the other hand, the remaining part of the incident light 7 reflected by the secondary mirror 2 passes through the half mirror 8 and enters the second condenser lens 3b to form an image on the second detector 4b. As the second condenser lens 3b and the second detector 4b, the condenser lens 3b
The detector 4b is set to detect only light incident at an angle that is limited to a limited angle, and the setting is such that it can detect only a narrow angle range but has high resolution.

【0005】図6は従来の光学装置の別の例を光通信機
器に適用した場合の一例を示す図である。図において1
は主鏡、3は主鏡1の鏡面に対向する位置付近に置かれ
た集光レンズ、6は主鏡1の幾何学的中心位置を起点と
して鏡面の法線を示す主鏡中心軸、7は上記主鏡1に対
して外部から入射してくる光の軌跡を法絡線として示し
た入射光、8aは上記集光レンズ3の法線に対して傾斜
して、集光レンズ3に対して主鏡1と反対側に配置され
た第1のハーフミラー、7aは入射光7のうち集光レン
ズ3を経由してハーフミラー8aで反射した部分を示す
第1の入射光、3aは入射光7aが入射する位置に配置
された第1の集光レンズ、4aは第1の集光レンズ3a
に対向して配置された第1の検出器、9bは第2の駆動
機構、10は上記第2の駆動機構9に取り付けられ、上
記第1のハーフミラー8aに並べて取り付けられた平面
鏡、8bは入射光7のうち集光レンズ3を経由して上記
ハーフミラー8aを透過した部分が上記平面鏡10を反
射した後に入射する位置に配置された第2のハーフミラ
ー、7bは入射光7のうちハーフミラー8bで反射した
部分を示す第2の入射光、3bは入射光7bが入射する
位置に配置された第2の集光レンズ、4bは第2の集光
レンズ3bに対向して配置された第2の検出器、5は上
記第2の検出器4bの中心画素に結像する入射光の中心
軸を示す光学装置光軸中心、7cは入射光7のうち第2
のハーフミラー8bを透過した部分を示す第3の入射
光、3cは第3の入射光7cが入射する位置に配置され
た第3の集光レンズ、11は第3の集光レンズ3cに対
向して配置された光信号受信器、12は上記主鏡1、集
光レンズ3、第1、第2、第3の集光レンズ3a,3
b,3c、第1、第2の検出器4a、4b、第1、第2
のハーフミラー8a,8b、第2の駆動機構9b、平面
鏡10、光信号受信器11を取り付けホルダ、9aは上
記ホルダ12を回動する第1の駆動機構、20は主鏡第
1の駆動機構9aを支持する固定具である。
FIG. 6 is a diagram showing an example in which another example of the conventional optical device is applied to an optical communication device. 1 in the figure
Is a primary mirror, 3 is a condensing lens placed near a position facing the mirror surface of the primary mirror 1, 6 is a primary mirror center axis indicating a normal line of the mirror surface starting from the geometric center position of the primary mirror 1, 7 Is incident light indicating the trajectory of light entering the primary mirror 1 from the outside as a normal line, and 8a is inclined with respect to the normal of the The first half mirror 7a disposed on the side opposite to the main mirror 1 is a first incident light showing a portion of the incident light 7 reflected by the half mirror 8a via the condenser lens 3, and 3a is an incident light. A first condenser lens 4a disposed at a position where the light 7a is incident, and a first condenser lens 3a
The first detector 9b disposed opposite to the second drive mechanism 9 is mounted on the second drive mechanism 9 and the plane mirror mounted side by side on the first half mirror 8a, and 8b is mounted on the first half mirror 8a. The second half mirror is disposed at a position where the portion of the incident light 7 that has passed through the half mirror 8a via the condenser lens 3 is reflected and then enters the flat mirror 10, and 7b is a half of the incident light 7 The second incident light 3b indicating a portion reflected by the mirror 8b is a second condenser lens disposed at a position where the incident light 7b is incident, and the 4b is disposed opposite the second condenser lens 3b. The second detector 5, 5 is the optical axis center of the optical device indicating the central axis of the incident light that forms an image on the central pixel of the second detector 4b, and 7c is the second of the incident light 7.
3c is a third condenser lens disposed at a position where the third incident light 7c is incident, and 11 is opposed to the third condenser lens 3c. The optical signal receiver 12, which is arranged in the manner described above, has the primary mirror 1, the condenser lens 3, the first, second, and third condenser lenses 3a, 3
b, 3c, first and second detectors 4a, 4b, first, second
And a holder for mounting the half mirrors 8a, 8b, the second drive mechanism 9b, the plane mirror 10, and the optical signal receiver 11, 9a is a first drive mechanism for rotating the holder 12, and 20 is a first drive mechanism for the primary mirror. 9a is a fixture for supporting 9a.

【0006】上記のように構成された従来の光学装置の
例では、主鏡1で反射した入射光7は集光レンズ3を経
由して1部分が第1のハーフミラー8aで反射して広角
検出用の第1の集光レンズ3aに入射し、第1の検出器
4a上に結像する。入射光7の残りの部分は第1のハー
フミラー8aを通過し駆動機構9bに取り付けられた平
面鏡10で反射し、1部分である第2の入射光7bが第
2のハーフミラー8bで反射して狭角検出用の第2の集
光レンズ3bに入射し第2の検出器4b上に結像する。
また残りの部分の第3の入射光7cは第2のハーフミラ
ー8bを通過し第3の集光レンズ3cを経由して光信号
受信器11に結像する。第3の入射光7cが光信号受信
器11に到達するために、入射光7の入射する角度が光
学装置光軸中心5と成す角度が小さくなるように広角検
出用の第1の検出器4aの出力信号に基づき駆動機構9
aを回動する。更に狭角検出用の第2の検出器4bで検
知可能な範囲になった後は狭角検出用の第2の検出器4
bの出力信号に基づき駆動機構9bを駆動していた。
In the example of the conventional optical device configured as described above, the incident light 7 reflected by the primary mirror 1 passes through the condenser lens 3 and one portion is reflected by the first half mirror 8a to have a wide angle. The light enters the first condenser lens 3a for detection and forms an image on the first detector 4a. The remaining part of the incident light 7 passes through the first half mirror 8a and is reflected by the plane mirror 10 attached to the driving mechanism 9b, and the second incident light 7b, which is one part, is reflected by the second half mirror 8b. Incident on the second condenser lens 3b for narrow-angle detection and forms an image on the second detector 4b.
The remaining third incident light 7c passes through the second half mirror 8b and forms an image on the optical signal receiver 11 via the third condenser lens 3c. In order for the third incident light 7c to reach the optical signal receiver 11, the first detector 4a for wide-angle detection is set so that the angle of incidence of the incident light 7 with the optical axis center 5 of the optical device becomes small. Drive mechanism 9 based on the output signal of
a is rotated. Further, after reaching the range that can be detected by the second detector 4b for detecting a narrow angle, the second detector 4 for detecting a narrow angle is used.
The driving mechanism 9b is driven based on the output signal of b.

【0007】[0007]

【発明が解決しようとする課題】上記図4のような従来
の光学装置では、1組の集光レンズと検出器で広角度範
囲にわたり高精度検出をするため、副鏡や集光レンズに
厳しい精度が要求され製造が難しいという課題があっ
た。また検出器のサイズや画素数の制約があるため視野
範囲があまり大きくとれないという課題があった。また
光学装置光軸中心と主鏡光軸中心が一致するような配置
の場合には副鏡の遮蔽により入射光の強度が劣化すると
いう課題があった。
In the conventional optical device as shown in FIG. 4, since a single set of condenser lens and detector performs high-precision detection over a wide angle range, the secondary mirror and condenser lens are strictly required. There is a problem that precision is required and manufacturing is difficult. In addition, there is a problem that the field of view cannot be made too large due to restrictions on the size of the detector and the number of pixels. In addition, in the case of an arrangement in which the optical axis center of the optical device coincides with the optical axis of the primary mirror, there is a problem that the intensity of the incident light is deteriorated by the shielding of the secondary mirror.

【0008】一方上記図5のような従来の光学装置で
は、入射光をハーフミラーで広角検出用と狭角検出用に
分配して使用するため、入射光の強度が劣化するという
課題があった。さらに入射光の指向精度が劣化するとい
う課題があった。
On the other hand, in the conventional optical device as shown in FIG. 5, since the incident light is distributed and used by the half mirror for wide-angle detection and narrow-angle detection, there is a problem that the intensity of the incident light is deteriorated. . Further, there is a problem that the directivity of incident light is deteriorated.

【0009】また上記図6のような従来の光学装置で
は、副鏡はないが集光レンズに厳しい精度が要求され製
造が難しいという課題があった。また入射光をハーフミ
ラーで分配して使用するため、入射光の強度劣化と指向
精度劣化が生じるという課題があった。また第1の駆動
機構と第2の駆動機構を同時に動作させると両者の動作
が干渉して光学装置の指向精度が悪くなるという課題が
あった。
Further, the conventional optical device as shown in FIG. 6 has no sub-mirror, but has a problem in that strict accuracy is required for the condenser lens and manufacturing is difficult. Further, since the incident light is distributed and used by the half mirror, there is a problem that the intensity of the incident light is deteriorated and the directivity is deteriorated. Further, when the first drive mechanism and the second drive mechanism are operated at the same time, there is a problem that the operations of the first drive mechanism and the second drive mechanism interfere with each other, and the pointing accuracy of the optical device is deteriorated.

【0010】この発明はかかる課題を解決するためにな
されたものであり、広角検出用の光学系と高精度検出用
の光学系を分離し、広い検出範囲を確保し、かつ広角用
と狭角用の信号分配による入射光強度劣化のない高指向
精度の光学装置を実現することを目的とする。また第1
の駆動機構と第2の駆動機構を同時に高精度で制御しな
がら高い指向精度を実現することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and separates an optical system for wide-angle detection from an optical system for high-precision detection to ensure a wide detection range, and a wide-angle and narrow-angle optical system. It is an object of the present invention to realize an optical device having high directivity with no deterioration of incident light intensity due to signal distribution for use. Also the first
It is an object of the present invention to realize high directivity while simultaneously controlling the driving mechanism and the second driving mechanism with high precision.

【0011】[0011]

【課題を解決するための手段】この発明にかかる光学装
置は、光学装置光軸中心と入射光の成す角が大きい入射
光が入射する第1の検出器と、光学装置光軸中心と入射
光の成す角が小さい入射光が入射する第2の検出器を両
方具備し、更に光学装置光軸中心に対して主鏡中心軸が
傾斜するように設定したオフセット光学系を有し、かつ
中央部に貫通穴のある副鏡を用いて副鏡の反射光結像面
に広角検出用の第1の検出器を配置し、かつ副鏡中央部
または背面に集光レンズ光学系を配置し、結像面に狭角
高精度検出用の第2の検出器を配置したものである。
An optical device according to the present invention comprises a first detector on which incident light having a large angle formed between the optical axis of the optical device and the incident light is incident; And a second detector on which the incident light having a small angle of incidence is incident, further comprising an offset optical system set so that the center axis of the primary mirror is inclined with respect to the center of the optical axis of the optical device, and A first mirror for wide-angle detection is arranged on the reflected light image plane of the sub-mirror using a sub-mirror having a through-hole, and a condenser lens optical system is arranged at the center or the back of the sub-mirror. A second detector for narrow-angle, high-precision detection is arranged on the image plane.

【0012】[0012]

【作用】この発明により、かかる光学装置光軸中心と入
射光の成す角が大きい入射光は主鏡で反射した後に副鏡
中央の穴を通過せず副鏡で反射し、広角検出用の第1の
検出器上に結像する。一方、光学装置光軸中心と入射光
の成す角が十分小さい入射光は主鏡で反射した後、副鏡
中央部の穴を通過して狭角高精度検出用の集光レンズに
入射し、第2の検出器上に結像する。
According to the present invention, the incident light having a large angle between the optical axis center of the optical device and the incident light is reflected by the secondary mirror without passing through the center hole of the secondary mirror after being reflected by the primary mirror. An image is formed on one detector. On the other hand, the incident light having a sufficiently small angle between the optical axis of the optical device and the incident light is reflected by the primary mirror, passes through a hole in the central part of the secondary mirror, and is incident on a condenser lens for narrow-angle high-precision detection. An image is formed on the second detector.

【0013】[0013]

【0014】[0014]

【実施例】実施例1.以下、この発明の一実施例を図に
ついて説明する。図1はこの発明による光学装置の実施
例を示す図である。図において1は主鏡、2は上記主鏡
1の鏡面と対向する位置付近に置かれた中央部に貫通穴
を有する副鏡、3は上記主鏡1の鏡面と対向し、副鏡2
に対して主鏡1と反対側に置かれた集光レンズ、4aは
上記副鏡と対向する位置付近に置かれた第1の検出器、
4bは上記集光レンズ3と対向しかつ上記副鏡2と反対
側に配置された第2の検出器、5は上記第2の検出器4
bの中央部に結像する入射光の中心軸を示す光学装置光
軸中心、6は主鏡1の幾何学的中心位置を起点として鏡
面の法線を示す主鏡中心軸、7は上記主鏡1に対して外
部から入射してくる光の軌跡を法絡線として示した入射
光、7aは上記入射光のうち副鏡2で反射した部分を示
す第1の入射光、7bは上記入射光のうち集光レンズ3
を透過した部分を示す第2の入射光である。この発明に
かかる光学装置は、上記光学装置光軸中心5に対して主
鏡中心軸6が傾斜するように設定したオフセツト光学系
となっており、かつ上記副鏡2には中央部に貫通穴があ
り、副鏡2を反射した第1の入射光7aが結像する距離
に広角検出用の第1の検出器4aを配置し、かつ副鏡2
中央部または背面に穴の形状に対応して集光レンズ3を
配置し、集光レンズ3を透過した第2の入射光7bが結
像する距離に狭角高精度検出用の第2の検出器4bを配
置したものである。この発明による光学装置は上記のよ
うに構成され、光学装置光軸中心5と入射光の成す角が
十分小さい入射光は主鏡1で反射した後、副鏡2中央の
穴を通過して狭角高精度検出用の集光レンズ3に入射し
第2の検出器4b上に結像する。一方光学装置光軸中心
5と入射光の成す角が大きい入射光は主鏡1で反射した
後に、副鏡2中央の穴を通過せず副鏡2で反射し、広角
検出用の第1の検出器4a上に結像する。
[Embodiment 1] An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an embodiment of the optical device according to the present invention. In the figure, 1 is a primary mirror, 2 is a sub-mirror having a through hole in the center located near the position facing the mirror surface of the primary mirror 1, 3 is a secondary mirror facing the mirror surface of the primary mirror 1
, A condenser lens placed on the side opposite to the primary mirror 1, a first detector 4 a placed near a position facing the secondary mirror,
Reference numeral 4b denotes a second detector which faces the condenser lens 3 and is located on the side opposite to the secondary mirror 2, and 5 denotes the second detector 4
b, the center of the optical axis of the optical device indicating the center axis of the incident light to be imaged at the center of the b, 6 is the main mirror center axis indicating the normal of the mirror surface starting from the geometric center position of the main mirror 1, and 7 is the main axis 7a is a first incident light indicating a portion of the incident light reflected by the sub-mirror 2, and 7b is an incident light showing a trajectory of light entering the mirror 1 from the outside as a normal line. Condensing lens 3 out of the emitted light
Is the second incident light that indicates the portion that has passed through. The optical apparatus according to the present invention is an offset optical system in which the central axis 6 of the primary mirror is set so as to be inclined with respect to the optical axis center 5 of the optical apparatus. A first detector 4a for wide-angle detection is disposed at a distance where the first incident light 7a reflected by the secondary mirror 2 forms an image, and the secondary mirror 2
A condensing lens 3 is arranged at the center or the back corresponding to the shape of the hole, and the second detection for narrow-angle high-precision detection is performed at a distance where the second incident light 7b transmitted through the condensing lens 3 forms an image. The container 4b is arranged. The optical device according to the present invention is configured as described above. The incident light having a sufficiently small angle between the optical axis 5 of the optical device and the incident light is reflected by the primary mirror 1 and then passes through a hole at the center of the secondary mirror 2 to be narrow. The light enters the condenser lens 3 for high-accuracy angular detection and forms an image on the second detector 4b. On the other hand, incident light having a large angle between the optical axis 5 of the optical device and the incident light is reflected by the main mirror 1 and then reflected by the sub-mirror 2 without passing through the center hole of the sub-mirror 2, and the first for wide-angle detection. An image is formed on the detector 4a.

【0015】実施例2.次に、この発明の他の実施例を
図について説明する。図2はこの発明による光学装置の
中で、光学装置光軸中心と入射光の成す角が大きい場合
の入射光を検出可能となるように設定した第1の集光レ
ンズ及び第1の検出器と、光学装置光軸中心と入射光の
成す角が小さい場合の入射光のみを高精度に検出可能と
なるよう設定した第2の集光レンズ及び第2の検出器と
を具備し、かつ入射光が狭角検出用の第2の集光レンズ
に入射する前に入射光を反射して入射方向を変更する平
面鏡を有し、かつこの平面鏡の設定角度を任意に変更可
能な駆動機構を具備することを特徴とする光学装置の実
施例を示す図である。図中1から7は図4と同様であ
り、8は上記副鏡2の鏡面に対向する位置に副鏡2の法
線に対して傾斜して設定されたハーフミラー、7aは入
射光7のうちハーフミラー8で反射した部分を示す第1
の入射光、3aは第1の入射光7aが入射する位置に配
置された第1の集光レンズ、4aは第1の集光レンズ3
aに対向して配置された第1の検出器、9は駆動機構、
10は上記駆動機構9に取り付けられ、上記ハーフミラ
ー8に並べて取り付けられた平面鏡、7bは入射光7の
うちハーフミラー8を透過した部分を示す第2の入射
光、3bは入射光7bが入射する位置に配置された第2
の集光レンズ、4bは第2の集光レンズ3bに対向して
配置された第2の検出器である。この発明による光学装
置は上記のように構成され、第1の集光レンズ3a、及
び第1の検出器4aは広範囲にわたり検知可能となるよ
う設定されているので光学装置光軸中心5と入射光7の
成す角が大きい場合に入射光を検出可能となる。一方第
2の集光レンズ3b、及び第2の検出器4bは光学装置
光軸中心5と入射光7の成す角が小さい場合に限定して
検知可能となるよう設定されているので、例えば画素数
の限定された同一の検出器を用いたとしても、上記第1
の検出器4aに比較して1画素当たりの観測分解能が高
く、この結果高精度の検知が可能となる。更に光学装置
光軸中心5と入射光7の成す角が大きい入射光について
高精度で検出する場合は、駆動機構9を駆動し、平面鏡
10の指向方向を変更することにより狭角検出用の第2
の検出器4bの視野方向が任意に設定可能となる。
Embodiment 2 FIG. Next, another embodiment of the present invention will be described with reference to the drawings. FIG. 2 shows a first condenser lens and a first detector set to be able to detect incident light when the angle between the optical axis of the optical device and the incident light is large in the optical device according to the present invention. And a second condenser lens and a second detector set so that only the incident light when the angle formed between the optical axis center of the optical device and the incident light is small can be detected with high accuracy. It has a plane mirror that reflects incident light and changes the incident direction before the light enters the second condenser lens for narrow-angle detection, and has a drive mechanism that can arbitrarily change the set angle of the plane mirror. FIG. 3 is a diagram showing an embodiment of an optical device characterized by the following. In the drawing, 1 to 7 are the same as those in FIG. 4, 8 is a half mirror set at a position facing the mirror surface of the sub mirror 2 and inclined with respect to the normal line of the sub mirror 2, and 7 a is a half mirror of the incident light 7. The first of which shows the portion reflected by the half mirror 8
Is a first condenser lens arranged at a position where the first incident light 7a is incident, and 4a is a first condenser lens 3
a first detector arranged opposite to a, 9 is a driving mechanism,
Reference numeral 10 denotes a plane mirror mounted on the drive mechanism 9 and mounted side by side on the half mirror 8. Reference numeral 7b denotes a second incident light indicating a portion of the incident light 7 transmitted through the half mirror 8, and reference numeral 3b denotes an incident light 7b. Second position
The condenser lens 4b is a second detector arranged opposite to the second condenser lens 3b. The optical device according to the present invention is configured as described above, and the first condenser lens 3a and the first detector 4a are set so as to be detectable over a wide range. When the angle formed by 7 is large, incident light can be detected. On the other hand, the second condenser lens 3b and the second detector 4b are set so as to be able to detect only when the angle between the optical axis 5 of the optical device and the incident light 7 is small, so that, for example, the pixel Even if the same limited number of detectors are used, the first
The observation resolution per pixel is higher than that of the detector 4a, so that highly accurate detection is possible. Further, when the incident light having a large angle between the optical axis center 5 of the optical device and the incident light 7 is detected with high accuracy, the driving mechanism 9 is driven to change the directing direction of the plane mirror 10 so as to detect the narrow angle. 2
Of the detector 4b can be arbitrarily set.

【0016】実施例3.次に、この発明の他の実施例を
図について説明する。図3はこの発明による光学装置の
中で、光学装置光軸中心と主鏡中心軸が互いに傾斜した
オフセット光学系であり、かつ上記副鏡の中央部に貫通
穴があり、副鏡で反射した入射光が結像する位置に広角
検出用の第1の検出器を配置し、かつ副鏡中央部穴を通
過した入射光が集光レンズを経由して結像する位置に狭
角検出用の第2の検出器を配置し、かつ上記広角検出用
の第1の検出器の出力に基づき動作する第1の駆動機
構、副鏡中央部貫通穴を通過した入射光が狭角検出用の
第2の検出器に入射する前に反射して入射方向を変更す
る平面鏡、上記平面鏡を取り付けた駆動機構、及びコン
ピュータを具備する光学装置を光通信装置に適用した実
施例である。図において1は主鏡、2は上記主鏡1の鏡
面と対向する位置付近に置かれた中央部に貫通穴を有す
る副鏡、3は上記主鏡1の鏡面と対向し、副鏡2に対し
て主鏡1と反対側に置かれた集光レンズ、4aは上記副
鏡と対向する位置付近に置かれた第1の検出器、5は上
記検出器4bの中央部に結像する入射光の中心軸を示す
光学装置光軸中心、6は主鏡1の幾何学的中心位置を起
点として鏡面の法線を示す主鏡中心軸、7は上記主鏡1
に対して外部から入射してくる光の軌跡を法絡線として
示した入射光、7aは上記入射光のうち副鏡2で反射し
た部分を示す第1の入射光、9bは駆動機構、10は上
記駆動機構9に取り付けられ、上記集光レンズ3に並べ
て集光レンズ3と傾斜して取り付けられた平面鏡、8は
入射光7のうち集光レンズ3を経由して上記平面鏡10
を反射した部分が入射する位置に配置されたハーフミラ
ー、7bは入射光7のうちハーフミラー8で反射した部
分を示す第2の入射光、3bは入射光7bが入射する位
置に配置された第2の集光レンズ、4bは第2の集光レ
ンズ3bに対向して配置された第2の検出器、5は上記
第2の検出器4bの中心画素に結像する入射光の中心軸
を示す光学装置光軸中心、7cは入射光7のうちハーフ
ミラー8を透過した部分を示す第3の入射光、3cは第
3の入射光7cが入射する位置に配置された第3の集光
レンズ、11は第3の集光レンズ3cに対向して配置さ
れた光信号受信器、12は上記主鏡1、副鏡2、集光レ
ンズ3、第1、第2、第3の集光レンズ3a,3b,3
c,第1、第2の検出器4a、4b、ハーフミラー8、
第2の駆動機構9b、平面鏡10、光信号受信器11を
取り付けたホルダ、9aは上記ホルダを回動する第1の
駆動機構、13は第1の検出器4a及び第2の検出器4
bの出力を電気的に入力し、第2の駆動機構9b及び第
1の駆動機構9aと電気的に接続されるコンピュータ、
20は上記第1の駆動機構を支持し人工衛星等に固定す
るための固定具である。
Embodiment 3 FIG. Next, another embodiment of the present invention will be described with reference to the drawings. FIG. 3 shows an offset optical system in which the center of the optical axis of the optical device and the center axis of the primary mirror are mutually inclined in the optical device according to the present invention, and there is a through hole in the central portion of the secondary mirror, which is reflected by the secondary mirror. A first detector for wide-angle detection is arranged at a position where the incident light forms an image, and a narrow-angle detection detector is formed at a position where the incident light passing through the central hole of the sub-mirror forms an image via a condenser lens. A first driving mechanism, in which a second detector is disposed, and which operates based on the output of the first detector for wide-angle detection; This is an embodiment in which a flat mirror that changes the incident direction by being reflected before entering the second detector, a driving mechanism having the flat mirror attached thereto, and an optical device including a computer are applied to an optical communication device. In the figure, 1 is a primary mirror, 2 is a sub-mirror having a through hole in the center located near the position facing the mirror surface of the main mirror 1, 3 is facing the mirror surface of the main mirror 1, On the other hand, the condenser lens 4a located on the side opposite to the primary mirror 1 is a first detector located near the position facing the secondary mirror, and 5 is an incident light which forms an image at the center of the detector 4b. An optical device optical axis center indicating a central axis of light, 6 is a primary mirror central axis indicating a normal line of a mirror surface starting from a geometric center position of the primary mirror 1, and 7 is the primary mirror 1.
7a is a first incident light indicating a portion of the incident light reflected by the sub-mirror 2, 9b is a driving mechanism, Is a plane mirror attached to the drive mechanism 9 and arranged side by side with the condenser lens 3 so as to be inclined with the condenser lens 3. 8 is a plane mirror 10 of the incident light 7 via the condenser lens 3.
The half mirror 7b is arranged at a position where the portion reflected by the half mirror 8 of the incident light 7 is arranged at a position where the incident light 7b is incident. The second condenser lens 4b is a second detector arranged opposite the second condenser lens 3b, and 5 is the central axis of the incident light imaged on the central pixel of the second detector 4b. 7c is a third incident light indicating a portion of the incident light 7 that has passed through the half mirror 8, and 3c is a third light collector disposed at a position where the third incident light 7c is incident. An optical lens, 11 is an optical signal receiver disposed opposite the third condenser lens 3c, and 12 is the primary mirror 1, the secondary mirror 2, the condenser lens 3, the first, second, and third condensers. Optical lenses 3a, 3b, 3
c, first and second detectors 4a and 4b, half mirror 8,
A holder on which the second drive mechanism 9b, the plane mirror 10, and the optical signal receiver 11 are mounted, 9a is a first drive mechanism for rotating the holder, 13 is a first detector 4a and a second detector 4
b, a computer that electrically receives the output of b and is electrically connected to the second drive mechanism 9b and the first drive mechanism 9a;
Reference numeral 20 denotes a fixture for supporting the first drive mechanism and fixing the first drive mechanism to an artificial satellite or the like.

【0017】この発明にかかる光学装置は、上記光学装
置光軸中心5に対して主鏡中心軸6が傾斜するように設
定したオフセット光学系となっており、かつ上記副鏡2
には中央部に貫通穴があり、副鏡2を反射した第1の入
射光7aが結像する距離に広角検出用の第1の検出器4
aを配置し、かつ副鏡2中央部または背面に集光レンズ
3を配置し、集光レンズ3を透過した第2の入射光7b
が結像する距離に狭角高精度検出用の第2の検出器4b
を配置したものである。さらに入射光7と光学装置光軸
中心5との成す角が大きい場合は、入射光7は副鏡2を
反射して第1の検出器4a上に結像するので、この結像
位置が第1の検出器4aの中央部に移動するように駆動
機構9aを駆動する。この結果入射光7と光学装置光軸
中心5との成す角が十分小さくなると入射光は副鏡2の
中央部の穴を通過し平面鏡10を反射した後にハーフミ
ラー8を反射して狭角検出用の第2の集光レンズ3bを
経由して第2の検出器4b上に結像するので、この結像
位置が第2の検出器4bの中央部に移動するように平面
鏡10の取り付いた第2の駆動機構9bを駆動する。こ
の結果光学装置光軸中心5は入射光7の入射方向と高精
度で一致させることが可能となる。
The optical device according to the present invention is an offset optical system in which the center axis 6 of the primary mirror is set so as to be inclined with respect to the optical axis center 5 of the optical device.
Has a through hole in the center thereof, and a first detector 4 for wide-angle detection at a distance where the first incident light 7a reflected by the secondary mirror 2 forms an image.
a, and the condenser lens 3 is disposed at the center or the back of the secondary mirror 2, and the second incident light 7b transmitted through the condenser lens 3
The second detector 4b for narrow-angle high-precision detection at a distance where
Is arranged. Further, when the angle between the incident light 7 and the optical axis 5 of the optical device is large, the incident light 7 reflects off the sub-mirror 2 and forms an image on the first detector 4a. The driving mechanism 9a is driven to move to the center of the first detector 4a. As a result, when the angle between the incident light 7 and the optical device center 5 becomes sufficiently small, the incident light passes through the hole in the center of the sub-mirror 2, reflects off the plane mirror 10, reflects off the half mirror 8, and detects the narrow angle. An image is formed on the second detector 4b via the second condensing lens 3b for use, so that the plane mirror 10 is attached so that the image forming position moves to the center of the second detector 4b. The second drive mechanism 9b is driven. As a result, the optical device optical axis center 5 can be made to coincide with the incident direction of the incident light 7 with high accuracy.

【0018】なおこの例では、ハーフミラー8で反射し
た入射光が第2の検出器4bに結像し、ハーフミラー8
を透過した入射光が光信号受信器11に結像する例を示
したが、ハーフミラー8で反射した入射光が光信号受信
器11に結像し、ハーフミラー8を透過した入射光が第
2の検出器4bに結像する設定も可能であることは言う
までもない。
In this example, the incident light reflected by the half mirror 8 forms an image on the second detector 4b, and the half mirror 8
The example in which the incident light transmitted through the optical signal receiver 11 forms an image on the optical signal receiver 11, but the incident light reflected by the half mirror 8 forms an image on the optical signal receiver 11, and the incident light transmitted through the half mirror 8 It is needless to say that the setting to form an image on the second detector 4b is also possible.

【0019】次に動作について説明する。図7、図8及
び図9はこの発明による光学装置を人工衛星搭載用光通
信機器に適用した場合の動作状態を示す図であり、図7
は入射光が広角検出用視野範囲内でかつ、狭角検出用視
野範囲外にある場合であり、図8は入射光が狭角検出用
視野範囲内でかつ、光信号受信器視野範囲外にある場合
であり、図9は入射光が光信号受信器視野範囲内にある
状態を示す。図において12は広角駆動機構、14は狭
角用検出器に入射光が到達し得る限界角度範囲を示す狭
角用検出器視野、15は広角用検出器に入射光が到達し
得る限界角度範囲を示す広角用検出器視野、16は光信
号受信器に入射光が到達し得る限界角度範囲を示す光信
号受信器視野、17は光信号を出力する人工衛星の位置
を示すビーコン信号としての入射光の広がり範囲、18
は光信号を出力する人工衛星が発する光信号としての入
射光の広がり範囲、19aは光学装置を搭載し入射光を
受信する人工衛星、19bは光信号を出力する人工衛星
を示す。
Next, the operation will be described. FIGS. 7, 8 and 9 are diagrams showing an operation state when the optical device according to the present invention is applied to an optical communication device mounted on a satellite.
FIG. 8 shows the case where the incident light is within the wide-angle detection field of view and outside the narrow-angle detection field of view. FIG. 8 shows that the incident light is within the narrow-angle detection field of view and outside the optical signal receiver field of view. In one case, FIG. 9 illustrates a situation where the incident light is within the optical signal receiver field of view. In the figure, 12 is a wide-angle driving mechanism, 14 is a narrow-angle detector field of view indicating a limit angle range in which incident light can reach the narrow-angle detector, and 15 is a limit angle range in which incident light can reach the wide-angle detector. , 16 denotes an optical signal receiver field of view indicating a limit angle range in which incident light can reach the optical signal receiver, and 17 denotes a beacon signal indicating a position of an artificial satellite that outputs an optical signal. Light spread range, 18
Denotes a spread range of incident light as an optical signal emitted by an artificial satellite that outputs an optical signal, 19a denotes an artificial satellite equipped with an optical device and receives the incident light, and 19b denotes an artificial satellite that outputs an optical signal.

【0020】図7の状態において、光信号を出力する人
工衛星19bのビーコン信号広がり範囲17の中に入射
光を受信する人工衛星19aが存在し、かつ人工衛星1
9aの広角用検出器視野15の中に光信号を出力する人
工衛星19bが存在するので、入射光を受信する人工衛
星19aの広角検出用の検出器で入射光の入射方向を検
知することが可能である。この広角検出用の検出器出力
が検出器中央部に移動するように広角駆動機構12を駆
動することにより図8の状態に移行できる。
In the state shown in FIG. 7, an artificial satellite 19a for receiving incident light exists in the beacon signal spread range 17 of the artificial satellite 19b for outputting an optical signal, and the artificial satellite 1
Since the artificial satellite 19b that outputs an optical signal is present in the wide-angle detector field of view 9a, the wide-angle detector of the artificial satellite 19a that receives the incident light can detect the incident direction of the incident light. It is possible. By driving the wide-angle drive mechanism 12 so that the output of the detector for wide-angle detection moves to the center of the detector, the state shown in FIG. 8 can be obtained.

【0021】次に図8の状態において、光信号を出力す
る人工衛星19bのビーコン信号広がり範囲17の中に
入射光を受信する人工衛星19aが存在し、かつ人工衛
星19aの狭角用検出器視野14の中に光信号を出力す
る人工衛星19bが存在するので、入射光を受信する人
工衛星19aの狭角検出用の検出器で入射光の入射方向
を検知することが可能である。この狭角検出用の検出器
出力に基づき図3の平面鏡10及び駆動機構9の如く光
学装置内に設置された平面鏡を駆動機構で駆動すること
により図9の状態に移行できる。図9の状態では光信号
を出力する人工衛星19bの光信号広がり範囲18の中
に入射光を受信する人工衛星19aが存在し、かつ人工
衛星19aの光信号受信器視野16の中に光信号を出力
する人工衛星19bが存在するので、光通信が可能とな
る。
Next, in the state shown in FIG. 8, the artificial satellite 19a receiving the incident light is present in the beacon signal spread range 17 of the artificial satellite 19b outputting the optical signal, and the narrow-angle detector of the artificial satellite 19a is provided. Since the artificial satellite 19b that outputs an optical signal is present in the field of view 14, the incident direction of the incident light can be detected by the narrow-angle detection detector of the artificial satellite 19a that receives the incident light. The plane mirror shown in FIG. 9 can be shifted to the state shown in FIG. 9 by driving a plane mirror installed in the optical apparatus, such as the plane mirror 10 and the driving mechanism 9 in FIG. 3, based on the output of the detector for detecting a narrow angle. In the state of FIG. 9, there is an artificial satellite 19a that receives incident light within the optical signal spread range 18 of the artificial satellite 19b that outputs an optical signal, and the optical signal is in the optical signal receiver field of view 16 of the artificial satellite 19a. Optical communication is possible because there is an artificial satellite 19b that outputs the following.

【0022】[0022]

【発明の効果】この発明による光学装置は、以上説明し
たように構成されているので、狭角用の集光レンズは視
野角が限定されるので、容易に製造可能となるという効
果がある。また広角検出用と狭角検出用の信号分配によ
る信号レベルの低下がないという効果がある。また副鏡
または屈折レンズ系を主鏡光軸と同軸上に配置した非オ
フセット光学系と比較すると、入射光を遮られないので
信号量が低下しないという効果がある。
Since the optical device according to the present invention is configured as described above, the narrow-angle condensing lens has a limited viewing angle, so that it can be easily manufactured. In addition, there is an effect that the signal level does not decrease due to the signal distribution for wide-angle detection and narrow-angle detection. In addition, as compared with a non-offset optical system in which a sub mirror or a refracting lens system is arranged coaxially with the optical axis of the main mirror, there is an effect that the amount of signal does not decrease because the incident light is not blocked.

【0023】[0023]

【0024】[0024]

【0025】[0025]

【0026】[0026]

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例1における光学装置の一部を
示す図である。
FIG. 1 is a diagram illustrating a part of an optical device according to a first embodiment of the present invention.

【図2】この発明の実施例2における入射光が駆動機構
に取り付けられた平面鏡を反射した後に狭角検出用の集
光レンズに入射する光学装置を示す図である。
FIG. 2 is a diagram illustrating an optical device according to a second embodiment of the present invention, in which incident light is reflected by a plane mirror attached to a driving mechanism and then is incident on a condenser lens for detecting a narrow angle.

【図3】この発明の実施例3における光通信装置に適用
した場合の光学装置を示す図である。
FIG. 3 is a diagram illustrating an optical device when applied to an optical communication device according to a third embodiment of the present invention.

【図4】従来の光学装置の一部を示す図である。FIG. 4 is a diagram showing a part of a conventional optical device.

【図5】従来の光学装置の別の例を示す図である。FIG. 5 is a diagram showing another example of a conventional optical device.

【図6】従来の光学装置の別の例による光通信機器の例
を示す図である。
FIG. 6 is a diagram showing an example of an optical communication device according to another example of the conventional optical device.

【図7】この発明による光学装置を人工衛星搭載用光通
信機器に適用し、入射光が広角検出用視野範囲内でか
つ、狭角検出用視野範囲外にある場合の動作状態を示す
図である。
FIG. 7 is a diagram showing an operation state when the optical device according to the present invention is applied to an optical communication device mounted on an artificial satellite, and incident light is within a wide-angle detection visual field range and outside a narrow-angle detection visual field range. is there.

【図8】この発明による光学装置を人工衛星搭載用光通
信機器に適用し、入射光が狭角検出用視野範囲内でか
つ、光信号受信器視野範囲外にある場合の動作状態を示
す図である。
FIG. 8 is a diagram showing an operation state in which the optical device according to the present invention is applied to an optical communication device mounted on an artificial satellite, and incident light is within a narrow-angle detection visual field range and outside an optical signal receiver visual field range. It is.

【図9】この発明による光学装置を人工衛星搭載用光通
信機器に適用し、入射光が光信号受信器視野範囲内にあ
る場合の動作状態を示す図である。
FIG. 9 is a diagram illustrating an operation state in which the optical device according to the present invention is applied to an optical communication device mounted on a satellite and incident light is within a visual field range of an optical signal receiver.

【符号の説明】[Explanation of symbols]

1 主鏡 2 副鏡 3 集光レンズ 4 検出器 5 光学装置光軸中心 6 主鏡中心 7 入射光 8 ハーフミラー 9 駆動機構 10 平面鏡 11 光信号受信器 12 ホルダ 13 コンピュータ 14 狭角用検出器視野 15 広角用検出器視野 16 光信号受信器視野 17 ビーコン信号広がり範囲 18 光信号広がり範囲 19 人工衛星 20 固定具 DESCRIPTION OF SYMBOLS 1 Primary mirror 2 Secondary mirror 3 Condensing lens 4 Detector 5 Optical device optical axis center 6 Primary mirror center 7 Incident light 8 Half mirror 9 Drive mechanism 10 Planar mirror 11 Optical signal receiver 12 Holder 13 Computer 14 Narrow angle detector field of view 15 Wide-angle detector field of view 16 Optical signal receiver field of view 17 Beacon signal spread range 18 Optical signal spread range 19 Artificial satellite 20 Fixture

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H04B 10/00 - 10/28 H04J 14/00 - 14/08 G02B 9/00 - 17/08 G02B 21/02 - 21/04 G02B 25/00 - 25/04 G02B 23/00 - 23/22 G02B 26/00 - 26/08 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int. Cl. 7 , DB name) H04B 10/00-10/28 H04J 14/00-14/08 G02B 9/00-17/08 G02B 21 / 02-21/04 G02B 25/00-25/04 G02B 23/00-23/22 G02B 26/00-26/08

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 外部から入射する光を受ける主鏡、上記
主鏡と対向する位置に配置された副鏡、上記主鏡に対向
する位置に配置された集光レンズ、上記副鏡の鏡面側に
副鏡に対向し入射光が結像する距離に配置された第1の
検出器、集光レンズに対して主鏡と反対側に集光レンズ
に対向して入射光が結像する距離に配置された第2の検
出器により構成される光学装置において、上記検出器の
中央部に到達する入射光の中心軸を示す光学装置光軸中
心と主鏡の幾何学的中心を起点とした法線を示す主鏡中
心軸が互いに傾斜したオフセット光学系であり、かつ上
記副鏡の中央部に貫通穴があり、副鏡で反射した入射光
が結像する位置に広角検出用の第1の検出器を配置し、
かつ副鏡中央部穴を通過した入射光が集光レンズを経由
して結像する位置に狭角検出用の第2の検出器を配置し
たことを特徴とする光学装置。
A primary mirror for receiving light incident from outside;
Secondary mirror located at a position facing the primary mirror, facing the primary mirror
Focusing lens located at the position where
The first mirror is located at a distance facing the secondary mirror so that the incident light forms an image.
Condenser lens on opposite side of detector and condenser lens from primary mirror
The second detector is located at a distance facing the
In an optical device constituted by an output device,
In the optical axis of the optical device indicating the central axis of the incident light reaching the center
In the primary mirror showing the normal from the geometric center of the heart and the primary mirror
Offset optical system with the center axes tilted to each other
Incident light reflected by the secondary mirror has a through hole in the center of the secondary mirror
A first detector for wide-angle detection is arranged at a position where an image is formed,
And the incident light that has passed through the center hole of the secondary mirror passes through the condenser lens
Position the second detector for narrow-angle detection
An optical device, characterized in that:
JP05250698A 1993-10-06 1993-10-06 Optical device Expired - Fee Related JP3127185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05250698A JP3127185B2 (en) 1993-10-06 1993-10-06 Optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05250698A JP3127185B2 (en) 1993-10-06 1993-10-06 Optical device

Publications (2)

Publication Number Publication Date
JPH07107035A JPH07107035A (en) 1995-04-21
JP3127185B2 true JP3127185B2 (en) 2001-01-22

Family

ID=17211717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05250698A Expired - Fee Related JP3127185B2 (en) 1993-10-06 1993-10-06 Optical device

Country Status (1)

Country Link
JP (1) JP3127185B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9274344B2 (en) * 2013-07-15 2016-03-01 The Boeing Company Method for extracting optical energy from an optical beam
CN103869457B (en) * 2014-02-24 2016-03-02 中国空间技术研究院 The light collecting multipurpose satellite system that a kind of power density is adjustable
JP6614441B2 (en) * 2015-12-26 2019-12-04 日亜化学工業株式会社 Spatial optical communication device and spatial optical communication system using the same
JP2020080371A (en) * 2018-11-13 2020-05-28 電気興業株式会社 Visible light communication system

Also Published As

Publication number Publication date
JPH07107035A (en) 1995-04-21

Similar Documents

Publication Publication Date Title
US8760562B2 (en) Camera with pivotable prism
US6480266B2 (en) Autofocus distance-measuring optical system
US4534637A (en) Camera with active optical range finder
US4900914A (en) Wide-angle viewing window with a plurality of optical structures
JP2000206243A (en) Laser radar with automatic adjusting device for transmission/reception optical axis
JPH09113262A (en) Scanning method using scanning range finder and range finder
CA2297611A1 (en) Virtual multiple aperture 3-d range sensor
GB2107897A (en) Optical automatic critical focusing device
TW294778B (en) Scanning optical rangefinder
JP2005020175A (en) Photodetector and optical system
US20200096610A1 (en) Retroreflector with sensor
JP3127185B2 (en) Optical device
US4488799A (en) Metering system using a focus detecting optical system
JP4127579B2 (en) Light wave distance meter
EP0110937A1 (en) Apparatus for measuring the dimensions of cylindrical objects by means of a scanning laser beam.
JPS6246175Y2 (en)
US6229602B1 (en) Photometering apparatus
CN2569177Y (en) Polarized imaging device
JP3590565B2 (en) Surveying instrument with lightwave distance meter
US20010048518A1 (en) Surveying instrument having a sighting telescope and a phase-difference detection type focus detection device therefor
CN113419247A (en) Laser detection system
US4592637A (en) Focus detecting device
US5353090A (en) Camera
JP2500377B2 (en) Measuring method of mirror surface distortion of large antenna mounted on satellite
JP2001188030A (en) Lens meter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees