JPS6326635A - Semiconductor containing element - Google Patents

Semiconductor containing element

Info

Publication number
JPS6326635A
JPS6326635A JP61191997A JP19199786A JPS6326635A JP S6326635 A JPS6326635 A JP S6326635A JP 61191997 A JP61191997 A JP 61191997A JP 19199786 A JP19199786 A JP 19199786A JP S6326635 A JPS6326635 A JP S6326635A
Authority
JP
Japan
Prior art keywords
semiconductor
electron
metal complex
film
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61191997A
Other languages
Japanese (ja)
Other versions
JP2556482B2 (en
Inventor
Kenji Honda
憲治 本田
Atsushi Kuwano
敦司 桑野
So Miyama
三山 創
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sagami Chemical Research Institute
Original Assignee
Sagami Chemical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagami Chemical Research Institute filed Critical Sagami Chemical Research Institute
Publication of JPS6326635A publication Critical patent/JPS6326635A/en
Application granted granted Critical
Publication of JP2556482B2 publication Critical patent/JP2556482B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Light Receiving Elements (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

PURPOSE:To obtain a new solid thin film element usable to the element using the semiconductor having a photoresponsible property as a base electrode, or the like, by incorporating an electron doner, an electron acceptor and the semiconductor to a base material and by constituting at least one of the electron donor and the electron acceptor from a high molecular metal complex. CONSTITUTION:The titled element comprises the electron donor, the electron acceptor and the semiconductor in the base material. At least one of the electron donor and the electron acceptor is composed of the high molecular metal complex. The electron donor is exemplified by an insoluble mixed valence polynuclear metal complex representative to prussian blue, and a soluble high molecular metal complex which coordinates a transition metal ion having a low valence state such as iron (II) and cobalt (II), etc., with a high mol.wt. substance having a functional group capable of binding with a metal, such as polyvinyl pyridine, etc. While, the electron acceptor is exemplified by an insoluble mixed valence polynuclear metal complex representative to prussian blue and a soluble high molecular metal complex, etc., which coordinates a transition metal ion having a high valence state such as iron (III) and cobalt (III) etc., with a metal coordinatable high molecule.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、基材中に電子供与体、電子受容体及び半導体
を含む半導体含有素子に関し、該素子を例えば光駆動型
表示素子又は記録素子として利用する技術分野に関する
ものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a semiconductor-containing element containing an electron donor, an electron acceptor, and a semiconductor in a base material, and the present invention relates to a semiconductor-containing element that contains an electron donor, an electron acceptor, and a semiconductor in a base material, and which is used as a light-driven display element or a recording element, for example. It is related to the technical field used as a

〔従来技術〕[Prior art]

非発光型表示素子として液晶表示素子(以下、LCDと
略す)と並び活発に開発が進められているものにエレク
トロクロミック表示素子(以下、ECDと略す)がある
、LCDが壁かけテレビなどに実用化すべく開発が進ん
でいるのに対し、ECDは見やすい、視角依存性がない
、メモリー性があるなど、LCDに優る表示特性を有し
ながら、短寿命のゆえに実用化が遅れている。このよう
な現状において、ECDを今後何らかの実用素子として
商品開発を進めるには、LCDとは異なる機能的特質を
生かした素子設計を行なう事が重要である。即ち、EC
Dの表示メモリー性に着目し、単なる表示素子というよ
りも記録性のある表示素子として、例えば、教育、会議
用の掲示板や駅などのパブリックディスプレーへの利用
が考えられる。更には、新しいタイプの電解記録素子と
して商品化を計ることも考えられる。
Electrochromic display elements (hereinafter referred to as ECDs) are being actively developed as non-emissive display elements along with liquid crystal display elements (hereinafter referred to as LCDs).LCDs are being put to practical use in wall-mounted TVs, etc. However, while ECDs have better display characteristics than LCDs, such as being easy to see, not dependent on viewing angle, and have good memory, their short lifespans have delayed their practical application. Under these current circumstances, in order to proceed with product development of ECDs as practical devices in the future, it is important to design devices that take advantage of functional characteristics different from those of LCDs. That is, E.C.
Focusing on the display memory properties of D, it can be used as a display element with recording properties rather than a mere display element, for example, for use in bulletin boards for education and conferences, and public displays such as at stations. Furthermore, commercialization as a new type of electrolytic recording element is also considered.

ところで、記t!素子としての利用を考える場合、記録
密度又は記録の自由度が問題になるが、従来のECDの
原理を用いる限り基盤電極を必要とするため、これらの
問題点を根本的に解決する事はできない、即ち、ECD
においては、表現する文字又は図柄に相当する型をした
基盤電極を設置する必要上、高密度の記録、表示などを
行なうには極めて複雑な配線となり、実用上大きな障害
があった。そこで、本発明者らはこの点を抜本的に解決
するため、光駆動型のECDを作製することを考えた。
By the way, note! When considering use as an element, recording density or recording freedom becomes an issue, but as long as conventional ECD principles are used, a base electrode is required, so these problems cannot be fundamentally solved. , i.e., ECD
In this case, it was necessary to install a base electrode in a shape corresponding to the character or design to be expressed, and this required extremely complicated wiring for high-density recording and display, which was a major practical obstacle. Therefore, in order to fundamentally solve this problem, the inventors of the present invention considered producing a light-driven ECD.

即ち、基盤電極に光応答性の半導体を用いた素子(Ph
otoelectrochromic  Device
 ;以下、PRCDと称す、)の開発を試みた。
That is, a device (Ph
otoelectrochromic Device
;hereinafter referred to as PRCD).

PECDの原理は、例えば、J 、 E Iectro
chem。
The principle of PECD is, for example, J, E Electro
chem.

Sac、、127.1582−1588.(1980)
にすでに報告されている。この報告によれば、n型Zn
oを用い、光レドックス反応により、ZnO電極上にP
bO!の被膜を形成させる光記録の方法が試みられてい
る。
Sac,, 127.1582-1588. (1980)
has already been reported. According to this report, n-type Zn
P was deposited on the ZnO electrode by photoredox reaction using
bO! Attempts have been made to optical recording methods to form a coating.

更に、J、  Electrochea、  Soc、
、 127 +333−338、(1980)の報告に
よれば、p型GaAsを用い、光レドックス反応により
GaAs電極上にビオローゲンカチオンラジカルを析出
させ、光記録を行う方法が開示されている。
Furthermore, J. Electrochea, Soc.
, 127 +333-338, (1980) discloses a method of optical recording by using p-type GaAs and precipitating viologen cation radicals on a GaAs electrode by photoredox reaction.

しかしながら、これらの従来法は、取扱った反応系は水
溶液中の反応であり、PF、CI)の動作原理を提案す
るのに留まっていたにすぎない。
However, in these conventional methods, the reaction system handled is a reaction in an aqueous solution, and they merely propose the operating principle of PF, CI).

(発明が解決しようとする問題点〕 本発明の目的は、例えばPECDなどに利用できる、新
規な固体薄膜素子を提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to provide a novel solid state thin film element that can be used, for example, in PECD.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、基材中に電子供与体、電子受容体及び半導体
を含み、電子供与体及び電子受容体の少なくとも一方が
高分子金属錯体である半導体含有素子に関するものであ
る0本発明者らは、当該素子を薄膜固体化するべく鋭意
努力を重ねた結果、薄膜状基材中に該素子の構成成分、
を能率よく組み込む技術を開発するに至った。以下、各
構成成分を具体的に説明するとともに、これらの成分を
基材中に含有させる技術について記述する。
The present invention relates to a semiconductor-containing element containing an electron donor, an electron acceptor, and a semiconductor in a base material, and at least one of the electron donor and the electron acceptor is a polymer metal complex. As a result of repeated efforts to solidify the device into a thin film, the constituent components of the device,
We have now developed a technology to efficiently incorporate this. Hereinafter, each component will be specifically explained, and a technique for incorporating these components into the base material will be described.

本発明に用いる電子供与体としては、プルシアンブルー
(以下、PBと略す、)に代表される不溶性の混合原子
価多核金属錯体、ポリビニルピリジン、ポリビニルイミ
ダゾール、ポリアクリル酸、ポリビニルアルコールなど
の金属と結合可能な官能基を有する高分子量物質(以下
、金属配位性高分子と称す、)に鉄(■)、コバル) 
(II) 、ニッケル(n) 、lii (1)などの
低原子価状態の遷移金属イオンを配位結合した可溶性の
高分子金属錯体をはじめ、トリス(バソフェナンドロリ
ン)鉄(n)錯体、トリス(2,2’−ビピリジン)鉄
(TI) Pa体、)リス(フェナントロリン)コバル
ト(II)錯体、フェロセンなどの低分子金属錯体、ア
ントラセン、アセナフチレン、カルバゾール、テトラチ
アフルバレンなどの多環芳香族化合物、ポリピロール、
ポリチオフェン、ポリアニリンなどの酸化重合により得
られる導電性高分子、ハイドロキノン、ピロガロール、
カテコールなどの還元型キノン類、酒石酸、エチレンジ
アミン四酢酸、蟻酸などの有機酸、メチルアルコール、
エチルアルコール、ポリビニルアルコール、セルロース
などのアルコール類、トリフェニルアミン、ブチルアミ
ン、トリエタノールアミンなどのアミン類、チオール化
合物、テトラヒドロフランなどを例示することができる
Examples of electron donors used in the present invention include insoluble mixed-valent polynuclear metal complexes represented by Prussian blue (hereinafter abbreviated as PB), and metal bonds such as polyvinylpyridine, polyvinylimidazole, polyacrylic acid, and polyvinyl alcohol. High molecular weight substances with possible functional groups (hereinafter referred to as metal coordination polymers) include iron (■), cobal)
(II), nickel (n), lii (1), etc., including soluble polymer metal complexes coordinately bonded with transition metal ions in a low valence state, tris(basophenandroline) iron(n) complexes, Low-molecular metal complexes such as tris(2,2'-bipyridine)iron (TI) Pa form, )lis(phenanthroline)cobalt(II) complex, ferrocene, polycyclic aromatics such as anthracene, acenaphthylene, carbazole, and tetrathiafulvalene compound, polypyrrole,
Conductive polymers obtained by oxidative polymerization such as polythiophene and polyaniline, hydroquinone, pyrogallol,
Reduced quinones such as catechol, organic acids such as tartaric acid, ethylenediaminetetraacetic acid, formic acid, methyl alcohol,
Examples include alcohols such as ethyl alcohol, polyvinyl alcohol, and cellulose, amines such as triphenylamine, butylamine, and triethanolamine, thiol compounds, and tetrahydrofuran.

一方、電子受容体としては、PBに代表される不溶性の
混合原子価多核金属錯体、金属配位性高分子に鉄(■)
、コバルト(■)、ニッケル(III)、in (n)
などの高原子価状態の遷移金属イオンを配位結合した可
溶性の高分子金属錯体をはじめ、メチルビオローゲン、
ヘプチルビオローゲン、ベンジルビオローゲンなどの4
.4゛−ビピリジニウム塩、9.10−アントラキノン
−2,6−ジスルホン酸ジナトリウム、9.10−アン
トラキノン−1−スルホン酸ナトリウムなどの酸化型キ
ノン類、L3”ブチルアロキサジン、1,3−ジドデシ
ルアロキサジン、ビタミンに、ベンジルニコチンアミド
、フラビンモノヌクレオチド、テトラシアノキノジメタ
ンなどを例示することができろ。
On the other hand, as electron acceptors, insoluble mixed-valent polynuclear metal complexes represented by PB, iron (■) in metal coordination polymers, etc.
, cobalt (■), nickel (III), in (n)
Including soluble polymer metal complexes that coordinately bond transition metal ions in high valence states, such as methyl viologen,
4 such as heptyl viologen, benzyl viologen, etc.
.. Oxidized quinones such as 4′-bipyridinium salt, 9.10-anthraquinone-2,6-disulfonic acid disodium, 9.10-anthraquinone-1-sodium sulfonate, L3”butyl alloxazine, 1,3-disulfonate, etc. Examples include dodecyl alloxazine, vitamins, benzylnicotinamide, flavin mononucleotide, and tetracyanoquinodimethane.

本発明に用いる半導体は、アモルファス微粒子であって
も単結晶であってもよく、その種類もGe5S1などの
単体の半導体から、Gaps、InPなどのm−v族化
合物半導体、CdS、ZnOなどのII−VI族化合物
半導体など、基本的には全ての半導体が挙げられる。
The semiconductor used in the present invention may be amorphous fine particles or single crystal, and its types range from single semiconductors such as Ge5S1 to m-v group compound semiconductors such as Gaps and InP, and II semiconductors such as CdS and ZnO. - Basically, all semiconductors can be mentioned, such as Group VI compound semiconductors.

本発明の素子を、例えば、PRCDなどに利用する場合
、当該素子を薄膜固体化する事が好ましい、このため、
電子供与体、電子受容体及び半導体の各構成成分を薄膜
状基材に能率よく組み込む必要がある。このような基材
として、高分子量物質やセラミックスなどの材質を挙げ
ることができるが、大面積化が容易で、フレキシブルで
かつ安価なものとして高分子基材が好適である。このよ
うな高分子基材を具体的に示すならば、ポリスチレン、
ポリエチレン、ポリプロピレン、ポリメチルメタクリレ
ート、ポリテトラフルオロエチレン、ナイロン、ポリス
チレンスルホン酸、ポリアクリル酸、ポリメタクリル酸
、ポリアクリロニトリル、ポリビニルピリジン、ポリビ
ニルアルコール、ポリ−p−アミノスチレン、ナフィオ
ン(商標)などを例示することができる。尚、素子製造
上、上記の高分子基材が水をはじめとする溶媒に不溶で
あることが好ましく、このため高分子基材は架橋構造を
有することが望ましい、架橋構造を有する高分子量物質
としては、スチレンスルホン酸、アクリル酸、アクリロ
ニトリル、4−ビニルピリジン、p−7ミノスチレンな
どの金属配位性上ツマ−と、ジビニルベンゼン、メチレ
ンビスアクリルアミドなど架橋性モノマーとの共重合体
、ポリビニルアルコール、ポリアリルアミンなどの側鎖
に反応性基を有する高分子量物質をゲルタールアルデヒ
ド、塩化シアヌル、トルエンジイソシアネートなどの架
橋網で架橋した高分子量物質などが挙げられる。
When the device of the present invention is used, for example, in a PRCD, it is preferable to solidify the device as a thin film.
It is necessary to efficiently incorporate each component of an electron donor, an electron acceptor, and a semiconductor into a thin film-like substrate. Examples of such a base material include materials such as high molecular weight substances and ceramics, but polymer base materials are preferred because they can easily be made into a large area, are flexible, and are inexpensive. Specific examples of such polymeric base materials include polystyrene,
Examples include polyethylene, polypropylene, polymethyl methacrylate, polytetrafluoroethylene, nylon, polystyrene sulfonic acid, polyacrylic acid, polymethacrylic acid, polyacrylonitrile, polyvinylpyridine, polyvinyl alcohol, poly-p-aminostyrene, Nafion (trademark), etc. can do. In addition, for device manufacturing, it is preferable that the above-mentioned polymer base material is insoluble in solvents such as water, and for this reason, it is desirable that the polymer base material has a crosslinked structure. are copolymers of metal-coordinating polymers such as styrene sulfonic acid, acrylic acid, acrylonitrile, 4-vinylpyridine, and p-7 minostyrene and crosslinkable monomers such as divinylbenzene and methylenebisacrylamide; polyvinyl alcohol; Examples include high molecular weight substances such as polyallylamine and other high molecular weight substances having reactive groups in their side chains, which are crosslinked with crosslinked networks such as geltaraldehyde, cyanuric chloride, and toluene diisocyanate.

半導体を高分子基材中に組み込む方法としては、高分子
を溶媒にとかした溶液に半導体を分散したものをキャス
トして溶媒を蒸発乾固する、いわゆる°流延法゛が一般
的である。又別法として、高分子基材中に予め金属イオ
ンを吸着させておき、該基材をHas、NazsSNa
@5zOa、NazSe、Na@S@Oxなどのカル、
コゲン元素を含む還元剤と接触せしめることにより基材
中で半導体を生成して分散する方法もある。この方法は
特にカルコゲナイド系化合物半導体に有用である。
A common method for incorporating a semiconductor into a polymer base material is the so-called "casting method", in which a semiconductor is dispersed in a solution of a polymer dissolved in a solvent, then cast, and the solvent is evaporated to dryness. As another method, metal ions are adsorbed in advance into a polymer base material, and the base material is treated with Has, NazsSNa.
Cal such as @5zOa, NazSe, Na@S@Ox,
There is also a method of generating and dispersing a semiconductor in a base material by bringing it into contact with a reducing agent containing a cogen element. This method is particularly useful for chalcogenide compound semiconductors.

電子供与体及び電子受容体を半導体台を基材に組み込む
方法としては、電子供与体又は電子受容体が低分子量物
質である場合には、これを溶媒にとかすか或いは液体の
ものはそのままの状態で、半導体含有基材中に含浸させ
ればよい、?!電子供与体は電子受容体がカルボキシル
基、四級アンモニウム基などのイオン性基、或いはアミ
ノ基、水61基などの反応性基を有し、且つ半導体含有
基材がこのようなイオン性基又は反応性基と直接又は何
らかの試剤を介して間接的に結合しうる官能基を有する
場合には、電子供与体及び/又は電子受容体を基材に化
学結合で固定化する事により組み込むことができる。電
子供与体及び/又は電子受容体が高分子量物質で且つ溶
媒可溶性の場合、これを溶媒にとかした溶液を半導体含
有基材表面に塗布、乾固する事により固定化することが
できる。
When the electron donor or electron acceptor is a low molecular weight substance, it can be dissolved in a solvent, or if it is liquid, it can be left as it is. So, should it be impregnated into the semiconductor-containing base material? ! In the electron donor, the electron acceptor has an ionic group such as a carboxyl group or a quaternary ammonium group, or a reactive group such as an amino group or a water group, and the semiconductor-containing substrate has such an ionic group or If it has a functional group that can be bonded directly or indirectly to a reactive group via some kind of reagent, it can be incorporated by immobilizing the electron donor and/or electron acceptor to the base material with a chemical bond. . When the electron donor and/or electron acceptor is a high molecular weight substance and is soluble in a solvent, it can be immobilized by dissolving it in a solvent and applying it to the surface of the semiconductor-containing substrate and drying it.

電子供与体及び/又は電子受容体が高分子金属錯体であ
って、PHに代表される溶媒不溶かつ不融性な多核金属
錯体である場合、真空蒸着法などの物理的方法により半
導体含有基材表面に固定することが可能である。又別法
として、本発明者らが独自に開発した新しい薄膜化技術
(以下、表面錯化法と称す、)に従えば、安定かつ能率
よく高分子金属錯体を基材表面に固定化することができ
る。
When the electron donor and/or electron acceptor is a polymeric metal complex, such as a solvent-insoluble and infusible polynuclear metal complex represented by PH, the semiconductor-containing substrate is coated by a physical method such as a vacuum evaporation method. It is possible to fix it on a surface. Alternatively, a new thin film technology developed by the present inventors (hereinafter referred to as surface complexation method) can be used to stably and efficiently immobilize a polymer metal complex on the surface of a substrate. Can be done.

即ち、−触式MN(LH)l (式中、M、はX価の原子価状態の遷移金属イオンを表
わし、L:は中性又はa価の陽1i荷を有する配位子で
、a及びlは0を含む正の整数を表わす)で表わされる
1i陽イオンと 一般式M:(L:)s(Lc)m (式中、M、は7価の原子価状態の遷移金属イオンを表
わし、L、は5価の陰電荷を有する配位子であり、己は
中性又は0価の陰電荷を有する配位子を表わし、bは負
の整数であって、CはOを含む負の整数を表わす、尚、
mは正の整数であって、nは0を含む正の整数を表わす
)で表わされる錯陰イオンとを電荷が中和する当量で混
ぜ合わせる事により不溶性多核金属錯体を基材上に形成
させることができる。すなわち、基材に上記の諸陽イオ
ン又は諸陰イオンを予め吸着せしめておき、次に該基材
を基材に含有しているイオンと反対の電荷を有する1σ
イオンを含む溶液中に浸漬する事により、基材表面に所
望の高分子金属錯体を析出させることができる。ここで
用いる諸イオンを構成する遷移金属イオン及び配位子を
具体的に例示するならば、M、及びM、としは、FeR
−1Fe3+、Co”、Co ”s N ! ”、Ni
”、Ru x +、Ru2−、、Os”°、Os”など
の主に周期律表第11族の低原子価及び高原子価状態の
金属イオンが好適である0M、の供給物質としてFec
lg、p a CI 3 、Ru Cl 3 、Co 
Cl !、Fe50. 、Co (CH,Coo)z、
F @ (N Hi) hCl xなどの金属塩を例示
することができる。Llとしては、通常、アンモニア、
エチレンジ7ミン、ジエチレントリアミン、ビピリジン
、フェナントロリン、ピリジン、トリエタノールアミン
などの電荷を持たない中性の配位子を用いることができ
る。これらの配位子に、例えば、第四アンモニウム基の
如き陽電荷を有する置換基が結合していても構わない、
L、としては、CN−をはじめとして、ジメルカプトマ
レイン酸、ピロメリット酸、ジチオギザミド(ルベアン
#)、ナフタザリン、1,6−シヒドロキシフエナジン
などの陰電荷を有する架橋配位子を例示することができ
る。また、Lcとしては、CN−をはじめとして、5O
1−1A、0;、クエン酸、イミノジ酢酸、ニトリロ三
酢酸などの陰電荷を有する配位子、或いは、アンモニア
、水、−酸化炭素などのT15izを持たない配位子を
例示することができる。
That is, -catalytic MN(LH)l (wherein, M represents a transition metal ion in an X-valent state, L: is a neutral or a-valent positive 1i-charged ligand, and a and l represents a positive integer including 0) and the general formula M: (L:)s(Lc)m (wherein, M represents a transition metal ion in a heptavalent state). In the expression, L is a ligand with a pentavalent negative charge, itself is a neutral or a ligand with a zero-valent negative charge, b is a negative integer, and C includes O. represents a negative integer, and
m is a positive integer, and n is a positive integer including 0), and an insoluble polynuclear metal complex is formed on the base material by mixing the complex anion in an amount equivalent to neutralizing the charge. be able to. That is, the above-mentioned cations or anions are adsorbed on the base material in advance, and then the base material is adsorbed with a 1σ material having an opposite charge to the ions contained in the base material.
A desired polymeric metal complex can be deposited on the surface of the substrate by immersing it in a solution containing ions. To specifically illustrate the transition metal ions and ligands constituting the various ions used here, M and M are FeR
-1Fe3+, Co'', Co''s N! ”,Ni
As a feed material of 0M, metal ions mainly in the low and high valence states of Group 11 of the periodic table such as ", Ru x +, Ru2-, Os"°, Os" are suitable.
lg, p a CI 3 , Ru Cl 3 , Co
Cl! , Fe50. ,Co(CH,Coo)z,
Examples include metal salts such as F@(N Hi) hCl x. Ll is usually ammonia,
Uncharged neutral ligands such as ethylenedi7mine, diethylenetriamine, bipyridine, phenanthroline, pyridine, and triethanolamine can be used. For example, a positively charged substituent such as a quaternary ammonium group may be bonded to these ligands.
Examples of L include CN-, as well as negatively charged crosslinked ligands such as dimercaptomaleic acid, pyromellitic acid, dithiogizamide (Rubeane #), naphthazarin, and 1,6-cyhydroxyphenazine. be able to. In addition, as Lc, including CN-, 5O
1-1A, 0;, citric acid, iminodiacetic acid, nitrilotriacetic acid, and other negatively charged ligands, or ammonia, water, -carbon oxide, and other ligands that do not have T15iz can be exemplified. .

この際、M*(CN−)s(Lc)で表わされる錯陰イ
オンの供給物質として、Ks (Fe(CN−)i)、
T4 (Fa(CN−)&) 、Kg (Fe(CN−
)s(H,O)、Ka (Ru(CN−)&) 、Km
 (Os(CN−)h〕、Css (F e (CN−
) り、 (NH,)t (Fe(CN−)s (Co)〕、など
の金金属を用いることができる。
At this time, Ks (Fe(CN-)i),
T4 (Fa(CN-) &), Kg (Fe(CN-)
)s(H,O), Ka (Ru(CN-)&), Km
(Os(CN-)h], Css (F e (CN-)
), (NH,)t (Fe(CN-)s (Co)), etc. can be used.

また、ポリピロールなどの導電性高分子を半導体含有基
材に組み込む方法としては、例えば、次のような方法を
適用することができる。即ち、半導体含有基材を2室型
セパレートセルの間に挟み、片側のセル室に所望の高分
子を合成するのに用いる七ツマ−をとかした溶液を入れ
、反対側のセル室には該モノマーの重合開始剤を含む溶
液を入れる。こうすることにより半導体含有膜上で所望
のsit性高分子を薄膜化することが可能である0例え
ば、R電性高分子を基材である半導体含有膜の片面に析
出させ、反対面に電子受容体をGfflするためには、
モノマー或いは重合開始剤のいずれか一方が基材膜に侵
入しない、もしくは、侵入することがきわめて困難であ
ることが必要条件である。
Further, as a method for incorporating a conductive polymer such as polypyrrole into a semiconductor-containing base material, the following method can be applied, for example. That is, a semiconductor-containing substrate is sandwiched between two-chamber separate cells, and one cell chamber is filled with a solution of dissolved 7-mer, which is used to synthesize a desired polymer, and the opposite cell chamber is filled with a solution containing the desired polymer. Add a solution containing a monomer polymerization initiator. By doing this, it is possible to form a thin film of the desired sit polymer on the semiconductor-containing film. In order to Gffl the receptor,
A necessary condition is that either the monomer or the polymerization initiator does not penetrate into the base film, or that it is extremely difficult for it to penetrate into the base film.

そこで、このような手法が通用できる具体例を示すなら
ば、モノマーとしては、ピロール、チオフェン、アニリ
ン、チオフェノールなどの酸化的に重合する化合物を挙
げることができる。このようなモノマーの重合開始剤と
しては、Na g S 10 @、K t S x O
*、KRuO,、Ks (F@ (CN)&)、HtP
 t C1イに2P t Cl 4、KxlrCliな
どのような溶存時にイオン解離して重合活性基が負電荷
を有する化合物を例示することができる。
Therefore, to give a specific example where such a method is applicable, monomers include oxidatively polymerizable compounds such as pyrrole, thiophene, aniline, and thiophenol. Polymerization initiators for such monomers include Na g S 10 @, K t S x O
*, KRuO,, Ks (F@(CN)&), HtP
Compounds such as 2P t Cl 4 and KxlrCli which are ionically dissociated when dissolved in t C1 and have a polymerization active group having a negative charge can be exemplified.

このような組み合わせで反応を行なう場合、例えば、基
材となる半導体含有膜が陽イオン交換膜から構成されて
いるならば、酸膜が有する負電荷と重合開始剤の負電荷
を有する解離基の静電反t8力により、該重合開始剤が
基材膜へ浸透する速度はきわめて遅(なる。一方、七ツ
マー分子は電気的に中性であるので該基材膜への浸透は
比較的速く、その結果、該モノマーの重合は重合開始剤
を入れたセル室側でのみ生起することにより、所望の導
電性高分子を半導体含有膜の片面にのみ析出させること
ができる。そのときのR電性高分子を薄膜状で析出させ
る条件は、モノマー及び重合開始剤の組み合わせにより
異なるし、また、所望の導電性高分子の膜厚によっても
異なるが、一般的に言うならば、モノマー濃度は0.1
〜5mol/l、重合開始剤濃度は0.01〜1mol
/l、反応時間は1〜30分、温度は4〜50℃前後と
いう条件を例示することができる。向、本発明による素
子は、所望により″i/:Jtoミクロン以上の厚さに
することができる0本発明では電子供与体及び電子受容
体の少なくとも一方が高分子金属錯体である事が好まし
い。
When carrying out a reaction with such a combination, for example, if the semiconductor-containing membrane used as the base material is composed of a cation exchange membrane, the negative charge of the acid membrane and the dissociative group having a negative charge of the polymerization initiator will be combined. Due to the electrostatic anti-t8 force, the rate at which the polymerization initiator permeates into the base film is extremely slow. On the other hand, since the 7-mer molecule is electrically neutral, it permeates into the base film relatively quickly. As a result, polymerization of the monomer occurs only on the side of the cell chamber containing the polymerization initiator, so that the desired conductive polymer can be deposited only on one side of the semiconductor-containing film. The conditions for depositing a conductive polymer in the form of a thin film vary depending on the combination of monomers and polymerization initiator, and also vary depending on the desired film thickness of the conductive polymer, but generally speaking, the monomer concentration is 0. .1
~5 mol/l, polymerization initiator concentration 0.01-1 mol
/l, the reaction time is 1 to 30 minutes, and the temperature is about 4 to 50°C. In the present invention, it is preferred that at least one of the electron donor and the electron acceptor is a polymeric metal complex.

本発明の半導体含有素子を、例えば、PECDに利用す
る事を考えると、該素子の構成成分である電子供与体、
電子受容体及び半導体の基材中での配列状態が重要にな
ってくる。即ち、半導体が光を吸収して生成する電子及
び正孔を、電子受容体及び電子供与体にそれぞれ効率よ
く受は渡すためには、電子供与体と電子受容体が半導体
を介してそれぞれ分離している必要がある。具体的には
、半導体含有基材の相対する反対面に電子供与体及び電
子受容体を固定化する事が望ましく、そのためには電子
供与体及び電子受容体の少なくとも一方が高分子量物質
であることが好ましい、しかも、半導体含有素子の耐久
性、機能性などを考えると、該高分子量物質が高分子金
属錯体であることが好ましい、以下に、本発明の半導体
含有素子を、例えば、PECDに利用する場合の素子の
動作原理を簡単に説明する。基材中に含有された半導体
(以下、Sと略す)と、電子供与体(以下、Dと略す)
及び電子受容体(以下、Aと略す)が、第1図に示され
るようなエネルギー関係にある場合(即ち、Dの酸化還
元電位illがSの価電子帯の位置(2)より負であっ
て、Aの酸化還元電位(4)がSの伝導帯の位置(3)
より正であり、且つ、Dの酸化還元電位fllがへの酸
化還元電位(4)より正である場合)、Sが光照射によ
り励起され価電子帯に正孔が生成し、伝導帯に電子が移
される事によって、DからSの価電子帯に電子が注入さ
れ、同時に、Sの伝導帯に励起された電子がAに受は渡
される。その結果、Sの光励起作用によりDからAに電
子が移動し、Dは光酸化され、Aは光還元される事にな
る。この際、D及び/又はAとして、酸化又は還元によ
り変色する物M(エレクトロクロミック材:以下、EC
材と呼ぶ)を用いるならば、該半導体含有素子がPEC
Dとして利用できることになる。ところで、D及びAが
ともに可逆的に酸化還元されるレドックス剤である場合
、Dが酸化されて生成する化学種(D゛)と、Aが還元
されて生成する化学種(A−)が接触する素子構造であ
るならば、熱力学の教える所に従えば、A−からDoへ
電子の流入(以下、これを逆電子移動と呼ぶ)が自動的
に起きる。万一、このような逆電子移動が生起すると、
結果的には何の化学反応も起らなかったのと同然で、勿
論このような場合には、フォトエレクトロクロミズムは
観測されない、従って、得られた半導体含有素子をPE
CDに利用するためには、この逆電子移動を防ぐことが
重要である。
Considering that the semiconductor-containing device of the present invention is used, for example, in PECD, an electron donor, which is a constituent component of the device,
The arrangement of electron acceptors and semiconductors in the substrate becomes important. In other words, in order to efficiently receive and transfer electrons and holes generated when a semiconductor absorbs light to an electron acceptor and an electron donor, the electron donor and electron acceptor must be separated through the semiconductor. need to be. Specifically, it is desirable to immobilize an electron donor and an electron acceptor on opposite faces of a semiconductor-containing substrate, and for this purpose, at least one of the electron donor and electron acceptor must be a high molecular weight substance. In addition, considering the durability, functionality, etc. of the semiconductor-containing element, it is preferable that the high molecular weight substance is a polymer metal complex. The operating principle of the element in this case will be briefly explained. A semiconductor (hereinafter abbreviated as S) contained in the base material and an electron donor (hereinafter abbreviated as D)
and an electron acceptor (hereinafter abbreviated as A) have an energy relationship as shown in Figure 1 (i.e., the redox potential ill of D is more negative than the valence band position (2) of S). Therefore, the redox potential of A (4) is the position of the conduction band of S (3)
(and the redox potential of D is more positive than the redox potential (4)), S is excited by light irradiation, holes are generated in the valence band, and electrons are added to the conduction band. As a result, electrons are injected from D into the valence band of S, and at the same time, electrons excited in the conduction band of S are transferred to A. As a result, electrons move from D to A due to the photoexcitation effect of S, so that D is photo-oxidized and A is photo-reduced. At this time, as D and/or A, a substance M (electrochromic material: hereinafter referred to as EC) that changes color due to oxidation or reduction is used.
PEC material), the semiconductor-containing element is a PEC material.
It can be used as D. By the way, when both D and A are redox agents that undergo reversible oxidation-reduction, the chemical species (D゛) produced when D is oxidized and the chemical species (A-) produced when A is reduced come into contact. If the element structure is such that, according to the teachings of thermodynamics, an influx of electrons from A- to Do (hereinafter referred to as reverse electron transfer) will automatically occur. In the unlikely event that such reverse electron transfer occurs,
As a result, it is as if no chemical reaction occurred, and of course, in such a case, no photoelectrochromism is observed.Therefore, the obtained semiconductor-containing device is
In order to use it for CD, it is important to prevent this reverse electron transfer.

逆電子移動を防ぐ星も効果的な方法は、AとDをSを介
して空間的に完全に分離することである。
An effective way to prevent reverse electron transfer is to spatially completely separate A and D via S.

具体的には、A及びDを基材のそれぞれ相対する反対の
表面に固定化してやればよい、その方法としては、例え
ば、A及びDを基材上に薄膜積層化し するとか、A及びD ’411S材間に共有結合、イオ
ン結合、水素結合などの結合力を利用して基材表面に化
学的に固定化することができる。前者の有効な方法とし
て、上記の表面錯化法を挙げることができる。即ち、上
記の手順に従い、PBなどの高分子金属錯体を基材膜の
両表面又は片面に薄膜状に積層することができる。PB
はFe”とFe”をCN−架橋配位子で三次元的に架橋
した混合原子価状態にある高分子金属錯体であるので、
式il+及び式(2)に従い、可逆的に還元も酸化もさ
れる:従って、PBは電子供与体としても作用するし、
電子受容体としても作用する9で、PBを基材の両表面
に積層した素子を製造することができる。
Specifically, A and D may be immobilized on opposing surfaces of the base material, for example, by laminating A and D in thin films on the base material, or by laminating A and D' on the base material. It is possible to chemically immobilize the 411S material on the surface of the base material by utilizing bonding forces such as covalent bonds, ionic bonds, and hydrogen bonds between the 411S materials. An effective example of the former method is the surface complexation method described above. That is, according to the above procedure, a polymeric metal complex such as PB can be laminated in a thin film form on both surfaces or one surface of the base film. P.B.
is a polymeric metal complex in a mixed valence state in which Fe'' and Fe'' are three-dimensionally bridged with a CN-bridging ligand.
According to the formula il+ and formula (2), it is reversibly reduced and oxidized: therefore, PB also acts as an electron donor,
With 9, which also acts as an electron acceptor, an element can be manufactured in which PB is laminated on both surfaces of a base material.

該素子を、例えば、PEC¥とじて利用するならば、P
Bは上記の式+11及び(2)に従い光照射下で還元及
び酸化されて、夫々青色から無色、及び青色から緑色に
変色する。この際、例えば、半導体としてCdSを用い
、基材膜にナフィオンを用いるならば、半導体含有基材
が鮮やかな黄色の背景体として作用して、PBの還元側
では暗緑色から黄色へのコントラストのよい変色を示す
、一方、PBの酸化側では暗緑色から黄緑色の変化とし
て肉眼には映り、コントラストは余りよくない、従って
、PBを用いる場合には、還元側を表示面とすることが
望ましい、PBを基材の片面にのみ析出させ、これを還
元側表示面として、酸化側に異なる物It (を子供与
体)を用いることもできる。
For example, if the element is used as a PEC, P
B is reduced and oxidized under light irradiation according to formulas +11 and (2) above, changing color from blue to colorless and from blue to green, respectively. In this case, for example, if CdS is used as the semiconductor and Nafion is used as the base film, the semiconductor-containing base material will act as a bright yellow background, and the contrast will change from dark green to yellow on the reduction side of PB. On the other hand, the oxidized side of PB is visible to the naked eye as a change from dark green to yellowish green, and the contrast is not very good. Therefore, when using PB, it is desirable to use the reduced side as the display surface. It is also possible to precipitate PB only on one side of the substrate, use this as the display surface on the reduction side, and use a different substance It (as a child donor) on the oxidation side.

例えば、前記の方法に従い、ポリピロール(P P y
)をPBとは反対の表面に積層して、基材に含有される
半導体としてCdSを用いるならば、221表面に光照
射することによって、PBを電子供与体及び電子受容体
として用いた場合よりもさらに良好な成績を得ることが
できる。このように、半導体、電子供与体及び電子受容
体の組み合わせにより素子性能を制御することが可能で
ある。
For example, according to the method described above, polypyrrole (P P y
) is laminated on the surface opposite to PB, and if CdS is used as the semiconductor contained in the base material, by irradiating the 221 surface with light, it is possible to increase the Even better results can be obtained. In this way, device performance can be controlled by the combination of semiconductor, electron donor, and electron acceptor.

逆電子移動を防ぐ別の方法として、不可逆的に酸化され
る電子供与体(以下、犠牲的電子供与体を称し、D3と
略して表わす)を用いることもある。このような場合に
は、光酸化及び還元生成物であるD9とA−がたとえ接
触しても、D゛は元に戻り得ないので逆電子移動は生起
しない、このような場合、D及びAは必ずしも基材表面
に分離して固定化される必要はなく、基材膜中に含有さ
れるだけでよい、このような犠牲的電子供与体としては
、前記の酒石酸などの有機酸、エチルアルコ鞠 一ルなどのアルコール類の他せ、アミン¥チオール化合
物、テトラヒドロフランなどを例示することができる。
Another method for preventing reverse electron transfer is to use an electron donor that is irreversibly oxidized (hereinafter referred to as sacrificial electron donor and abbreviated as D3). In such a case, even if D9 and A-, which are photooxidation and reduction products, come into contact, D cannot return to its original state, so no reverse electron transfer occurs. does not necessarily have to be separated and immobilized on the surface of the base material, but only needs to be contained in the base film. Examples of such sacrificial electron donors include organic acids such as the above-mentioned tartaric acid, ethyl alcohol, etc. Examples include alcohols such as alcohol, amine\thiol compounds, and tetrahydrofuran.

ただし、このような場合、素子を繰り返し作動させると
きには犠牲的電子供与体の補給が必要である。
However, in such cases, replenishment of the sacrificial electron donor is required when the device is operated repeatedly.

更に、還元または酸化生成種であるA−またはD゛がA
及び/またはDを基材中に含有せしめるために用いた水
またはその他の溶媒に不溶性となる場合、A−及び/ま
たはD゛が光照射下で基材中の半導体粒子の表面に析出
することによりD9とA−の接触が防止される結果、D
及びAがたとえ基材中で分離固定されることなく、また
不可逆試薬でなくとも、逆電子移動が防がれることもあ
る。
Furthermore, the reduced or oxidized species A- or D' is
and/or when D becomes insoluble in the water or other solvent used to incorporate it into the base material, A- and/or D'' may precipitate on the surface of the semiconductor particles in the base material under irradiation with light. As a result of preventing contact between D9 and A-, D
Even if and A are not isolated and immobilized in the substrate and are not irreversible reagents, reverse electron transfer may be prevented.

この例としてAがビオローゲン(とくに、アルキル基が
疎水性の高い誘導体)の場合や、Dがキノン系か化合物
の場合などを挙げることができる。
Examples of this include the case where A is a viologen (particularly a derivative in which the alkyl group is highly hydrophobic), and the case where D is a quinone type or a compound.

尚、表示の消去に当っては、半導体含有基材を支持電極
間に挟み、D”−D及びA−−Aなる反応を起すように
電圧極性を設定して、所定の電位を印加すればよい。
In order to erase the display, the semiconductor-containing base material is sandwiched between supporting electrodes, the voltage polarity is set so as to cause the reactions D"-D and A--A, and a predetermined potential is applied. good.

〔発明の効果〕〔Effect of the invention〕

本発明の半導体含有素子の一利用例であるPRCDは、
光駆動型ECDであるため、通常のECDにくらべ、表
示の自由度が格段増大した。
PRCD, which is an example of the use of the semiconductor-containing element of the present invention, is
Since it is a light-driven ECD, the degree of freedom in display is significantly increased compared to a normal ECD.

PRCDにおいては光照射部のみを変色できるので、電
極上の任意の場所に任意の図柄を表示することが可能と
なった結果、通常のECDで必要とする基盤電極が不要
となり、従って、表示の自由度が大幅に改善された。更
に固体型のため取扱いが容易である。加えて、表示の書
き換えが可能なため、表示用光源としてレーザーを用い
、光照射部をミクロン乃至はサブミクロンのオーダに絞
り込めば書き換え可能な光記録素子としても利用できる
In PRCD, only the light irradiated part can change color, so any pattern can be displayed anywhere on the electrode, which eliminates the need for a base electrode, which is required in a normal ECD, and therefore improves the display. Freedom has been greatly improved. Furthermore, since it is a solid type, it is easy to handle. In addition, since the display can be rewritten, it can also be used as a rewritable optical recording element by using a laser as a display light source and narrowing down the light irradiation area to the order of microns or submicrons.

〔実施例1〕 ナフィオン膜(デュポン社製ナフィオン117)を50
mM酢酸カドミウム水溶液に3時間浸漬後、水洗したの
ち硫化水素飽和水に10時間浸漬した。
[Example 1] 50% of Nafion membrane (Nafion 117 manufactured by DuPont)
After being immersed in an mM cadmium acetate aqueous solution for 3 hours, it was washed with water and then immersed in hydrogen sulfide saturated water for 10 hours.

この間透明なナフィオン膜は黄色に着色し、膜内部に硫
化カドミウム微粒子の析出が肉眼で認められた0次に、
酸膜をアルゴン気流下で10mM塩化第一鉄水溶液に2
時間浸漬後、充分水洗したのち再び、アルゴン気流下で
10mMフェリシアン化カリウム水溶液に1分間浸漬し
た。このとき黄色の硫化カドミウム分散膜はプルシアン
ブルーの膜表面への析出により黄緑色に変化した。この
ようにして得られた膜を2枚のガラス板間に挟み光照射
した。光源としては300Wタングステンランプを用い
、試料表面の光強度は約90rnW/cjとした。尚、
光源と膜を挟んだガラス板の間に厚さ5csの水槽を設
け、光照射による膜の温度上昇を防いだ、光照射ととも
に膜は黄緑色がら薄黄色へ徐々に変化し、約5分後には
膜のほぼ全面が薄黄色に変化した。2枚のガラス板から
はずし、この膜に+1.3vの電圧を印加することによ
り元の黄緑色に戻すことができ、このような色調変化が
繰り返し認められた。
During this time, the transparent Nafion membrane turned yellow, and the precipitation of cadmium sulfide fine particles inside the membrane was observed with the naked eye.
The acid film was placed in a 10mM ferrous chloride aqueous solution under an argon atmosphere.
After being immersed for a period of time, the sample was thoroughly rinsed with water and then immersed again in a 10 mM potassium ferricyanide aqueous solution for 1 minute under an argon stream. At this time, the yellow cadmium sulfide dispersed film turned yellow-green due to the precipitation of Prussian blue on the film surface. The film thus obtained was sandwiched between two glass plates and irradiated with light. A 300 W tungsten lamp was used as a light source, and the light intensity on the sample surface was about 90 rnW/cj. still,
A water tank with a thickness of 5 cs was placed between the light source and the glass plate sandwiching the film to prevent the temperature of the film from increasing due to light irradiation.The film gradually changed from yellow-green to light yellow as it was irradiated with light, and after about 5 minutes, the film disappeared. Almost the entire surface turned pale yellow. By removing the film from the two glass plates and applying a voltage of +1.3 V to the film, the original yellow-green color could be restored, and such color changes were observed repeatedly.

〔実施例2〕 実施例1と同様に作製した硫化カドミウムの微粒子を含
むナフィオン膜を、アルゴン気流下で50mM塩化第一
鉄水溶液に2時間浸漬した0次に酸膜を充分水洗したの
ち、再びアルゴン気流下で50mMフェリシアン化カリ
ウム水溶液に1分間浸漬し、膜表面にプルシアンブルー
を析出させた。このとき膜は黄色から黄緑色に変化した
。このようにして得られた膜に犠牲的電子供与体を含有
させるため、膜をメチルアルコールに10分間浸漬後、
2枚のガラス板間に挟み光照射した。光源としては30
0Wタングステンランプを用い、膜表面の光強度は約7
5mW/−とした。尚、実施例1と同様、光源と膜の間
に厚さ5cmmの水槽を置き、温度上昇を防いだ、光照
射とともに膜は黄緑色から黄色へと徐々に変化し、約1
分後には膜のほぼ全面が黄色に変化した。この膜を2枚
のガラス板よりはずし空気に触れさせることにより元の
黄緑色に戻すことができた。このような色調変化が繰り
返し認められた。
[Example 2] A Nafion membrane containing fine particles of cadmium sulfide prepared in the same manner as in Example 1 was immersed in a 50 mM ferrous chloride aqueous solution for 2 hours under an argon stream.Then, the acid film was thoroughly washed with water, and then soaked again. The membrane was immersed in a 50 mM potassium ferricyanide aqueous solution for 1 minute under an argon stream to precipitate Prussian blue on the membrane surface. At this time, the film changed from yellow to yellow-green. In order to incorporate the sacrificial electron donor into the membrane thus obtained, after immersing the membrane in methyl alcohol for 10 minutes,
It was placed between two glass plates and irradiated with light. 30 as a light source
Using a 0W tungsten lamp, the light intensity on the film surface is approximately 7
It was set to 5 mW/-. As in Example 1, a water tank with a thickness of 5 cm was placed between the light source and the film to prevent the temperature from rising. As the film was irradiated with light, the film gradually changed from yellow-green to yellow.
After a few minutes, almost the entire surface of the membrane turned yellow. By removing this film from the two glass plates and exposing it to air, it was possible to return it to its original yellow-green color. Such color tone changes were repeatedly observed.

〔実施例3〕 実施例1と同様に作製したプルシアンブルー薄膜を81
層した硫化カドミウム分散膜に11牲的電子供与体とし
てトリエタノールアミンを含有させるため、酸膜をpH
2,8に!Ii節したトリエタノールアミン/水(1/
9 F容積比)の混合液に10分間浸漬後、2枚のガラ
ス板の間に挟み光照射した。
[Example 3] A Prussian blue thin film prepared in the same manner as in Example 1 was
In order to contain triethanolamine as an 11-valent electron donor in the layered cadmium sulfide dispersed film, the acid film was adjusted to pH
On 2,8! Triethanolamine/water (1/
After being immersed for 10 minutes in a mixed solution of 9 F (volume ratio), it was sandwiched between two glass plates and irradiated with light.

光源としては、実施例2と同様、300Wタングステン
ランプを用い、光強度は約75mW/−とした。尚、光
源と膜の間に厚さ5値の水槽を設は光照射による膜の温
度上昇を防いだ。
As in Example 2, a 300W tungsten lamp was used as the light source, and the light intensity was approximately 75mW/-. A water tank with a five-layer thickness was provided between the light source and the membrane to prevent the temperature of the membrane from rising due to light irradiation.

光照射とともに膜は黄緑色から黄色へ徐々に変化し、約
3分後には膜のほぼ全面が黄色に変化した。
As the film was irradiated with light, the color gradually changed from yellow-green to yellow, and after about 3 minutes, almost the entire surface of the film turned yellow.

この膜を2枚のガラス板からはずし空気に触れさせるこ
とにより元の黄緑色に戻すことができた。
By removing this film from the two glass plates and exposing it to air, it was possible to return it to its original yellow-green color.

このような色調変化が繰り返し認められた。Such color tone changes were repeatedly observed.

〔実 施 例 4〕 実施例1と同様に作製したプルシアンブルー薄膜を積層
した硫化カドミウム分散膜に犠牲的電子供与体として酒
石酸を含有させるため、膜をpH2,1に調節した50
mM酒石酸水溶液に30分間浸漬後、2枚のガラス板間
に挟み光照射した。
[Example 4] In order to contain tartaric acid as a sacrificial electron donor in a cadmium sulfide-dispersed film laminated with a Prussian blue thin film produced in the same manner as in Example 1, the film was adjusted to pH 2.1 at 50°C.
After being immersed in an mM tartaric acid aqueous solution for 30 minutes, it was sandwiched between two glass plates and irradiated with light.

光源としては、実施例2と同様、300Wタングステン
ランプを用い、光強度は約75mW/−とした。尚、光
源と膜の間に厚さ5c11の水槽を設は光照射による膜
の温度上昇を防いだ、光照射約3分後には膜のほぼ全面
が黄緑色から黄色へ変化した。この膜を2枚のガラス板
からはずし空気に触れさせることにより元の黄緑色に戻
すことができ、このような色!11変化が操り返し認め
られた。
As in Example 2, a 300W tungsten lamp was used as the light source, and the light intensity was approximately 75mW/-. A water tank with a thickness of 5c11 was placed between the light source and the film to prevent the temperature of the film from increasing due to light irradiation.About 3 minutes after the light irradiation, almost the entire surface of the film changed from yellow-green to yellow. By removing this film from the two glass plates and exposing it to air, it can return to its original yellow-green color, resulting in this color! Eleven changes were repeatedly observed.

〔実施例5〕 ポリアクリロニトリル(アルトリフチ社製、数平均分子
M33.000)をジメチルホルムアミドに50℃で溶
解し、ポリマー濃度13wt%の均一なキャスト溶液を
調製した。この溶液をガラス板上に流延し直ちに10℃
の水中に浸漬凝固させ、厚さ150.unの多孔質膜を
得た0次に、酸膜を2室型セパレートセルの中央に挟み
、セルの片側に15mM酢酸カドミウム水溶液約10m
1を入れ、もう一方にはイオン交換蒸留水を同量入れ硫
化水素をバブリングした。約30分後に多孔質膜は黄色
に着色し、膜中に硫化カドミウム微粒子の析出が肉眼で
認められた0次に、酸膜の硫化カドミウム析出部分(面
積2.2(:1りに、可溶性ナフィオン(商標:デュポ
ン社製、5wt%水−アルコール溶液)30μlを塗布
し、40℃で1時間加熱し乾燥した。このようにして得
られた硫化カドミウム分散多孔質膜をアルゴン気流下で
10mM塩化第一鉄水溶液に2時間浸漬後光分水洗した
のち、再びアルゴン気流下で、10mMフェリシアン化
カリウム水溶液に1分間浸漬した。プルシアンブルーの
析出にともない膜は黄色から黄緑色に変化した。得られ
た膜をメチルアルコールに10分間浸漬後、2枚のガラ
ス板の間に挟み実施例2と同様にして光照射した。光照
射とともに膜は黄緑色から黄色へと徐々に変化し、約1
o分後には膜のほぼ全面が黄色に変化した。この膜を2
枚のガラス板からはずし空気に触れさせることにより元
の黄緑色に戻すことができた。このような色調変化が繰
り返し認められた。
[Example 5] Polyacrylonitrile (manufactured by Altrifuchi Co., Ltd., number average molecule M33.000) was dissolved in dimethylformamide at 50°C to prepare a uniform casting solution with a polymer concentration of 13 wt%. This solution was cast onto a glass plate and immediately heated to 10°C.
It was immersed in water to solidify it to a thickness of 150mm. Next, the acid film was sandwiched in the center of a two-chamber separate cell, and about 10 m of a 15mM cadmium acetate aqueous solution was placed on one side of the cell.
1, and the same amount of ion-exchanged distilled water was added to the other side, and hydrogen sulfide was bubbled through it. After about 30 minutes, the porous membrane was colored yellow, and the precipitation of cadmium sulfide fine particles in the membrane was observed with the naked eye. 30 μl of Nafion (trademark: DuPont, 5 wt% water-alcohol solution) was applied and dried by heating at 40°C for 1 hour. After being immersed in a ferrous aqueous solution for 2 hours and then washed with water, it was again immersed in a 10mM potassium ferricyanide aqueous solution for 1 minute under an argon stream.The film changed from yellow to yellow-green as Prussian blue precipitated. After immersing the film in methyl alcohol for 10 minutes, it was sandwiched between two glass plates and irradiated with light in the same manner as in Example 2. As the film was irradiated with light, it gradually changed from yellow-green to yellow, and the color changed to about 1
After o minutes, almost the entire surface of the film turned yellow. This film is 2
By removing it from the glass plate and exposing it to air, we were able to restore it to its original yellow-green color. Such color tone changes were repeatedly observed.

〔実 施 例 6〕 実施例1で作製したプルシアンブルーを積層化した硫化
カドミウム分散膜に、可逆性電子供与体を含有させるた
め、50mMハイドロキノン水溶液(pH6,3)にア
ルゴン気流下で30分間浸消した。浸漬後、該層を2枚
のガラス板間に挟み実施例2と同様にして光照射した。
[Example 6] In order to incorporate a reversible electron donor into the cadmium sulfide-dispersed film prepared in Example 1, in which Prussian blue was laminated, it was immersed in a 50 mM hydroquinone aqueous solution (pH 6.3) for 30 minutes under an argon stream. Turned off. After dipping, the layer was sandwiched between two glass plates and irradiated with light in the same manner as in Example 2.

光照射とともに膜は黄緑色から薄黄色へと徐々に変化し
、約5分後には膜のほぼ全面が1黄色に変化した。この
膜に+1.3vの電圧を印加することにより元の黄緑色
に戻すことができ、このような色調変化が操り返し認め
られた。
As the film was irradiated with light, the color gradually changed from yellow-green to light yellow, and after about 5 minutes, almost the entire surface of the film changed to 1 yellow. By applying a voltage of +1.3 V to this film, it was possible to return it to its original yellow-green color, and such a color tone change was repeatedly observed.

(実施例7〕 実施例1と同様に硫化カドミウム含有ナフィオン膜を作
製した。該層を2室型セパレートセルの間に挟み、片方
のセル室には精製したピロール水溶液(0,3M程度)
を入れ、次いでアルゴン置換した。もう1方のセル室に
は0.1M過硫酸カリウム水溶液を入れてアルゴン気流
下でおよそ4分間放置した。基材ナフィオン膜はアニオ
ン性解離基(−3O3−)を有するため、とロールの重
合開始剤として用いた過硫酸イオン(SzOs”−)は
基材膜内に侵入しにくい、一方、ピロールは電気的に中
性の低分子量化合物であるので該基材膜内を比較的容易
に拡散する。この結果、ピロール重合体(ポリピロール
)は基材膜の片側の表面(過硫酸カリウム溶液側)にの
み析出した。ここで得られた膜を充分水洗後、再び2室
型セパレートセルの間に挟み、ポリピロール析出面(黒
色)とは反対側のセル室に10mM塩化第1鉄水溶液を
入れ、ポリピロール側のセル室には圧力バランスをとる
ため同量の蒸留水を入れ、両溶液をアルゴンで置換した
。こうしておよそ60分間浸消したのち、塩化第1鉄水
溶液を取り出し、そこに10mMフェリシアン化カリウ
ム水溶液を入れ、およそ1分間反応させた。このように
して、硫化カドミウム含有膜の片側の表面にはポリピロ
ール、その反対面にはプルシアンブルーが積層した膜を
作製することができた。該層を0.1M過塩素酸カリウ
ム水溶液に数分間浸漬後、2枚の透明ガラス電極(イン
ジウム−スズ酸化物被覆ガラス仮;表面抵抗10Ω/口
)間に圧着し、この2端子間の電位差がゼロになるよう
に外部回路に接続したポテンショスタンドにて調節した
。このような設置された上記膜のポリピロール側表面に
500Wキセノンランプで照射すると約40秒後にはプ
ルシアンブルー表面の色が緑色から黄色に変化した。尚
、光照射の際、光源と試料との間には紫外線及び赤外線
カットフィルター(東芝IRA−25S及びY−43)
並びに水層(厚さ5cm)を設け、試料表面の光強度を
100mW/cdになるように調節した。このときの膜
表面の反射スペクトル変化を経時的に追跡し、650n
mの反射率の経時変化をプロットしたものが第2図であ
る。光照射後、酸膜に暗時でおよそ1.0v程度の電圧
を印加するとプルシアンブルー表面の色は黄色から元の
緑色に戻った。このような、光照射と電圧印加を交互に
くり返すことによって、光記録及び消去を可逆的に行な
うことが可能であった。
(Example 7) A Nafion membrane containing cadmium sulfide was produced in the same manner as in Example 1. The layer was sandwiched between two separate cells, and one cell chamber was filled with a purified aqueous pyrrole solution (approximately 0.3M).
was added, and then the atmosphere was replaced with argon. A 0.1 M potassium persulfate aqueous solution was placed in the other cell chamber, and the cell was left for about 4 minutes under an argon stream. Since the base Nafion membrane has an anionic dissociative group (-3O3-), persulfate ions (SzOs"-) used as a polymerization initiator for toro are difficult to penetrate into the base membrane. On the other hand, pyrrole has an anionic dissociative group (-3O3-). Since it is a neutral low molecular weight compound, it diffuses relatively easily within the base membrane.As a result, the pyrrole polymer (polypyrrole) is only present on one surface of the base membrane (potassium persulfate solution side). After thoroughly washing the membrane obtained here, it was sandwiched between two-chamber separate cells again, and a 10mM ferrous chloride aqueous solution was poured into the cell chamber on the opposite side from the polypyrrole deposition surface (black), and the polypyrrole side was separated. In order to balance the pressure, the same amount of distilled water was put into the cell chamber, and both solutions were replaced with argon.After soaking in this way for about 60 minutes, the ferrous chloride aqueous solution was taken out, and a 10mM potassium ferricyanide aqueous solution was added thereto. In this way, it was possible to produce a film in which polypyrrole was layered on one surface of the cadmium sulfide-containing film and Prussian blue was layered on the other surface. After immersing it in a 1M potassium perchlorate aqueous solution for several minutes, it was crimped between two transparent glass electrodes (temporary indium-tin oxide coated glass; surface resistance 10Ω/hole) so that the potential difference between the two terminals became zero. The temperature was adjusted using a potentiometer stand connected to an external circuit.When the surface of the polypyrrole side of the membrane thus installed was irradiated with a 500W xenon lamp, the color of the Prussian blue surface changed from green to yellow after about 40 seconds. In addition, during light irradiation, an ultraviolet and infrared cut filter (Toshiba IRA-25S and Y-43) is placed between the light source and the sample.
A water layer (5 cm thick) was also provided, and the light intensity on the sample surface was adjusted to 100 mW/cd. At this time, changes in the reflection spectrum of the film surface were tracked over time, and 650 nm
Figure 2 is a plot of the change in reflectance of m over time. After light irradiation, when a voltage of approximately 1.0 V was applied to the acid film in the dark, the color of the Prussian blue surface returned from yellow to its original green. By repeating such light irradiation and voltage application alternately, it was possible to perform optical recording and erasing reversibly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の半導体含有素子を利用したPECD
における各構成成分のレドノクスポテンシャシの相対関
係を示す図で、光表示・記録の動作原理を示したもので
ある。Aは電子受容体、Dは電子供与体、Sは半導体を
表わし、(1)はDの酸化還元電位、(2)はSの価電
子帯、(3)はSの伝導帯及び(4)はAの酸化還元電
位の夫々のエネルギー準位を表わしている。 第2図は、PB及びポリピロールをそれぞれ異なる面に
積層した硫化カドミウム含有ナフィオン膜に光照射した
ときの650nmの反射率の経時変化を示したものであ
る。
FIG. 1 shows a PECD using the semiconductor-containing element of the present invention.
It is a diagram showing the relative relationship of the redonox potentiometers of each component in the system, and shows the operating principle of optical display and recording. A represents an electron acceptor, D represents an electron donor, and S represents a semiconductor, (1) is the redox potential of D, (2) is the valence band of S, (3) is the conduction band of S, and (4) represent the respective energy levels of the redox potential of A. FIG. 2 shows the change over time in the reflectance at 650 nm when a cadmium sulfide-containing Nafion film in which PB and polypyrrole were laminated on different sides was irradiated with light.

Claims (3)

【特許請求の範囲】[Claims] (1)基材中に、(イ)電子供与体、(ロ)電子受容体
及び(ハ)半導体を含み、(イ)及び(ロ)の少なくと
も一方が高分子金属錯体である半導体含有素子。
(1) A semiconductor-containing element containing (a) an electron donor, (b) an electron acceptor, and (c) a semiconductor in a base material, and at least one of (a) and (b) is a polymer metal complex.
(2)高分子金属錯体が、一般式M_A^X(L_A^
a)_lで表わされる錯陽イオンと一般式M_B^Y(
L_B^b)_m(L_C^c)_nで表わされる錯陰
イオンとから形成される多核金属錯体である特許請求の
範囲第(1)項記載の半導体含有素子(ただし、M_A
^X及びM_B^YはそれぞれX価及びY価の原子価状
態の遷移金属イオンを表わし、L_A^aは中性又はa
価の陽電荷を有する配位子で、L_B^bはb価の陰電
荷を有する配位子であり、L_C^cは中性又はc価の
陰電荷を有する配位子を表わす。ここで、X及びYは正
の整数を表わす。aは0を含む正の整数で、bは負の整
数であって、cは0を含む負の整数である。また、lは
0を含む正の整数で、mは正の整数であって、nは0を
含む正の整数を表わす)。
(2) The polymeric metal complex has the general formula M_A^X(L_A^
a) Complex cation represented by _l and general formula M_B^Y(
The semiconductor-containing element according to claim (1), which is a polynuclear metal complex formed from a complex anion represented by L_B^b)_m(L_C^c)_n (provided that M_A
^X and M_B^Y represent transition metal ions in X and Y valence states, respectively, and L_A^a is neutral or a
A ligand having a positive valence charge, L_B^b is a ligand having a negative charge of a valence B, and L_C^c represents a ligand having a neutral or negative charge of a valence C. Here, X and Y represent positive integers. a is a positive integer including 0, b is a negative integer, and c is a negative integer including 0. Furthermore, l is a positive integer including 0, m is a positive integer, and n is a positive integer including 0).
(3)錯陰イオンがM_B^Y(CN^−)_b(L_
c^C)である特許請求の範囲第(2)項記載の半導体
含有素子(ただし、M_B^Y及びL_cは前記と同様
の意味を表わす)。
(3) The complex anion is M_B^Y(CN^-)_b(L_
c^C) (However, M_B^Y and L_c represent the same meanings as above).
JP61191997A 1986-03-31 1986-08-19 Semiconductor-containing device Expired - Lifetime JP2556482B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7102386 1986-03-31
JP61-71023 1986-03-31

Publications (2)

Publication Number Publication Date
JPS6326635A true JPS6326635A (en) 1988-02-04
JP2556482B2 JP2556482B2 (en) 1996-11-20

Family

ID=13448511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61191997A Expired - Lifetime JP2556482B2 (en) 1986-03-31 1986-08-19 Semiconductor-containing device

Country Status (1)

Country Link
JP (1) JP2556482B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH028371A (en) * 1988-06-28 1990-01-11 Nippon Sheet Glass Co Ltd Photochemical plating method
JP2017146590A (en) * 2016-02-17 2017-08-24 キヤノン株式会社 Electrochromic element, drive method of the same, optical filter, lens unit and imaging apparatus
CN108946765A (en) * 2017-05-18 2018-12-07 宁德时代新能源科技股份有限公司 Prussian blue positive electrode material, preparation method thereof and electrochemical energy storage device
CN114262351A (en) * 2022-03-01 2022-04-01 宜宾锂宝新材料有限公司 Prussian blue positive electrode material, preparation method and application thereof, and battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50103352A (en) * 1974-01-12 1975-08-15
JPS58115418A (en) * 1981-12-28 1983-07-09 Matsushita Electric Ind Co Ltd Display

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50103352A (en) * 1974-01-12 1975-08-15
JPS58115418A (en) * 1981-12-28 1983-07-09 Matsushita Electric Ind Co Ltd Display

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH028371A (en) * 1988-06-28 1990-01-11 Nippon Sheet Glass Co Ltd Photochemical plating method
JP2017146590A (en) * 2016-02-17 2017-08-24 キヤノン株式会社 Electrochromic element, drive method of the same, optical filter, lens unit and imaging apparatus
CN108946765A (en) * 2017-05-18 2018-12-07 宁德时代新能源科技股份有限公司 Prussian blue positive electrode material, preparation method thereof and electrochemical energy storage device
CN114262351A (en) * 2022-03-01 2022-04-01 宜宾锂宝新材料有限公司 Prussian blue positive electrode material, preparation method and application thereof, and battery
CN114262351B (en) * 2022-03-01 2022-05-13 宜宾锂宝新材料有限公司 Prussian blue positive electrode material, preparation method and application thereof, and battery

Also Published As

Publication number Publication date
JP2556482B2 (en) 1996-11-20

Similar Documents

Publication Publication Date Title
Wang et al. Photocatalytic color switching of transition metal hexacyanometalate nanoparticles for high-performance light-printable rewritable paper
Kobayashi et al. Conducting polymer image formation with photoinduced electron transfer reaction
Matsui et al. A trilayer film approach to multicolor electrochromism
Hsu et al. Black-to-transmissive electrochromism with visible-to-near-infrared switching of a Co (II)-based metallo-supramolecular polymer for smart window and digital signage applications
US4231641A (en) Electro-optic device
JP2788121B2 (en) Electrochromic device
Tang et al. Dimerized π-complexes in self-assembled monolayers containing viologens: An origin of unusual wave shapes in the voltammetry of monolayers
KR101008870B1 (en) Electrochromic or electrodeposition display and novel process for their manufacture
Taniguchi et al. Photoelectrochemical Response of Polymer Langmuir− Blodgett Films Containing Tris (2, 2 ‘-bipyridine) ruthenium (II) Complex
Wang et al. Dynamic Metal–Ligand Interaction of Synergistic Polymers for Bistable See‐Through Electrochromic Devices
Tieke Coordinative supramolecular assembly of electrochromic thin films
Laschuk et al. Multichromic monolayer terpyridine-based electrochromic materials
Lu et al. Durable electrochromic devices driven at 0.8 V by complementary chromic combination of metallo-supramolecular polymer and prussian blue analogues for smart windows with low-energy consumption
AU2266992A (en) Electrically conductive polymer composition, method of making same and device incorporating same
Schanze et al. Photolithographically-patterned electroactive films and electrochemically modulated diffraction gratings
Maier et al. Coordinative supramolecular assembly of electrochromic films based on metal ion complexes of polyiminofluorene with terpyridine substituent groups
Schanze et al. Photolithographic patterning of electroactive polymer films and electrochemically modulated optical diffraction gratings
KR900005138B1 (en) Electrocatalytic deposition of metals in solid polymeric matrices
Yam et al. Synthesis, Characterization, and Second-Harmonic Generation Studies of Surfactant Rhenium (I) Diimine Complexes in Langmuir− Blodgett Films. X-ray Crystal Structure of fac-ClRe (CO) 3L (L= 9-Heptylamino-4, 5-diazafluorene)
Tierney et al. New electrorelease systems based on microporous membranes
JPS6326635A (en) Semiconductor containing element
Liu et al. Surface functionalization of glass and polymeric substrates via graft copolymerization of viologen in an aqueous medium
Ng et al. Surface graft copolymerization of viologens on polymeric substrates
WO1997045767B1 (en) Photoelectrochemical-electrochromic device
Ward Ion exchange of ferro (ferri) cyanide in polyvinylferrocene films