JPS63266329A - Force detector - Google Patents

Force detector

Info

Publication number
JPS63266329A
JPS63266329A JP62101272A JP10127287A JPS63266329A JP S63266329 A JPS63266329 A JP S63266329A JP 62101272 A JP62101272 A JP 62101272A JP 10127287 A JP10127287 A JP 10127287A JP S63266329 A JPS63266329 A JP S63266329A
Authority
JP
Japan
Prior art keywords
axis
resistance
pair
series
origin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62101272A
Other languages
Japanese (ja)
Inventor
Kazuhiro Okada
和廣 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEKUSHII KENKYUSHO KK
Original Assignee
NEKUSHII KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEKUSHII KENKYUSHO KK filed Critical NEKUSHII KENKYUSHO KK
Priority to JP62101272A priority Critical patent/JPS63266329A/en
Priority to DE3852271T priority patent/DE3852271T2/en
Priority to US07/295,601 priority patent/US4905523A/en
Priority to EP88903392A priority patent/EP0311695B1/en
Priority to PCT/JP1988/000394 priority patent/WO1988008521A1/en
Publication of JPS63266329A publication Critical patent/JPS63266329A/en
Priority to US07/432,796 priority patent/US4969366A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify the structure, and to simplify arithmetic operation for detection by detecting the force in three directions and the moment in three direction working on a point of application, based on the resistance variation of plural resistance elements. CONSTITUTION:On the surface of a strain-generating body 10, 16 sets of resistance element groups R1-R16 are formed. The strain-generating body 10 consists of a single crystal substrate of silicon, and each resistance element of the resistance element groups R1-R16 is formed by diffusing an impurity onto this single crystal substrate. In such a state, since a fixing part 11 is fixed to the outside, when force or moment is applied to a point of application P, a stress strain corresponding to this force or moment is generated in bridge parts 12-15, and the variation of an electric resistance is generated in the resistance element groups R1-R16.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は力検出装置、特にXYZ三次元座標系において
、原点を作用点として各軸方向に作用する力および各軸
回りに作用するモーメントを検出する力検出装置に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a force detection device, particularly in an XYZ three-dimensional coordinate system, which detects forces acting in each axis direction and moments acting around each axis with the origin as the point of action. The present invention relates to a force detection device.

〔従来の技術〕[Conventional technology]

一般に、ある作用点に働く力を検出する装置は、この力
の作用によって生じる応力歪みを検出することによって
間接的に力の検出を行っている。応力歪みの検出は、力
の作用によって応力歪みを生じる起歪体の各部にストレ
ーンゲージなどの検出器を設け、この検出器の抵抗値な
どの変化を測定することによって行っている。
Generally, a device that detects a force acting on a certain point of action indirectly detects the force by detecting stress strain caused by the action of this force. Detection of stress strain is performed by providing a detector such as a strain gauge at each part of the flexure generating body that generates stress strain due to the action of force, and measuring changes in the resistance value of this detector.

たとえば、ストレーンゲージを検出器として用いた場合
、起歪体に生じる応力歪みはストレーンゲージの抵抗変
化という形で現れる。従来装置では、起歪体を立体的に
構成し、複数のストレーンゲージを三次元的に配し、こ
の複数のストレーンゲージによって形成されるブリッジ
電圧を測定することによって、各軸方向の力および各軸
回りのモーメントを検出している。
For example, when a strain gauge is used as a detector, the stress strain generated in the flexure body appears in the form of a change in the resistance of the strain gauge. In conventional devices, the strain body is configured three-dimensionally, multiple strain gauges are arranged three-dimensionally, and the bridge voltage formed by the multiple strain gauges is measured to calculate the force in each axial direction and each The moment around the axis is being detected.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら従来の力検出装置には、装置の構造が複雑
になり、また、検出値の演算が非常に複雑になるという
問題があった。すなわち、従来装置では起歪体を立体的
に構成し、この起歪体に複数の検出器を三次元的に配す
る必要があるため、装置自体の構造が非常に複雑になる
のである。しかもこのように複雑に配された複数の検出
器の出力に基づいて、各軸方向に作用する力および各軸
回りに作用するモーメントという6つの量をそれぞれ独
立して求めるためには、複雑な演算が必要になる。各検
出器は、与えられた6つの量それぞれに反応してしまう
ので、ある1つの量を測定するためには、他の5つの量
を相殺するような複雑な演算が必要になるのである。
However, conventional force detection devices have had problems in that the structure of the device is complicated and the calculation of detected values is extremely complicated. That is, in the conventional device, it is necessary to configure the strain body three-dimensionally and arrange a plurality of detectors three-dimensionally on the strain body, which makes the structure of the device itself extremely complicated. Moreover, in order to independently obtain the six quantities of force acting in each axis direction and moment acting around each axis based on the outputs of multiple detectors arranged in such a complex manner, a complicated process is required. calculation is required. Each detector responds to each of the six quantities given to it, so in order to measure one quantity, complex calculations such as canceling out the other five quantities are required.

そこで本発明は、構造が単純で、しかも検出のための演
算も単純となる力検出装置を提供することを目的とする
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a force detection device having a simple structure and simple calculations for detection.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、XYZ三次元座標系で原点を作用点として各
軸方向に作用する力および各軸回りに作用するモーメン
トを検出する力検出装置において、原点の両側にX軸に
沿って形成された第1の架橋部と、 原点の両側にY軸に沿って形成された第2の架橋部と、
を設け、 原点に力を加えることによって各架橋部に歪みが生じる
ように、各架橋部の両端を固定部として固定し、 各架橋部のXY平面上に、機械的変形によって電気抵抗
が変化する性質をもつ複数の抵抗素子からなる抵抗素子
群を、 X軸圧方向の原点近傍にX軸を挟んで一対、X軸負方向
の原点近傍にX軸を挟んで一対、X軸圧方向の固定部近
傍にX軸を挟んで一対、X軸負方向の固定部近傍にX軸
を挟んで一対、Y軸圧方向の原点近傍にY軸を挟んで一
対、Y軸負方向の原点近傍にY軸を挟んで一対、Y軸圧
方向の固定部近傍にY軸を挟んで一対、Y軸負方向の固
定部近傍にY軸を挟んで一対、のそれぞれの位置のうち
、主要な位置にそれぞれ設け、 各抵抗素子の電気抵抗の変化に基づいて、原点に作用す
る力の変化を検出するようにしたものである。
The present invention provides a force detection device that detects forces acting in each axis direction and moments acting around each axis with the origin as the point of action in an XYZ three-dimensional coordinate system. a first bridge portion; a second bridge portion formed along the Y axis on both sides of the origin;
Both ends of each bridge are fixed as fixed parts so that each bridge is distorted by applying force to the origin, and electrical resistance changes due to mechanical deformation on the XY plane of each bridge. A resistive element group consisting of multiple resistive elements with properties is fixed in the X-axis pressure direction, one pair near the origin in the X-axis pressure direction across the X-axis, and one pair near the origin in the negative X-axis direction across the X-axis. one pair across the X-axis near the fixed part in the negative direction of the X-axis, one pair across the Y-axis near the origin in the Y-axis pressure direction, and one pair across the Y-axis near the origin in the negative direction of the Y-axis. One pair across the axis, one pair across the Y-axis near the fixed part in the Y-axis pressure direction, and one pair across the Y-axis near the fixed part in the negative Y-axis direction. The change in the force acting on the origin is detected based on the change in the electrical resistance of each resistance element.

〔作 用〕[For production]

本発明に係る力検出装置によれば、応力歪みの検出器と
なる抵抗素子が、すべてXY平面上に形成される。した
がって、従来装置のように装置本体を立体構成せずに平
面的に構成することが可能になり、装置を単純な構成で
実現できるようになる。
According to the force detection device according to the present invention, all the resistance elements serving as stress strain detectors are formed on the XY plane. Therefore, unlike conventional devices, the main body of the device can be configured in a two-dimensional manner instead of three-dimensionally, and the device can be realized with a simple configuration.

また、検出器となる抵抗素子は、機械的変形によって電
気抵抗が変化する性質をもつものであり、しかも2つの
抵抗素子を対にして特定の位置に配置するようにしたた
め、各軸方向の力および各軸回りのモーメントを単純な
演算で独立して検出することができる。
In addition, the resistance element that serves as the detector has the property that its electrical resistance changes due to mechanical deformation, and since two resistance elements are arranged in pairs at specific positions, the force in each axial direction is and moments around each axis can be detected independently with simple calculations.

〔実施例〕〔Example〕

以下、本発明を図示する実施例に基づいて説明する。 The present invention will be described below based on illustrated embodiments.

装置の構成 第1図は本発明の一実施例に係る力検出装置の上面図、
第2図は第1図に示す装置を切断線A−Aに沿って切っ
た断面図である。この実施例では、起歪体10の表面上
に16組の抵抗素子群R1〜R1Bが形成されている。
Device configuration FIG. 1 is a top view of a force detection device according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of the device shown in FIG. 1 taken along section line A--A. In this embodiment, 16 resistance element groups R1 to R1B are formed on the surface of the strain body 10.

起歪体10はシリコンの単結晶基板からなり、抵抗素子
群R1−RlBは、それぞれ複数の抵抗素子の集合であ
り、各抵抗素子は、この単結晶基板上に不純物を拡散す
ることによって形成される。このようにして形成した抵
抗素子はピエゾ抵抗効果を示し、機械的変形によって電
気抵抗が変化する性質をもっている。
The flexure element 10 is made of a silicon single crystal substrate, and each of the resistance element groups R1 to RlB is a set of a plurality of resistance elements, and each resistance element is formed by diffusing impurities onto this single crystal substrate. Ru. The resistance element thus formed exhibits a piezoresistance effect, and has the property that its electrical resistance changes with mechanical deformation.

起歪体10は、周辺に円環状に形成された固定部11と
、4つの架橋部12〜15、およびこの4つの架橋部1
2〜15が結合した作用部16と、から構成されている
。固定部11は外部に対して固定され、作用部16の中
心にある作用点Pに検出すべき力またはモーメントが加
えられる。固定部11が外部に固着されているため、作
用点Pに力またはモーメントが加わると、この力または
モーメントに応じた応力歪みが架橋部12〜15に生じ
、抵抗素子群R1−RlBに電気抵抗の変化が生じる。
The strain body 10 includes a fixed part 11 formed in an annular shape around the periphery, four bridge parts 12 to 15, and these four bridge parts 1.
and an action part 16 to which the parts 2 to 15 are combined. The fixed part 11 is fixed to the outside, and a force or moment to be detected is applied to a point of action P located at the center of the action part 16. Since the fixed part 11 is fixed to the outside, when a force or moment is applied to the point of application P, stress strain corresponding to this force or moment is generated in the bridge parts 12 to 15, and the resistance element group R1 to RlB has an electrical resistance. changes occur.

本装置は、この電気抵抗の変化に基づいて力の検出を行
うものである。本実施例では、各抵抗素子は大きさ、形
状、材質が等しく、すべて等しい抵抗値を有する。また
、応力歪みに基づく抵抗変化率もすべて等しい。
This device detects force based on this change in electrical resistance. In this embodiment, each resistance element has the same size, shape, and material, and all have the same resistance value. Further, the rate of change in resistance based on stress strain is also all the same.

いま、第1図および第2図に示すように、作用部16の
中心にある作用点PをXYZ三次元座標系の原点とし、
x、 y、  zの3軸を図のように定義するものとす
る。すなわち、第1図で図の右方′ をX軸圧方向に、
下方をY軸圧方向に、紙面に垂直下方をZ軸正方向に、
それぞれ定義するものとする。作用部16の上下には、
作用体21および22が取付けられており、作用点Pに
作用する力はすべてこの作用体21および22を介して
与えられることになる。ここで、作用点Pに関して、X
軸方向に加わる力をFX、Y軸方向に加わる力をFYS
Z軸方向に加わる力をFZ、X軸回りに加わるモーメン
トをMX、Y軸回りに加わるモーメントをMY、、Z軸
回りに加わるモーメントをMZとすれば、名刀は第2図
の各矢印で示す方向に定義される。すなわち、X軸方向
に加わる力FXは作用体21および22をともに図の右
方に動かすような力になり、Y軸方向に加わる力FYは
作用体21および22をともに図の紙面に垂直上方に動
かすような力になり、Z軸方向に加わる力FZは作用体
21および22をともに図の下方に動かすような力にな
る。また、X軸回りのモーメントMXは作用体21を紙
面に垂直上方に、作用体22を紙面に垂直下方に動かす
ようなモーメントに、Y軸回りのモーメントMYは作用
体21を図の左方に、作用体22を図の右方に動かすよ
うなモーメントに、Z軸回りのモーメントMZは作用体
21および22をともに装置−左方からみて時計回りに
動かすようなモーメントになる。
Now, as shown in FIGS. 1 and 2, the point of action P located at the center of the action portion 16 is the origin of the XYZ three-dimensional coordinate system,
Assume that the three axes x, y, and z are defined as shown in the figure. In other words, in Fig. 1, the right side of the figure is in the X-axis pressure direction,
The lower part is in the Y-axis pressure direction, the lower part perpendicular to the paper is in the Z-axis positive direction,
Each shall be defined. Above and below the action part 16,
Effecting bodies 21 and 22 are attached, and all forces acting on the point of application P are applied via these acting bodies 21 and 22. Here, with respect to the point of action P,
FX is the force applied in the axial direction, and FYS is the force applied in the Y-axis direction.
If the force applied in the Z-axis direction is FZ, the moment applied around the X-axis is MX, the moment applied around the Y-axis is MY, and the moment applied around the Z-axis is MZ, famous swords are indicated by the arrows in Figure 2. Defined in direction. That is, the force FX applied in the X-axis direction becomes a force that moves both the effecting bodies 21 and 22 to the right in the figure, and the force FY applied in the Y-axis direction causes both the effecting bodies 21 and 22 to move upward perpendicularly to the plane of the figure. The force FZ applied in the Z-axis direction becomes a force that moves both the effecting bodies 21 and 22 downward in the figure. In addition, the moment MX around the X axis is a moment that moves the acting body 21 upward perpendicularly to the plane of the paper and the moment that moves the acting body 22 downwards perpendicularly to the plane of the paper, and the moment MY around the Y axis is a moment that moves the acting body 21 to the left in the figure. The moment MZ around the Z-axis becomes a moment that moves the effecting bodies 21 and 22 clockwise when viewed from the left side of the apparatus.

16組の抵抗素子群R1−RIBは、第1図に示すよう
なシンメトリックな位置に配される。すなわち、架橋部
12にはR1−R4が、架橋部13にはR5−R8が、
架橋部14にはR9−R12が、架橋部15にはR13
〜R1Bが、それぞれ設けられている。各架橋部につい
てみると、固定部11の近傍に一対、作用部16の近傍
に一対の抵抗素子群が設けられ、各一対の抵抗素子群は
X軸またはY軸を挟んで両側に設けられている。
The 16 resistance element groups R1-RIB are arranged in symmetrical positions as shown in FIG. That is, R1-R4 are in the crosslinking part 12, R5-R8 are in the crosslinking part 13,
R9-R12 is in the crosslinking part 14, and R13 is in the crosslinking part 15.
~R1B are provided, respectively. Regarding each bridge part, a pair of resistance element groups are provided near the fixed part 11 and a pair of resistance element groups are provided near the action part 16, and each pair of resistance element groups is provided on both sides of the X-axis or Y-axis. There is.

このような16組の抵抗素子群を用いて、第3図(a)
〜(f)に示すような6とおりのブリッジがJ1a成さ
れている。各ブリッジにはそれぞれ電源30が接続され
、また、FX、FY、FZ、MX。
Using 16 resistor element groups like this, Figure 3(a)
Six types of bridges as shown in ~(f) are formed in J1a. A power supply 30 is connected to each bridge, and FX, FY, FZ, and MX.

MY 、 Mz ニ比例した電圧V FX、V FY、
V FZ。
MY, Mz 2 proportional voltages V FX, V FY,
VFZ.

VMX、VMY、VMZをブリッジ電圧として出力する
電圧計41〜46が接続されている。
Voltmeters 41 to 46 that output VMX, VMY, and VMZ as bridge voltages are connected.

なお、このブリッジ回路図で示されている各抵抗素子の
記号は、その抵抗素子群の中の1つの抵抗素子を意味し
ており、同一記号が付されている抵抗素子であってもそ
れらは同一の抵抗素子群に属する別な抵抗素子を意味す
るものとする。たとえばR1は第3図(b)と(d)の
2つのブリッジで用いられているが、実は第1図のR1
の位置には2つの抵抗素子が配されており、異なるブリ
ッジでは異なる抵抗素子が用いられる。
The symbol of each resistor element shown in this bridge circuit diagram means one resistor element in the resistor element group, and even if the resistor elements have the same symbol, they are different. It means another resistance element belonging to the same resistance element group. For example, R1 is used in the two bridges shown in Figure 3(b) and (d), but R1 in Figure 1 is actually
Two resistive elements are arranged at the positions, and different resistive elements are used in different bridges.

以下、説明の便宜上、抵抗素子群Rx(x−1〜16)
に属する1抵抗素子を示すのにも、同一記号Rxを用い
ることにする。
Hereinafter, for convenience of explanation, resistance element group Rx (x-1 to 16)
The same symbol Rx will also be used to indicate one resistance element belonging to .

装置の動作 以下、上述の装置の動作について説明する。第1図に示
すような抵抗素子の配置を行うと、作用点Pに力または
モーメントF X、 F Y、 F Z、MX、MY。
Operation of the Apparatus The operation of the above-mentioned apparatus will be explained below. When the resistance elements are arranged as shown in FIG. 1, forces or moments F X, F Y, F Z, MX, MY are applied to the point of application P.

MZが加わったときに、各抵抗素子R1〜R16は第4
図に示す表(各抵抗素子はP型の半導体から成るものと
する。)のような電気抵抗変化を生じる。ここで“0”
は変化なし、“十″は電気抵抗の増加、“−“は電気抵
抗の減少を示す。
When MZ is added, each resistance element R1 to R16 is
The electrical resistance changes as shown in the table shown in the figure (assuming that each resistance element is made of a P-type semiconductor). Here “0”
indicates no change, "10" indicates an increase in electrical resistance, and "-" indicates a decrease in electrical resistance.

ここで、第4図のような結果が得られる理由を第5図〜
第10図を参照して簡単に説明する。第5図〜第10図
は、作用点Pに力またはモーメントF X、 F Y、
 F Z、MX、MY、MZ l)<加わったときに、
架橋部に生じる応力歪みおよび電気抵抗の変化を示す図
で、各図(a)は架橋部の上面図、各図(b)は正断面
図、各図(C)は側断面図である。たとえば、第5図で
は、作用点PにX軸方向の力FXが作用したときの状態
が示されている。力FXにより架橋部14は伸び、架橋
部15は縮むことになる。したがって、架橋部14にあ
る抵抗素子(R9−R12)は伸びて電気抵抗が増加し
くP型半導体の場合)、架橋部15にある抵抗素子(R
13〜R1G)は縮んで電気抵抗が減少する。架橋部1
2および13にある抵抗素子は、配置位置によって伸び
たり縮んだりする。結局、第4図の表第1欄のような結
果が得られることが容易に理解できよう。以下、第6図
〜第10図を参照すれば、第4図の表第2欄〜第6欄の
結果が得られることも理解できよう。
Here, the reason why the results shown in Figure 4 are obtained is shown in Figures 5 to 5.
This will be briefly explained with reference to FIG. Figures 5 to 10 show forces or moments F X, F Y,
F Z, MX, MY, MZ l) <When joining,
FIGS. 3A and 3B are diagrams showing changes in stress strain and electrical resistance occurring in the bridged portion, in which each figure (a) is a top view of the bridged portion, each figure (b) is a front sectional view, and each figure (C) is a side sectional view. For example, FIG. 5 shows a state when a force FX in the X-axis direction is applied to the point of application P. The force FX causes the bridge portion 14 to expand and the bridge portion 15 to contract. Therefore, the resistance element (R9-R12) in the bridge part 14 stretches and increases its electrical resistance (in the case of a P-type semiconductor), and the resistance element (R9-R12) in the bridge part 15 increases (in the case of a P-type semiconductor).
13 to R1G) is shrunk and the electrical resistance decreases. Bridge part 1
The resistance elements 2 and 13 expand or contract depending on their placement positions. In the end, it is easy to understand that the results shown in the first column of the table in FIG. 4 are obtained. Hereinafter, by referring to FIGS. 6 to 10, it will be understood that the results in columns 2 to 6 of the table in FIG. 4 can be obtained.

さて、ここで各抵抗素子R1−RlBによって第3図に
示すようなブリッジが構成されていることを考慮すれば
、作用点Pに加わるF X、 F Y、 F Z。
Now, if we take into consideration that each resistance element R1-RlB forms a bridge as shown in FIG. 3, F X, F Y, F Z applied to the point of action P.

MX、MY、MZと、電圧計41〜46!;:現れる検
出電圧VFX、VFY、VFZ、VMX、VMY、VM
Zとの関係は第11図に示す表のようになる。ここで、
“0”は電圧変化が生じないことを示し、“V″は加わ
る力に依存した電圧変化が生じることを示す。電圧変化
の極性は加わる力の向きに依存し、電圧変化の大きさは
加わる力の大きさに依存することになる。
MX, MY, MZ and voltmeters 41-46! ;: Appearing detection voltages VFX, VFY, VFZ, VMX, VMY, VM
The relationship with Z is as shown in the table shown in FIG. here,
"0" indicates that no voltage change occurs, and "V" indicates that a voltage change occurs depending on the applied force. The polarity of the voltage change depends on the direction of the applied force, and the magnitude of the voltage change depends on the magnitude of the applied force.

第11図に示すような表が得られることは、第3図の回
路図でブリッジのそれぞれ対辺となる抵抗素子の抵抗値
の積が互いに等しい場合に、電圧変化がないことを考え
れば容易に理解できよう。
Obtaining the table shown in Figure 11 is easy if we consider that in the circuit diagram of Figure 3, if the products of the resistance values of the resistor elements on opposite sides of the bridge are equal to each other, there is no voltage change. I can understand.

たとえば、力FXが加わった場合、各抵抗素子は第4図
の表第1欄のような電気抵抗の変化を生じる。ここで第
3図(a)を参照すると、R9,RIO。
For example, when force FX is applied, each resistance element causes a change in electrical resistance as shown in the first column of the table in FIG. Referring now to FIG. 3(a), R9, RIO.

R11,R12はともに抵抗値が増加し、R13,R1
4゜RJ5. RIBはともに抵抗値が減少する。した
がって、対辺となる抵抗素子の抵抗値の積に大きな差が
生じ、電圧変化“V″が検出されることになる。
Both R11 and R12 have increased resistance values, and R13 and R1
4°RJ5. The resistance value of both RIBs decreases. Therefore, a large difference occurs in the product of the resistance values of the resistance elements on opposite sides, and a voltage change "V" is detected.

一方、第3図(b)〜(「)のブリッジ回路においては
、ブリッジ電圧に変化は生じない。たとえば、第3図(
b)の回路では、R1が−°であればR2が“+”とな
り、多枝ごとに抵抗変化が相殺されてしまう。このよう
に、力FXの作用はVFXにのみ影響を及ぼし、VFX
の測定によって力FXを独立して検出することができる
On the other hand, in the bridge circuits shown in Fig. 3(b) to ('), no change occurs in the bridge voltage.
In the circuit b), if R1 is -°, R2 becomes "+", and the resistance changes are canceled out for each branch. In this way, the action of force FX only affects VFX, and VFX
The force FX can be detected independently by measuring .

以上、結局第11図の表において、対角成分のみがV”
であり、それ以外はすべて“0”であるということは、
何ら演算を行うことなしに、各検出値を直接電圧計の読
みとして得ることができることを示している。
As mentioned above, in the table of Fig. 11, only the diagonal component is V''
, and everything else is “0”, which means that
This shows that each detected value can be obtained directly as a voltmeter reading without performing any calculations.

なお、上述のようなブリッジを構成することによって、
応力以外の要因に基づく抵抗変化の影響を打消すことが
できる。たとえば、温度によって各抵抗素子の電気抵抗
が変化するが、ブリッジを構成するすべての抵抗素子が
ほぼ同等に変化するため、この温度変化の影響は相殺さ
れるのである。
By configuring the bridge as described above,
The effects of resistance changes due to factors other than stress can be canceled out. For example, the electrical resistance of each resistance element changes depending on the temperature, but since all the resistance elements making up the bridge change almost equally, the effects of this temperature change are canceled out.

したがって、このブリッジ構成によってより高精度の測
定を行うことができるようになる。
Therefore, this bridge configuration allows for more accurate measurements.

他の実施例 以上、本発明を図示する一実施例に基づいて説明したが
、本発明はこのような実施例のみに限定されるわけでは
ない。本発明の基本概念は、二次元平面上に′W41図
に示すような配置で抵抗素子を配し、各抵抗素子の応力
歪みに起因する抵抗変化に基づいて、6つの力成分を検
出することである。
Other Embodiments Although the present invention has been described above based on an illustrative embodiment, the present invention is not limited to only such an embodiment. The basic concept of the present invention is to arrange resistance elements on a two-dimensional plane as shown in Figure W41, and to detect six force components based on resistance changes caused by stress strain in each resistance element. It is.

起歪体10に形成される架橋部は、作用点Pに加わる力
によって歪みを生じる形であればよく、第12図に示す
ように各部にスリット17を設けるようにして架橋部1
2〜15を形成するようにしてもよい。
The bridge formed in the strain-generating body 10 may be of any shape as long as it is strained by the force applied to the point of action P, and as shown in FIG.
2 to 15 may be formed.

また、抵抗素子としては、前述の実施例ではシリコンの
単結晶基板上に不純物を拡散することによって形成した
ものを用いたが、一般的なストレーンゲージを一平面上
に貼りつけるようにしてもよい。ただ、このように平面
上に抵抗素子を形成するという点から、本実施例のよう
に半導体ブレーナプロセスによって容易に製造できる半
導体の抵抗素子を用いるのが好ましい。
Furthermore, in the above-described embodiment, a resistance element formed by diffusing impurities on a silicon single crystal substrate was used as a resistance element, but a general strain gauge may also be pasted on one plane. . However, since the resistance element is formed on a plane in this manner, it is preferable to use a semiconductor resistance element that can be easily manufactured by the semiconductor brainer process as in this embodiment.

また、一般に半導体基板はもろい性質を有するため、実
際に製品化する」−では、第13図に示すように起歪体
10に剛性を存する支持基板23を接着するのが望まし
い。
Furthermore, since semiconductor substrates generally have brittle properties, it is desirable to adhere a rigid supporting substrate 23 to the strain-generating body 10 as shown in FIG. 13 when the semiconductor substrate is actually manufactured into a product.

上述の実施例では、抵抗素子R1−RlBは定常状態に
おいてすべて同じ抵抗値を有し、同じ応力歪みに対して
同じ抵抗変化を生ずるものを用いたが、必ずしもこのよ
うな同一の抵抗素子を用いる必要はない。ただ、この場
合、第11図に示すような表において、対角成分以外が
必ずしも“0”にはならず、所定の行列演算が必要にな
る。したがって、検出のための演算をより単純化する上
では、上述の実施例のように同一の抵抗素子を用いるよ
うにするのが好ましい。
In the above embodiment, the resistance elements R1 to RlB all have the same resistance value in a steady state and produce the same resistance change in response to the same stress strain, but it is not necessary to use such identical resistance elements. There's no need. However, in this case, in a table as shown in FIG. 11, components other than the diagonal do not necessarily become "0", and a predetermined matrix operation is required. Therefore, in order to further simplify the calculation for detection, it is preferable to use the same resistance element as in the above embodiment.

〔発明の効果〕〔Effect of the invention〕

以上のとおり本発明によれば、複数の抵抗素子を平面上
の所定位置に形成し、この抵抗素子の抵抗変化に基づい
て、作用点に働く3方向の力および3方向のモーメント
を検出するようにしたため、装置自体の構造が単純にな
り、しかも検出のための演算も単純になる。
As described above, according to the present invention, a plurality of resistance elements are formed at predetermined positions on a plane, and forces and moments in three directions acting on a point of application are detected based on resistance changes of the resistance elements. This simplifies the structure of the device itself and also simplifies the calculations for detection.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る力検出装置の上面図、
第2図は第1図の装置を切断・線A−Aで切った断面図
、第3図は第1図に示す装置の各抵抗素子を用いて形成
した6つのブリッジの回路図、第4図は第1図に示す装
置の各抵抗素子の抵抗変化を示す図表、第5図は第1図
に示す装置にX軸方向の力が作用したときの状態を示す
図、第6図は第1図に示す装置にY軸方向の力が作用し
たときの状態を示す図、第7図は第1図に示す装置r!
tにZ軸方向の力が作用したときの状態を示す図、第8
図は第1図に示す装置にX軸方向のモーメントが作用し
たときの状態を示す図、第9図は第1図に示す装置にY
軸回りのモーメントが作用したときの状態を示す図、第
10図は第1図に示す装置にZ軸回りのモーメントが作
用したときの状態を示す図、第11図は第1図に示す装
置において検出すべき力と検出電圧との関係を示す図表
、第12図は本発明の別な実施例に係る力検出装置の上
面図、第13図は本発明の更に別な実施例に係る検出装
置の側面図である。 10・・・起歪体、11・・・固定部、12〜15・・
・架橋体、16・・・作用部、17・・・スリット、2
1゜22・・・作用体、23・・・支持基板、R1−R
lB・・・抵抗素子、P・・・作用点。 出願人代理人  佐  藤  −雄 (α)(b) (c)          (d) 第3図 (b)   第7図 (b)   第9図 第13図
FIG. 1 is a top view of a force detection device according to an embodiment of the present invention;
2 is a cross-sectional view of the device shown in FIG. 1 taken along line A-A, FIG. 3 is a circuit diagram of six bridges formed using each resistance element of the device shown in FIG. 1, and FIG. The figure is a chart showing the resistance change of each resistance element of the device shown in FIG. 1, FIG. 5 is a chart showing the state when a force in the X-axis direction is applied to the device shown in FIG. A diagram showing the state when a force in the Y-axis direction is applied to the device shown in FIG. 1, and FIG. 7 is a diagram showing the state when the device shown in FIG.
8th diagram showing the state when a force in the Z-axis direction is applied to t
The figure shows the state when a moment in the X-axis direction is applied to the device shown in FIG.
A diagram showing the state when a moment around the axis is applied, FIG. 10 is a diagram showing the state when a moment around the Z axis is applied to the device shown in FIG. 1, and FIG. 11 is a diagram showing the state when the device shown in FIG. 1 is applied. FIG. 12 is a top view of a force detection device according to another embodiment of the present invention, and FIG. 13 is a detection diagram according to still another embodiment of the present invention. FIG. 3 is a side view of the device. 10... Strain body, 11... Fixed part, 12-15...
・Crosslinked body, 16... Action part, 17... Slit, 2
1゜22... Effecting body, 23... Support substrate, R1-R
lB...resistance element, P...point of action. Applicant's agent Yu Sato (α) (b) (c) (d) Figure 3 (b) Figure 7 (b) Figure 9 Figure 13

Claims (1)

【特許請求の範囲】 1、XYZ三次元座標系において、原点を作用点として
各軸方向に作用する力および各軸回りに作用するモーメ
ントを検出する力検出装置であって、 原点の両側にX軸に沿って形成された第1の架橋部と、 原点の両側にY軸に沿って形成された第2の架橋部と、
を設け、 原点に力を加えることによって前記各架橋部に歪みが生
じるように、前記各架橋部の両端を固定部として固定し
、 前記各架橋部のXY平面上に、機械的変形によって電気
抵抗が変化する性質をもつ複数の抵抗素子からなる抵抗
素子群を、 X軸正方向の原点近傍にX軸を挟んで一対、X軸負方向
の原点近傍にX軸を挟んで一対、X軸正方向の固定部近
傍にX軸を挟んで一対、X軸負方向の固定部近傍にX軸
を挟んで一対、Y軸正方向の原点近傍にY軸を挟んで一
対、Y軸負方向の原点近傍にY軸を挟んで一対、Y軸正
方向の固定部近傍にY軸を挟んで一対、Y軸負方向の固
定部近傍にY軸を挟んで一対、のそれぞれの位置のうち
、主要な位置にそれぞれ設け、 各抵抗素子の電気抵抗の変化に基づいて、原点に作用す
る力の変化を検出することを特徴とする力検出装置。 2、抵抗素子によって以下のようなブリッジを構成して
各力の検出を行うことを特徴とする特許請求の範囲第1
項記載の力検出装置。 (1)X軸正方向にありこのX軸に関してY軸の正方向
側にある2つの抵抗素子を直列接続した抵抗対と、Y軸
の負方向側にある2つの抵抗素子を直列接続した抵抗対
と、が対辺になり、 X軸負方向にありこのX軸に関してY軸の正方向側にあ
る2つの抵抗素子を直列接続した抵抗対と、Y軸の負方
向側にある2つの抵抗素子を直列接続した抵抗対と、が
別な対辺になるように構成したブリッジのブリッジ電圧
によりX軸方向の力を検出する。 (2)Y軸正方向にありこのY軸に関してX軸の正方向
側にある2つの抵抗素子を直列接続した抵抗対と、X軸
の負方向側にある2つの抵抗素子を直列接続した抵抗対
と、が対辺になり、 Y軸負方向にありこのY軸に関してX軸の正方向側にあ
る2つの抵抗素子を直列接続した抵抗対と、X軸の負方
向側にある2つの抵抗素子を直列接続した抵抗対と、が
別な対辺になるように構成したブリッジのブリッジ電圧
によりY軸方向の力を検出する。 (3)X軸正方向の固定部近傍にありこのX軸に関して
Y軸の正方向側にある抵抗素子と、X軸負方向の固定部
近傍にありこのX軸に関してY軸の負方向側にある抵抗
素子とを直列接続した抵抗対と、 X軸正方向の固定部近傍にありこのX軸に関してY軸の
負方向側にある抵抗素子と、X軸負方向の固定部近傍に
ありこのX軸に関してY軸の正方向側にある抵抗素子と
を直列接続した抵抗対と、が対辺になり、 X軸正方向の原点近傍にありこのX軸に関してY軸の正
方向側にある抵抗素子と、X軸負方向の原点近傍にあり
このX軸に関してY軸の負方向側にある抵抗素子とを直
列接続した抵抗対と、X軸正方向の原点近傍にありこの
X軸に関してY軸の負方向側にある抵抗素子と、X軸負
方向の原点近傍にありこのX軸に関してY軸の正方向側
にある抵抗素子とを直列接続した抵抗対と、が別な対辺
になるように構成したブリッジのブリッジ電圧によりZ
軸方向の力を検出する。 (4)Y軸正方向の固定部近傍にある2つの抵抗素子を
直列接続した抵抗対と、 Y軸負方向の原点近傍にある2つの抵抗素子を直列接続
した抵抗対と、が対辺になり、 Y軸正方向の原点近傍にある2つの抵抗素子を直列接続
した抵抗対と、 Y軸負方向の固定部近傍にある2つの抵抗素子を直列接
続した抵抗対と、が別な対辺になるように構成したブリ
ッジのブリッジ電圧によりX軸回りの力を検出する。 (5)X軸正方向の固定部近傍にある2つの抵抗素子を
直列接続した抵抗対と、 X軸負方向の原点近傍にある2つの抵抗素子を直列接続
した抵抗対と、が対辺になり、 X軸正方向の原点近傍にある2つの抵抗素子を直列接続
した抵抗対と、 X軸負方向の固定部近傍にある2つの抵抗素子を直列接
続した抵抗対と、が別な対辺になるように構成したブリ
ッジのブリッジ電圧によりY軸回りの力を検出する。 (6)X軸正方向の原点または固定部近傍にありこのX
軸に関してY軸の正方向側にある抵抗素子とX軸負方向
の原点または固定部近傍にありこのX軸に関してY軸の
負方向側にある抵抗素子とを直列に接続した抵抗対と、 Y軸正方向の原点または固定部近傍にありこのY軸に関
してX軸の負方向側にある抵抗素子とY軸負方向の原点
または固定部近傍にありこのY軸に関してX軸の正方向
側にある抵抗素子とを直列に接続した抵抗対と、が対辺
になり、 X軸負方向の原点または固定部近傍にありこのX軸に関
してY軸の正方向側にある抵抗素子とX軸正方向の原点
または固定部近傍にありこのX軸に関してY軸の負方向
側にある抵抗素子とを直列に接続した抵抗対と、 Y軸負方向の原点または固定部近傍にありこのY軸に関
してX軸の負方向側にある抵抗素子とY軸正方向の原点
または固定部近傍にありこのY軸に関してX軸の正方向
側にある抵抗素子とを直列に接続した抵抗対と、とが別
な対辺になるように構成したブリッジのブリッジ電圧に
よりZ軸回りの力を検出する。 3、力が作用していない状態で各抵抗素子がすべてほぼ
同じ抵抗値を有し、架橋部に生じる歪みに基づく電気抵
抗の変化が各抵抗素子についてすべてほぼ等しいことを
特徴とする特許請求の範囲第1項または第2項記載の力
検出装置。 4、各架橋部に接するような支持基板を更に設けたこと
を特徴とする特許請求の範囲第1項乃至第3項のいずれ
かに記載の力検出装置。
[Claims] 1. A force detection device that detects forces acting in each axis direction and moments acting around each axis with the origin as the point of action in an XYZ three-dimensional coordinate system, comprising: a first bridge formed along the axis; a second bridge formed along the Y axis on both sides of the origin;
, fixing both ends of each of the bridges as fixing parts so that distortion is caused in each of the bridges by applying a force to the origin, and creating electrical resistance on the XY plane of each of the bridges by mechanical deformation. A resistance element group consisting of a plurality of resistance elements having the property that One pair across the X-axis near the fixed part in the direction, one pair across the X-axis near the fixed part in the negative direction of the X-axis, one pair across the Y-axis near the origin in the positive direction of the Y-axis, and the origin in the negative direction of the Y-axis. One pair in the vicinity with the Y-axis in between, one pair in the vicinity of the fixed part in the positive direction of the Y-axis with the Y-axis in between, and one pair in the vicinity of the fixed part in the negative direction of the Y-axis with the Y-axis in between. A force detection device is provided at each position and detects a change in force acting on an origin based on a change in electrical resistance of each resistance element. 2. Claim 1, characterized in that each force is detected by forming a bridge as shown below using a resistive element.
Force detection device as described in section. (1) A resistor pair in which two resistive elements located in the positive direction of the X-axis are connected in series on the positive direction of the Y-axis with respect to this X-axis, and a resistor in which two resistive elements located in the negative direction of the Y-axis are connected in series. A pair and are opposite sides, and a resistor pair is a series connection of two resistive elements located in the negative direction of the X-axis and located on the positive direction of the Y-axis with respect to this X-axis, and two resistive elements located on the negative side of the Y-axis. The force in the X-axis direction is detected by the bridge voltage of a bridge configured such that the resistor pair is connected in series and the bridge is on a different opposite side. (2) A resistor pair in which two resistance elements located in the positive direction of the Y-axis are connected in series on the positive side of the X-axis with respect to this Y-axis, and a resistor in which two resistance elements are connected in series on the negative side of the A pair and are opposite sides, and a resistor pair is a series connection of two resistive elements located in the negative direction of the Y-axis and located on the positive side of the X-axis with respect to this Y-axis, and two resistive elements located on the negative side of the X-axis. The force in the Y-axis direction is detected by the bridge voltage of a bridge configured such that the resistor pair is connected in series and the bridge is on a different opposite side. (3) A resistance element located near the fixed part in the positive direction of the X-axis and on the positive side of the Y-axis with respect to this X-axis, and a resistive element located near the fixed part in the negative direction of the X-axis and on the negative side of the Y-axis with respect to this X-axis. A resistor pair that is connected in series with a certain resistance element, a resistance element that is near a fixed part in the positive direction of the X-axis and on the negative side of the Y-axis with respect to this X-axis, and a resistance element that is near a fixed part in the negative direction of the X-axis and is A resistor pair connected in series with a resistor element located on the positive side of the Y-axis with respect to the axis is the opposite side, and a resistive element located near the origin in the positive direction of the X-axis and on the positive side of the Y-axis with respect to this X-axis is the opposite side. , a resistor pair connected in series with a resistance element located near the origin in the negative direction of the X-axis and located on the negative side of the Y-axis with respect to this X-axis, and a resistor element located near the origin in the positive direction of the A resistor element located on the direction side and a resistor pair connected in series with a resistor element located near the origin in the negative direction of the X-axis and located on the positive direction side of the Y-axis with respect to this X-axis are configured so that they are on different opposite sides. Z due to the bridge voltage of the bridge
Detects axial force. (4) The opposite side is a resistance pair in which two resistance elements are connected in series near the fixed part in the positive direction of the Y-axis, and a resistance pair in which two resistance elements are connected in series near the origin in the negative direction of the Y-axis. , A resistance pair in which two resistance elements are connected in series near the origin in the positive direction of the Y-axis, and a resistance pair in which two resistance elements are connected in series near the fixed part in the negative direction of the Y-axis are different opposite sides. The force around the X-axis is detected by the bridge voltage of the bridge configured as follows. (5) The opposite side is a resistance pair in which two resistance elements are connected in series near the fixed part in the positive direction of the X-axis, and a resistance pair in which two resistance elements are connected in series near the origin in the negative direction of the X-axis. , A resistance pair in which two resistance elements are connected in series near the origin in the positive direction of the X-axis, and a resistance pair in which two resistance elements are connected in series near the fixed part in the negative direction of the X-axis are different opposite sides. The force around the Y axis is detected by the bridge voltage of the bridge configured as follows. (6) This X is located at the origin in the positive direction of the X-axis or near the fixed part.
A resistor pair in which a resistor element located on the positive side of the Y-axis with respect to the Y-axis and a resistor element located near the origin or a fixed part in the negative direction of the X-axis and located on the negative side of the Y-axis with respect to the X-axis are connected in series; The resistance element is located near the origin or the fixed part in the positive direction of the axis and is on the negative side of the X-axis with respect to this Y-axis, and the resistive element is located near the origin or the fixed part in the negative direction of the Y-axis and is on the positive side of the X-axis with respect to this Y-axis. A resistor pair with a resistor element connected in series is the opposite side, and the resistor element is located near the origin in the negative direction of the X-axis or the fixed part and is on the positive side of the Y-axis with respect to this X-axis, and the origin in the positive direction of the X-axis. Or, a resistor pair connected in series with a resistance element located near the fixed part and located on the negative side of the Y-axis with respect to this A resistor pair is connected in series with a resistor element located on the direction side and a resistor element located near the origin or the fixed part in the positive direction of the Y axis and located on the positive side of the X axis with respect to this Y axis, and are separate opposite sides. The force around the Z-axis is detected by the bridge voltage of the bridge configured as follows. 3. A patent claim characterized in that each resistance element all has approximately the same resistance value in a state where no force is applied, and the change in electrical resistance due to strain occurring in the bridge portion is approximately the same for each resistance element. The force detection device according to scope 1 or 2. 4. The force detection device according to any one of claims 1 to 3, further comprising a support substrate in contact with each bridge portion.
JP62101272A 1987-04-24 1987-04-24 Force detector Pending JPS63266329A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP62101272A JPS63266329A (en) 1987-04-24 1987-04-24 Force detector
DE3852271T DE3852271T2 (en) 1987-04-24 1988-04-22 FORCE AND TORQUE DETECTOR USING A RESISTANCE.
US07/295,601 US4905523A (en) 1987-04-24 1988-04-22 Force detector and moment detector using resistance element
EP88903392A EP0311695B1 (en) 1987-04-24 1988-04-22 Force and moment detector using resistor
PCT/JP1988/000394 WO1988008521A1 (en) 1987-04-24 1988-04-22 Force and moment detector using resistor
US07/432,796 US4969366A (en) 1987-04-24 1989-11-07 Moment detector using resistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62101272A JPS63266329A (en) 1987-04-24 1987-04-24 Force detector

Publications (1)

Publication Number Publication Date
JPS63266329A true JPS63266329A (en) 1988-11-02

Family

ID=14296247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62101272A Pending JPS63266329A (en) 1987-04-24 1987-04-24 Force detector

Country Status (1)

Country Link
JP (1) JPS63266329A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264198A (en) * 2000-03-16 2001-09-26 Olympus Optical Co Ltd Method for manufacturing multiaxial tactile sensor and tactile sensor
JP2019503483A (en) * 2016-01-19 2019-02-07 エーティーアイ インダストリアル オートメーション, インコーポレイテッドAti Industrial Automation, Inc. Force / torque sensor and method
JP2019132636A (en) * 2018-01-30 2019-08-08 ミネベアミツミ株式会社 Sensor assembly, stylus pen, drawing method guidance system, dental technician device, dental technician method display system, medical equipment, remote surgery system, and surgical method display system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61223626A (en) * 1985-03-29 1986-10-04 Nec Corp Sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61223626A (en) * 1985-03-29 1986-10-04 Nec Corp Sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264198A (en) * 2000-03-16 2001-09-26 Olympus Optical Co Ltd Method for manufacturing multiaxial tactile sensor and tactile sensor
JP2019503483A (en) * 2016-01-19 2019-02-07 エーティーアイ インダストリアル オートメーション, インコーポレイテッドAti Industrial Automation, Inc. Force / torque sensor and method
US10422707B2 (en) 2016-01-19 2019-09-24 Ati Industrial Automation, Inc. Compact robotic force/torque sensor including strain gages
JP2019132636A (en) * 2018-01-30 2019-08-08 ミネベアミツミ株式会社 Sensor assembly, stylus pen, drawing method guidance system, dental technician device, dental technician method display system, medical equipment, remote surgery system, and surgical method display system

Similar Documents

Publication Publication Date Title
EP0311695B1 (en) Force and moment detector using resistor
US7441470B2 (en) Strain gauge type sensor and strain gauge type sensor unit using the same
US4448083A (en) Device for measuring components of force and moment in plural directions
US7500406B2 (en) Multiaxial sensor
US6512364B1 (en) Testing sensor
EP1645859A1 (en) Multi-axis sensor
JP3141954B2 (en) Force / acceleration / magnetism sensors using piezoelectric elements
US7578162B2 (en) Apparatus for detecting a physical quantity acting as an external force and method for testing and manufacturing this apparatus
US20080034897A1 (en) Force sensor chip
KR101542971B1 (en) Piezoresistive sensor
CN105829849A (en) Semiconductor pressure sensor
CN104677543B (en) Using piezoelectric six-dimension power/torque sensor of 6 groups of dynamometry sensing units
CN110132477A (en) A kind of decoupling method and six-dimension force sensor of six-dimension force sensor
WO2019009368A1 (en) Strain gauge and multiple axis force sensor
JP2022191485A (en) Multi-axis tactile sensor
US7536919B2 (en) Strain gauge
JPS63266329A (en) Force detector
US20100000327A1 (en) Strain gauge type sensor
JP2004045044A (en) 6-axis inner force sense sensor
JP2663144B2 (en) Robot gripper
JP6767559B2 (en) Strain gauge and multi-axial force sensor
JPH0821721B2 (en) Force detection device
JPH02203229A (en) Force detecting device
CN206523262U (en) A kind of temperature self-compensation semiconductor pressure resistance strain gauge
JPH03276072A (en) Signal processing circuit for acceleration detecting device