JPS63266342A - Detector for degree of deterioration of oil - Google Patents

Detector for degree of deterioration of oil

Info

Publication number
JPS63266342A
JPS63266342A JP62101563A JP10156387A JPS63266342A JP S63266342 A JPS63266342 A JP S63266342A JP 62101563 A JP62101563 A JP 62101563A JP 10156387 A JP10156387 A JP 10156387A JP S63266342 A JPS63266342 A JP S63266342A
Authority
JP
Japan
Prior art keywords
light
oil
deterioration
absorbance
hexane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62101563A
Other languages
Japanese (ja)
Inventor
Ikuo Uchino
内野 郁夫
Tomohisa Soeda
添田 智久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP62101563A priority Critical patent/JPS63266342A/en
Publication of JPS63266342A publication Critical patent/JPS63266342A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To measure a hexane insoluble component and degree of oxidation and to easily and exactly detect deterioration of oil by providing a means for measuring the absorbancy of IR light of 6mum wavelength in addition to a means for measuring the hexane insoluble component. CONSTITUTION:A light source 1 which emits IR light and optical sensors 3, 4 consisting of pyroelectric elements are disposed on both sides of light transparent windows which are disposed to face each other to a part of the wall of an oil supplying pipe and consist of silicon. An optical sensor 2 consisting of a pyroelectric element is disposed as a sensor for reference near the light source 1. An optical filter 5 which consists of an alumina sheet and allows the transmission of only the light of 6mum wavelength is disposed in front of the optical sensor 4. The outputs of the optical sensors 2, 3 and the outputs of the optical sensors 2, 4 are respectively inputted to differential ampifiers 7a, 7b. Then, the hexane insoluble component is detected from the output of the sensor 3 and the degree of oxidation (total acid value) is detected from the output of the optical sensor 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はオイルの劣化度検出装置に係り、特にエンジン
オイル等に混入したヘキサンあるいはへブタンに溶解し
ない成分と、熱による酸化成分とを赤外線吸光度から測
定する装置に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to an oil deterioration degree detection device, and in particular detects components that are not dissolved in hexane or hebutane mixed in engine oil, etc., and components that are oxidized by heat using infrared rays. This invention relates to a device that measures absorbance.

〔従来技術およびその問題点〕[Prior art and its problems]

エンジンの円滑な運転を長期にわたり維持、持続させる
ため、エンジンの各摺動部に潤滑油としてエンジンオイ
ルが供給されるようになっており、通常、油ポンプを用
いた循環給油という形態がとられることが多い。
In order to maintain and sustain smooth operation of the engine over a long period of time, engine oil is supplied as lubricant to each sliding part of the engine, and this is usually done through circulation lubrication using an oil pump. There are many things.

使用を続けている間に摺動による摩擦熱等に起因して、
エンジンオイルは劣化していく。
Due to frictional heat caused by sliding during continued use,
Engine oil deteriorates.

このようなエンジンオイルの劣化は、オイル自体の性状
の変化であるところの酸化劣化および各種添加剤の消耗
と、燃焼生成物のオイル内への侵入および各部品の摩耗
粉の分散等に起因する。
This type of engine oil deterioration is caused by oxidative deterioration, which is a change in the properties of the oil itself, and the consumption of various additives, as well as the intrusion of combustion products into the oil and the dispersion of wear debris from various parts. .

これは、そのまま使用していくと、エンジン故障につな
がる可能性が高いため、運転者は、エンジンオイルの劣
化を検知し、オイル交換を行なうことが義務づけられて
いる。
If this continues to be used, there is a high possibility that it will lead to engine failure, so drivers are required to detect deterioration of the engine oil and change the oil.

エンジンオイルの劣化度を検出する方法として、従来提
案されているのは、可視光用カラーセンサを利用し、可
視域での光吸収を利用したもの(特公昭60−2360
48号公報) 、300〜400nmの紫外光の光吸収
を利用したもの(特公昭57−100739号公報)等
がある。
The conventionally proposed method for detecting the degree of deterioration of engine oil is a method that uses a color sensor for visible light and utilizes light absorption in the visible range (Japanese Patent Publication No. 60-2360).
48), and one that utilizes light absorption of ultraviolet light of 300 to 400 nm (Japanese Patent Publication No. 57-100739).

また、光検出手段として可視光用フォトセルと赤外光用
フォトセルを使用し、可視光と赤外光と−の両方の減衰
を検出することにより、着色による影響を受けることな
くオイルの有色粒子成分量を求める方法も提案されてい
る(特開昭57−101744号公報)。
In addition, by using a photocell for visible light and a photocell for infrared light as the light detection means, and detecting the attenuation of both visible light and infrared light, we can detect the color of oil without being affected by coloring. A method for determining the amount of particle components has also been proposed (Japanese Unexamined Patent Publication No. 101744/1983).

このような方法は、いずれも、エンジンオイルの有色粒
子成分による吸収、散乱に基づく光の減衰を利用したも
のである。この有色粒子成分は、ヘキサン、ペンタン等
の無極性の有機溶剤に溶解しない、スス、摩耗粉、酸化
物等の反応生成分およびレジン(以下ヘキサン不溶解分
)である。
All of these methods utilize light attenuation based on absorption and scattering by colored particle components of engine oil. The colored particle components are reaction products such as soot, abrasion powder, oxides, etc., and resins (hereinafter referred to as hexane-insoluble components) that are insoluble in nonpolar organic solvents such as hexane and pentane.

このヘキサン不溶解舒は、燃料と、エンジンオイルとの
組合せによって、異なり、第8図に示すように、 ある灯油aでは、ヘキサン不溶解舒の増加は300時間
経過後もほとんどみられないのに対し、他の灯油すある
いは、重油Cでは、300時間経過後には、ヘキサン不
溶解舒がかなり増加していることがわかる。
This amount of hexane insoluble matter differs depending on the combination of fuel and engine oil, and as shown in Figure 8, with certain kerosene a, there is almost no increase in hexane insoluble matter even after 300 hours have passed. On the other hand, with other kerosene or heavy oil C, it can be seen that the amount of hexane insoluble matter increases considerably after 300 hours.

この図からも明らかなように、ヘキサン不溶解舒の測定
のみによって一様に劣化度を判定することは必ずしも正
しいとはいえないことがわかる。
As is clear from this figure, it is not necessarily correct to uniformly determine the degree of deterioration only by measuring the amount of hexane insoluble matter.

このように、赤外光および可視光を用いたヘキサン不溶
解舒の測定によるエンジンオイルの劣化度検出には、検
出精度に問題があり、精度を高めるにはオイルと使用燃
料との組合わせに応じて、基準値を変化させなければな
らなかった。
As described above, there is a problem with detection accuracy in detecting the degree of deterioration of engine oil by measuring hexane-insoluble matter using infrared light and visible light. Standard values had to be changed accordingly.

本発明は前記実情に鑑みてなされたもので、測定が容易
で高精度の測定結果を得ることのできるオイル劣化度検
出装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide an oil deterioration degree detection device that can easily perform measurements and obtain highly accurate measurement results.

〔問題点を解決するための手段〕[Means for solving problems]

そこで本発明では、ヘキサン不溶解舒の測定手段に加え
て、アルキルケトン(R2O−0)等の炭素酸素二重結
合C−0を含む成分を波長6μmの光における吸光度の
測定を行う酸化度測定手段を具え、両方の測定結果に基
づいて、オイルが劣化しているか否かを判断するように
している。
Therefore, in the present invention, in addition to the hexane-insoluble measurement method, oxidation degree measurement is performed to measure the absorbance of a component containing a carbon-oxygen double bond C-0, such as an alkyl ketone (R2O-0), at a wavelength of 6 μm. Based on the results of both measurements, it is determined whether the oil has deteriorated or not.

〔作用〕[Effect]

本発明者らは、全酸価すなわち1gのオイルを中和する
のに必要な水酸化カリウム(K OH)の量(mg)と
、波長6μmの赤外光に対する吸光度との関係を測定し
た結果、第6図(a)に示す如く、直線関係を示すこと
がわかり、これに着目して波長6μmの吸光度を測定す
ることによりオイルの酸化劣化を検出するようにしてい
る。
The present inventors determined the relationship between the total acid value, that is, the amount (mg) of potassium hydroxide (KOH) required to neutralize 1 g of oil, and the absorbance of infrared light with a wavelength of 6 μm. As shown in FIG. 6(a), it was found that there was a linear relationship, and by focusing on this and measuring the absorbance at a wavelength of 6 μm, oxidative deterioration of the oil was detected.

このため、従来のヘキサン不溶解舒の測定のみでは、検
出し得なかった酸化劣化を検出することができ、容易か
つ正確にオイルの劣化検出を行なうことができるもので
ある。
Therefore, it is possible to detect oxidative deterioration, which could not be detected by conventional hexane-insoluble measurements alone, and it is possible to easily and accurately detect oil deterioration.

第6図(b)は参考のために測定したアルカリ価と波長
6μmの光による吸光度との関係を示す図である。
FIG. 6(b) is a diagram showing the relationship between the alkaline value and the absorbance of light with a wavelength of 6 μm, which was measured for reference.

また、第7図(a)に、ヘキサン不溶解舒(wt%)と
赤外光(1,5〜11 μm)に対する吸光度との関係
を測定した結果を示すように(第7図(b)は、第7図
(a)の部分拡大図)、これも良好な直線関係を示して
おり、ヘキサン不溶解舒の検出に赤外光吸収が適してい
ることがわかる。このように赤外光の吸光度を測定する
ことによりヘキサン不溶解舒の含有量を良好に測定する
ことができる。
In addition, Figure 7 (a) shows the results of measuring the relationship between hexane-insoluble powder (wt%) and absorbance for infrared light (1.5 to 11 μm) (Figure 7 (b) is a partially enlarged view of FIG. 7(a)), which also shows a good linear relationship, indicating that infrared light absorption is suitable for detecting hexane-insoluble matter. By measuring the absorbance of infrared light in this way, it is possible to satisfactorily measure the content of hexane-insoluble powder.

〔実施例〕〔Example〕

以下、本発明の実施例について、図面を参照しつつ詳細
に説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は、本発明実施例のエンジンオイルの劣化度検出
装置の原理説明図である。
FIG. 1 is a diagram illustrating the principle of an engine oil deterioration degree detection device according to an embodiment of the present invention.

この装置は、赤外光を発するニクロム線コイルからなる
光源1と、この光源1の近傍に配設されこの光源の発す
る光を検出する焦電素子からなる第1の光センサ2と、
被検出物であるエンジンオイルを介して前記光源1から
の光を検出する焦電素子からなる第2および第3の光セ
ンサ3,4とからなり、該第3の光センサ4の前方にア
ルミナ(A12O3)板からなり波長6μmの光のみを
透過せしめる光フィルタ5を配設し、第2および第3の
光センサ3,4の出力と基準用センサとしての第1の光
センサの出力とを比較して、第2の光センサ3の出力か
らはへキサン不溶解方の検出を行なうと共に、第3の光
センサの出力からは、酸化の度合(全酸価)を検出する
ようにしたものである。
This device includes a light source 1 made of a nichrome wire coil that emits infrared light, a first optical sensor 2 made of a pyroelectric element disposed near the light source 1 and detecting the light emitted by the light source,
It consists of second and third optical sensors 3 and 4 made of pyroelectric elements that detect light from the light source 1 through engine oil, which is an object to be detected. An optical filter 5 made of a (A12O3) plate that transmits only light with a wavelength of 6 μm is provided, and the outputs of the second and third optical sensors 3 and 4 and the output of the first optical sensor as a reference sensor are In comparison, the output of the second optical sensor 3 is used to detect hexane insoluble matter, and the output of the third optical sensor is used to detect the degree of oxidation (total acid value). It is.

ここで6は、光源の点灯回路としての0N−OFF信号
回路であり、7a、7bは第1の光センサの出力と第2
および第3の光センサの出力とを比較する対数差動アン
プであり、これらの出力は、劣化を判断する信号処理回
路(図示せず)に出力せしめれる。
Here, 6 is an ON-OFF signal circuit as a lighting circuit for the light source, and 7a and 7b are the output of the first optical sensor and the second
and a logarithmic differential amplifier that compares the outputs of the optical sensor and the third optical sensor, and outputs these outputs to a signal processing circuit (not shown) that determines deterioration.

また、検出箇所としては、エンジンの各摺動部へのオイ
ル供給バイブ8の管壁の一部に相対向して、シリコンか
らなる透過性の窓9a、9bを配設し、この窓9a、9
bをはさんで、光源1と第2および第3の光センサ3,
4とを配設するようにしている。
Further, as detection points, transparent windows 9a and 9b made of silicon are arranged opposite to a part of the tube wall of the oil supply vibrator 8 to each sliding part of the engine, and these windows 9a, 9
A light source 1 and second and third optical sensors 3,
4.

ここで、オイル供給バイブ8内にオイルの入っていない
状態で、第1、第2および第3の光センサの0点および
スパンを合せておくようにしこれを1.とすると、オイ
ルが入った場合の第1、第2および第3の光センサの出
力の強さII+12+I3は夫々次式のような関係をも
つ。
Here, with no oil in the oil supply vibrator 8, the 0 points and spans of the first, second, and third optical sensors are set to match 1. Then, the output intensities II+12+I3 of the first, second, and third optical sensors when oil is present have a relationship as shown in the following equations.

1、m(o               ・・・(1
)12 m11 exp (dxc  Xf  )  
・−(2)p     p 13−11 exp (dxc(1xfo )  −=
 (3)Cニオイル中のへキサン不溶解方の 濃度 f  ニオイル中のへキサン不溶解方に対するセンサの
感度 co  ニオイル中のR2C−0等のC−〇二重結合を
含む成分の濃度 fo  :同成分に対するセンサの感度d  :窓の間
隔 (1)、(2)、(3)式より dXc  Xf  −In  I2 /I+  ・” 
(4)p     p dXc、)XfO−In  I3 /I+  ・” (
5)そこで、第1の光センサと第2の光センサの出力、
第1の光センサと第3の光センサの出力とを夫々差動増
幅することにより、オイル中のへキサン不溶解方の濃度
とオイル中のC−〇二重結合を含む成分の濃度を検出す
ることができる。
1, m(o...(1
)12 m11 exp (dxc Xf)
・-(2) p p 13-11 exp (dxc(1xfo) -=
(3) Concentration of hexane-insoluble substances in C-nitrogen, f Sensitivity of the sensor to hexane-insoluble substances in C-nitrogen, co Concentration of components containing C-〇 double bonds such as R2C-0 in C-nitrogen: Sensitivity of sensor to component d: window spacing From formulas (1), (2), and (3), dXc Xf −In I2 /I+ ・”
(4) p p dXc,)XfO-In I3 /I+ ・” (
5) Therefore, the outputs of the first optical sensor and the second optical sensor,
By differentially amplifying the outputs of the first optical sensor and the third optical sensor, the concentration of hexane-insoluble components in the oil and the concentration of components containing C-〇 double bonds in the oil are detected. can do.

第2図(a)および(b)は、高温高負荷用のエンジン
オイル5AEIOWSE−CDをディーゼルエンジンに
用いた場合のオイルの劣化度すなわちC−0成分濃度お
よびヘキサン不溶解舒濃度の検出結果を示す。縦軸は吸
光度、横軸はエンジンテスト時間を示す。
Figures 2 (a) and (b) show the detection results of the degree of oil deterioration, that is, the concentration of C-0 component and the concentration of hexane-insoluble powder, when engine oil 5AEIOWSE-CD for high temperature and high load use is used in a diesel engine. show. The vertical axis shows absorbance and the horizontal axis shows engine test time.

ここでは、C−0成分濃度を示す吸光度が064、ヘキ
サン不溶解舒濃度を示す吸光度が0.4となった2X1
02Hr経適時に、オイル交換を行なったためこの時点
で、関係曲線が不連続になっている。
Here, the absorbance of 2
Since the oil was changed at the appropriate time after 02 hours, the relationship curve has become discontinuous at this point.

このようにして極めて容易に高精度のエンジンオイルの
劣化度検出を行なうことができる。
In this way, the degree of deterioration of engine oil can be detected with high precision very easily.

また、光フィルタとして、第3図に示す如く、波長6μ
mの光に対して、シャープな透過特性を有するアルミナ
板を用いているため検出が極めて容易となっている。
In addition, as an optical filter, as shown in Fig. 3, a wavelength of 6μ
Since an alumina plate is used which has sharp transmission characteristics for light of m, detection is extremely easy.

なお、実施例では、ディーゼルエンジンに対するエンジ
ンオイル5AEIOWSE−CDの劣化度を検出したが
、他のエンジンオイルとエンジンの組合わせにも使用可
能であることはいうまでもなく、広くは酸化劣化が問題
となる食用油の劣化度検出等にも使用可能である。
In the example, the degree of deterioration of engine oil 5AEIOWSE-CD for diesel engines was detected, but it goes without saying that it can also be used in combinations of other engine oils and engines, and oxidative deterioration is generally a problem. It can also be used to detect the degree of deterioration of edible oil.

第4図(a)は、ディーゼルエンジンに対して他のエン
ジンオイルを用いた場合のC−0成分濃度を示す6μm
の光の吸光度(縦軸)と経過時間(横軸)との関係を示
す図である。比較のために第4図(b)に従来の赤外吸
光度での劣化検出の結果を示す。第4図(a)および(
b)の比較からも、従来の方法では検出し得なかったオ
イル劣化が本発明の装置では容易に検出可能であること
がわかる。
Figure 4(a) shows the C-0 component concentration when using other engine oils for diesel engines.
FIG. 3 is a diagram showing the relationship between the absorbance of light (vertical axis) and elapsed time (horizontal axis). For comparison, FIG. 4(b) shows the results of conventional deterioration detection using infrared absorbance. Figures 4(a) and (
The comparison in b) also shows that oil deterioration, which could not be detected using conventional methods, can be easily detected using the apparatus of the present invention.

更にまた、第5図(a)および(b)は、夫々、メタノ
ールエンジンにあるエンジンオイルを用いた場合の6μ
m光の吸光度と経過時間との関係および赤外吸光度と経
過時間との関係とを測定した結果を示す。この場合にも
、赤外吸光度のみでは検出できなかったオイル劣化が6
μmの光の吸光度の測定によって検出できる。
Furthermore, FIGS. 5(a) and 5(b) respectively show 6μ when using engine oil found in a methanol engine.
The results of measuring the relationship between m-light absorbance and elapsed time and the relationship between infrared absorbance and elapsed time are shown. In this case as well, oil deterioration that could not be detected by infrared absorbance alone
It can be detected by measuring the absorbance of light in μm.

更に、実施例では、赤外光の検出に焦電素子を用いたが
焦電素子に限定されることなく、他の検出素子を用いて
もよいことはいうまでもない。
Further, in the embodiment, a pyroelectric element is used to detect infrared light, but it goes without saying that the invention is not limited to the pyroelectric element and other detection elements may be used.

また、光フィルタについても、アルミナ板に限定される
ことなく、波長6μmの光のみを透過させるようなフィ
ルタであればよい。
Further, the optical filter is not limited to an alumina plate, and any filter that transmits only light with a wavelength of 6 μm may be used.

更にまた、ヘキサン不溶解力の測定については、赤外光
に代えて白色光の吸光度を測定するようにしてもよい。
Furthermore, the hexane insoluble power may be measured by measuring the absorbance of white light instead of infrared light.

加えて、実施例では、エンジンオイルの劣化検出に用い
たが、エンジンオイルのみならず、オイルの酸化劣化が
問題になる食用油を使った工程の管理装置をはじめ他の
装置にも使用可能である。
In addition, in the example, it was used to detect the deterioration of engine oil, but it can also be used not only for engine oil but also for other devices such as process control devices that use cooking oil where oxidative deterioration of oil is a problem. be.

[効果] 以上説明してきたように、本発明のオイル劣化度検出W
A@によれば、ヘキサン不溶解力を測定する第1の手段
に加えて、波長6μmの赤外光の吸光度を測定する第2
の手段とを具備しているため、ヘキサン不溶解力の測定
に加えて、第2の手段によって酸化度を測定し、容易か
つ正確にオイル劣化の検出を行なうことができる。
[Effect] As explained above, the oil deterioration degree detection W of the present invention
According to A@, in addition to the first method of measuring hexane insolubility, a second method of measuring the absorbance of infrared light with a wavelength of 6 μm
Therefore, in addition to measuring the hexane insoluble power, the degree of oxidation can be measured by the second means, and oil deterioration can be easily and accurately detected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明実施例のオイル劣化度検出装置を示す
図、第2図(a)および第2図<b>は、同装置による
ディーゼルエンジンのエンジンオイルの酸化劣化および
ヘキサン不溶解力の測定結果を示す図、第3図は、光フ
ィルタの特性を示す図、第4図(a)および第4図(b
)は夫々、第1図の装置を用いて検出した他のエンジン
オイルの酸化劣化およびヘキサン不溶解力の検出結果を
示す図、第5図(a)および第5図(b)も夫々、他の
エンジンオイルの第4図(a)および第4図(b)と同
様の測定結果を示す図、第6図(a)は、波長6μmの
光の吸光度に対する全酸価の関係を示す図、第6図(b
)は同吸光度に対するアルカリ価の関係を示す図、第7
図(a)および第7図(b)は波長1.5〜11μmの
赤外吸光度に対するヘキサン不溶解力の関係を示す図、
第8図は燃料およびオイルの組合わせを変化させた場合
のヘキサン不溶解力の量とエンジン使用時間との関係を
示す図である。 1・・・光源、2・・・第1の光センサ3・・・第2の
光センサ、4・・・第3の光センサ、5・・・光フィル
タ、6 ・ON’ −OF F (a号回路、7a、7
b−・・対数差動アンプ、8・・・バイブ、9a、9b
・・・窓。 メタノ−Jレエンシ゛ンテス)一時間(H「)全敗イ西
(にOHmg/9) 第6図(G) テスト時間(H「) 7+1.刀IJ(a  (にOHmg/9)第6図(b
FIG. 1 is a diagram showing an oil deterioration degree detection device according to an embodiment of the present invention, and FIG. 2(a) and FIG. Figure 3 shows the measurement results of the optical filter, Figure 4 (a) and Figure 4 (b) show the characteristics of the optical filter.
) are diagrams showing the detection results of oxidative deterioration and hexane insolubility of other engine oils detected using the apparatus in Figure 1, and Figures 5(a) and 5(b) are also diagrams showing the detection results of other engine oils, respectively. FIG. 6(a) is a diagram showing the relationship between the total acid value and the absorbance of light with a wavelength of 6 μm. Figure 6 (b
) is a diagram showing the relationship between the absorbance and the alkaline value, No. 7
Figures (a) and 7(b) are diagrams showing the relationship between hexane insolubility and infrared absorbance at a wavelength of 1.5 to 11 μm;
FIG. 8 is a diagram showing the relationship between the amount of hexane insoluble power and the engine usage time when the combination of fuel and oil is changed. DESCRIPTION OF SYMBOLS 1... Light source, 2... 1st optical sensor 3... 2nd optical sensor, 4... 3rd optical sensor, 5... Optical filter, 6 ・ON'-OF ( A circuit, 7a, 7
b-...logarithmic differential amplifier, 8...vibe, 9a, 9b
···window. Methano-J Reientes) 1 hour (H") Complete defeat I Nishi (to OHmg/9) Figure 6 (G) Test time (H") 7+1. Katana IJ (a (to OHmg/9) Figure 6 ( b
)

Claims (3)

【特許請求の範囲】[Claims] (1)ヘキサン不溶解分を測定する第1の吸光度測定手
段と、 波長6μmの光における吸光度を測定する第2の吸光度
測定手段とを具備し、 第1および第2の吸光度測定手段の測定結果に基づいて
、オイル劣化度を判定するようにしたことを特徴とする
オイル劣化度検出装置。
(1) Comprising a first absorbance measuring means for measuring hexane-insoluble matter and a second absorbance measuring means for measuring the absorbance of light with a wavelength of 6 μm, and the measurement results of the first and second absorbance measuring means An oil deterioration degree detection device characterized in that the oil deterioration degree is determined based on.
(2)前記第1および第2の吸光度測定手段は、赤外光
発生手段からなる光源を共通にすると共に、夫々、第1
および第2の赤外光検出手段を具備しており、 前記第2の赤外光検出手段は波長6μmの光に対しての
み透過性を有する光フィルタを具備してなることを特徴
とする特許請求の範囲第(1)項記載のオイル劣化度検
出装置。
(2) The first and second absorbance measuring means share a light source consisting of an infrared light generating means, and each of the first and second absorbance measuring means
and a second infrared light detection means, the second infrared light detection means comprising an optical filter that is transparent only to light with a wavelength of 6 μm. An oil deterioration degree detection device according to claim (1).
(3)前記光フィルタは、アルミナ(Al_2O_3)
板からなることを特徴とする特許請求の範囲第(2)記
載のオイル劣化度検出装置。
(3) The optical filter is made of alumina (Al_2O_3)
The oil deterioration degree detection device according to claim 2, characterized in that it is made of a plate.
JP62101563A 1987-04-24 1987-04-24 Detector for degree of deterioration of oil Pending JPS63266342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62101563A JPS63266342A (en) 1987-04-24 1987-04-24 Detector for degree of deterioration of oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62101563A JPS63266342A (en) 1987-04-24 1987-04-24 Detector for degree of deterioration of oil

Publications (1)

Publication Number Publication Date
JPS63266342A true JPS63266342A (en) 1988-11-02

Family

ID=14303881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62101563A Pending JPS63266342A (en) 1987-04-24 1987-04-24 Detector for degree of deterioration of oil

Country Status (1)

Country Link
JP (1) JPS63266342A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049742A (en) * 1989-11-16 1991-09-17 Kyodo Oil Technical Research Co., Ltd. Apparatus for detecting deterioration of engine oil
WO1992019848A1 (en) * 1991-04-25 1992-11-12 Kabushiki Kaisha Komatsu Seisakusho Oil degradation measuring apparatus
JPH05107184A (en) * 1991-08-06 1993-04-27 Calsonic Corp Oil deterioration detector
US5548393A (en) * 1993-07-05 1996-08-20 Nippondenso Co., Ltd. Oil deterioration detection apparatus and apparatus for detecting particles in liquid
US5610706A (en) * 1994-02-02 1997-03-11 Thermo Jarrell Ash Corporation Analysis system
US7339657B2 (en) 2001-10-11 2008-03-04 Sentelligence, Inc. Low-cost on-line and in-line spectral sensors based on solid-state source and detectors combinations for monitoring lubricants and functional fluids
US7459713B2 (en) 2003-08-14 2008-12-02 Microptix Technologies, Llc Integrated sensing system approach for handheld spectral measurements having a disposable sample handling apparatus
JP2010531997A (en) * 2007-06-28 2010-09-30 フライマスター エル.エル.シー. Oil quality sensor and oil heater for deep fryer equipment
EP3040227A1 (en) * 2015-01-05 2016-07-06 Inergy Automotive Systems Research (Société Anonyme) System and method for controlling fuel vapor recovery and controller for use in such a system and method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049742A (en) * 1989-11-16 1991-09-17 Kyodo Oil Technical Research Co., Ltd. Apparatus for detecting deterioration of engine oil
WO1992019848A1 (en) * 1991-04-25 1992-11-12 Kabushiki Kaisha Komatsu Seisakusho Oil degradation measuring apparatus
JPH05107184A (en) * 1991-08-06 1993-04-27 Calsonic Corp Oil deterioration detector
US5548393A (en) * 1993-07-05 1996-08-20 Nippondenso Co., Ltd. Oil deterioration detection apparatus and apparatus for detecting particles in liquid
US5610706A (en) * 1994-02-02 1997-03-11 Thermo Jarrell Ash Corporation Analysis system
US7339657B2 (en) 2001-10-11 2008-03-04 Sentelligence, Inc. Low-cost on-line and in-line spectral sensors based on solid-state source and detectors combinations for monitoring lubricants and functional fluids
US7459713B2 (en) 2003-08-14 2008-12-02 Microptix Technologies, Llc Integrated sensing system approach for handheld spectral measurements having a disposable sample handling apparatus
US7907282B2 (en) 2003-08-14 2011-03-15 Microptix Technologies, Llc Integrated sensing module for handheld spectral measurements
JP2010531997A (en) * 2007-06-28 2010-09-30 フライマスター エル.エル.シー. Oil quality sensor and oil heater for deep fryer equipment
EP3040227A1 (en) * 2015-01-05 2016-07-06 Inergy Automotive Systems Research (Société Anonyme) System and method for controlling fuel vapor recovery and controller for use in such a system and method

Similar Documents

Publication Publication Date Title
EP0300529B1 (en) Temperature measurement
US4492462A (en) Photometric method for determining courses of reactions
EP0252578A2 (en) Sensor system using fluorometric decay measurements
US4118625A (en) Nephelometer having pulsed energy source
NL8400380A (en) DEVICE FOR DETECTING COLOR DIFFERENCES.
EP0604582A1 (en) Dual-wavelength photometer and fiber optic sensor probe
US4193694A (en) Photosensitive color monitoring device and method of measurement of concentration of a colored component in a fluid
JPH022097B2 (en)
EP0635570A2 (en) Blood culture sensor station utilizing two distinct light sources
JPS5847657B2 (en) Ryu Taibun Sekiki
US3897155A (en) Atomic fluorescence spectrometer
JPS63266342A (en) Detector for degree of deterioration of oil
JP2604754B2 (en) Spectrophotometer
SE8800686D0 (en) PROCEDURE AND DEVICE FOR DETERMINING THE CONCENTRATION OF A SUBJECT CONNECTED TO PARTICLES IN A FLOWING MEDIUM
US20110019194A1 (en) Turbidity measuring device and a method for determing a concentration of a turbidity-causing material
US3632209A (en) System for measuring light transmittance through absorptive or diffusive media
JPS59208445A (en) Method and device for measuring absorptive component quantity of sample
US20100283992A1 (en) Method of optical teledetection of compounds in a medium
Milanovich Detecting chloroorganics in groundwater
NO983126L (en) Method and apparatus for measuring color and / or particles in a fluid
JPH0228541A (en) Optical concentration detector
CN113933268B (en) Optical detection device and optical detection method
RU79181U1 (en) FLUORESCENT OIL SIGNAL IN COMPRESSED GASES
JPS62278436A (en) Fluorescence light measuring method and apparatus
JPH0125017B2 (en)