JPS63266328A - Force detector on two-dimensional plane - Google Patents

Force detector on two-dimensional plane

Info

Publication number
JPS63266328A
JPS63266328A JP10127187A JP10127187A JPS63266328A JP S63266328 A JPS63266328 A JP S63266328A JP 10127187 A JP10127187 A JP 10127187A JP 10127187 A JP10127187 A JP 10127187A JP S63266328 A JPS63266328 A JP S63266328A
Authority
JP
Japan
Prior art keywords
resistance
detection
dimensional plane
force
resistance element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10127187A
Other languages
Japanese (ja)
Other versions
JPH0640037B2 (en
Inventor
Kazuhiro Okada
和廣 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEKUSHII KENKYUSHO KK
Original Assignee
NEKUSHII KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEKUSHII KENKYUSHO KK filed Critical NEKUSHII KENKYUSHO KK
Priority to JP10127187A priority Critical patent/JPH0640037B2/en
Publication of JPS63266328A publication Critical patent/JPS63266328A/en
Publication of JPH0640037B2 publication Critical patent/JPH0640037B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To simply the titled device in structure by forming many detecting resistance elements which are faced to two directions on an insulating substrate, and detecting the force by the variation of an electric resistance of this detecting resistance element. CONSTITUTION:This force detecting device is provided with two bridges X1, X2 in the X direction, and two bridges Y1, Y2 in the Y direction. Each bridge consists of four resistance elements, respectively. For instance, the bridge X1 consists of detection use resistance elements R2, R4, and connection use resistance elements R1, R3. The detecting surface of force goes to an XY plane and on this detecting surface, the detection use resistance elements are distributed lengthwise and laterally like a grating.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は二次元平面上の力検出装置、特に二次元平面上
の荷重分布を測定するための二次元平面上の力検出装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a force detection device on a two-dimensional plane, and particularly to a force detection device on a two-dimensional plane for measuring load distribution on a two-dimensional plane.

〔従来の技術〕[Conventional technology]

二次元平面上の荷重分布を測定するためには、測定面の
微小部分に作用する力を各微小部分ごとに検出する必要
がある。従来の二次元平面上の力検出装置は、測定面に
ピエゾ素子などの力検出素子を二次元的に配列し、各力
検出素子の出力に基づいて二次元的荷重分布の測定を行
っている。
In order to measure the load distribution on a two-dimensional plane, it is necessary to detect the force acting on each minute portion of the measurement surface. Conventional force detection devices on a two-dimensional plane arrange force detection elements such as piezo elements two-dimensionally on the measurement surface, and measure the two-dimensional load distribution based on the output of each force detection element. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来の二次元平面上の力検出装置には、
構造が複雑になり量産に適さないという問題点がある。
However, conventional force detection devices on a two-dimensional plane have
There is a problem that the structure is complicated and it is not suitable for mass production.

たとえば、検出面の分解能を縦横ともに100とした場
合、合計1万個の力検出素子を二次元的に配列しなけれ
ばならず、この配列および配線を考慮すると非常に複雑
な構造になってしまう。
For example, if the resolution of the detection surface is 100 in both the vertical and horizontal directions, a total of 10,000 force detection elements must be arranged two-dimensionally, and this arrangement and wiring will result in a very complicated structure. .

そこで本発明は、構造が単純で量産に適した二次元平面
上の力検出装置を提供することを目的とする。
Therefore, an object of the present invention is to provide a two-dimensional plane force detection device that has a simple structure and is suitable for mass production.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、検出面となる二次元平面上に広がった絶縁基
板上の第1の層上に、第1の方向を向いた多数の検出用
抵抗素子からなる第1の抵抗素子群を形成し、第1の層
とは異なる第2の層上に、第1の方向とは異なる第2の
方向を向いた多数の検出用抵抗素子からなる第2の抵抗
素子群を形成して二次元平面上の力検出装置を構成し、
各抵抗素子は、機械的変形によって電気抵抗が変化する
性質をもつものとし、 第1の抵抗素子群の電気抵抗の変化と、第2の抵抗素子
群の電気抵抗の変化とを検出し、これらの検出結果に基
づいて検出面上に作用する力の位置および大きさを検出
できるようにしたものである。
The present invention forms a first resistance element group consisting of a large number of detection resistance elements facing in a first direction on a first layer on an insulating substrate spread over a two-dimensional plane serving as a detection surface. , a second resistance element group consisting of a large number of detection resistance elements facing in a second direction different from the first direction is formed on a second layer different from the first layer to form a two-dimensional plane. Configure the force detection device on
Each resistance element has the property that its electrical resistance changes due to mechanical deformation, and changes in electrical resistance of the first resistance element group and changes in electrical resistance of the second resistance element group are detected. The position and magnitude of the force acting on the detection surface can be detected based on the detection results.

〔作 用〕[For production]

本発明に係る二次元平面上の力検出装置によれば、第1
の抵抗素子群の検出結果と第2の抵抗素子群の検出結果
との組合わせによって、検出面上での力の作用している
位置およびその大きさを特定することができる。各抵抗
素子群は、機械的変形によって電気抵抗が変化する性質
をもつため、検出面上での力の作用は電気信号として取
出される。第1の抵抗素子群と第2の抵抗素子群とは、
異なる層に形成されているため、互いに干渉しあうこと
なく独立した検出ができる。各抵抗素子は絶縁基板内に
形成されるため、量産に適した単純な構造になる。
According to the force detection device on a two-dimensional plane according to the present invention, the first
By combining the detection results of the second resistance element group and the detection results of the second resistance element group, it is possible to specify the position where the force is acting on the detection surface and its magnitude. Since each resistance element group has the property that its electrical resistance changes due to mechanical deformation, the action of force on the detection surface is extracted as an electrical signal. The first resistance element group and the second resistance element group are
Since they are formed in different layers, they can be detected independently without interfering with each other. Since each resistive element is formed within an insulating substrate, the structure is simple and suitable for mass production.

〔実施例〕〔Example〕

以下本発明を図示する実施例に基づいて説明する。 The present invention will be described below based on illustrated embodiments.

検出部の構成 第1図は本発明の一実施例に係る二次元平面上の力検出
装置の検出部の構成図である。この装置は、図のX方向
に2つのブリッジXi、X2を、図のY方向に2つのブ
リッジYl、Y2を備えている。ここでは説明の便宜上
X、 Yの各方向に2つのブリッジのみを有する装置を
示したが、実際にはそれぞれの方向に多数のブリッジが
配列されている。このブリッジの配列数がその方向の分
解能に相当することになる。
Configuration of Detection Section FIG. 1 is a configuration diagram of a detection section of a force detection device on a two-dimensional plane according to an embodiment of the present invention. This device includes two bridges Xi and X2 in the X direction of the figure, and two bridges Yl and Y2 in the Y direction of the figure. For convenience of explanation, a device having only two bridges in each of the X and Y directions is shown here, but in reality, a large number of bridges are arranged in each direction. The number of bridges arranged corresponds to the resolution in that direction.

X方向に配列されたブリッジXi、X2が第1の抵抗素
子群を構成し、Y方向に配列されたブリッジYl、Y2
が第2の抵抗素子群を構成する。
Bridges Xi and X2 arranged in the X direction constitute a first resistance element group, and bridges Yl and Y2 arranged in the Y direction constitute a first resistance element group.
constitutes the second resistance element group.

第1の抵抗素子群は第2の抵抗素子群の上層に位置する
ため、両者は互いに干渉しあうことなしに独立した測定
を行うことができる。
Since the first resistance element group is located above the second resistance element group, both can perform independent measurements without interfering with each other.

本装置の各ブリッジは、それぞれ4つの抵抗素子からな
る。たとえば、第1の抵抗素子群に属するブリッジX1
は図に示すように抵抗素子R1〜R4の4つの抵抗素子
からなる。このうち、Y方向を向いたR2.R4が検出
用抵抗素子となり、X方向を向いたR1.R3が連結用
抵抗素子となる。逆に、第2の抵抗素子群に属するブリ
ッジY1は図に示すように抵抗素子R5〜R8の4つの
抵抗素子からなり、このうちX方向を向いたR6゜R8
が検出用抵抗素子となり、Y方向を向いたR5、R7が
連結用抵抗素子となる。前述のように、実際の装置では
多数のブリッジがX方向およびY方向に配列されており
、検出用抵抗素子はこの多数のブリッジすべてをまたぐ
ように形成される。
Each bridge of the device consists of four resistive elements. For example, the bridge X1 belonging to the first resistance element group
consists of four resistance elements R1 to R4 as shown in the figure. Of these, R2 facing the Y direction. R4 serves as a detection resistance element, and R1. R3 becomes a connecting resistance element. Conversely, the bridge Y1 belonging to the second resistance element group consists of four resistance elements R5 to R8 as shown in the figure, of which R6°R8 facing the X direction
serves as a detection resistance element, and R5 and R7 facing the Y direction serve as connection resistance elements. As described above, in an actual device, a large number of bridges are arranged in the X direction and the Y direction, and the detection resistive element is formed so as to straddle all of the large number of bridges.

力の検出面はXY平面となるが、この検出面上に検出用
抵抗素子が縦横に格子のように配されることになる。
The force detection surface is the XY plane, and on this detection surface, detection resistive elements are arranged vertically and horizontally like a lattice.

2つの連結用抵抗素子によって、2つの検出用抵抗素子
の端部が連結され、ブリッジが構成される。第1図では
この連結部をハツチングで示す。
The ends of the two detection resistance elements are connected by the two connection resistance elements to form a bridge. In FIG. 1, this connecting portion is indicated by hatching.

連結用抵抗素子は隣接する検出用抵抗素子間を連結する
機能を有すればよいので、検出用抵抗素子に比べて長さ
は非常に短くなる。両者の長さ比は、配列するブリッジ
数が増えるほど大きくなる。
Since the connecting resistive element only needs to have a function of connecting adjacent detecting resistive elements, its length is much shorter than that of the detecting resistive element. The length ratio between the two becomes larger as the number of arranged bridges increases.

検出部の製造方法 上述の各ブリッジは、ポリイミドフィルム等の絶縁基板
上に形成され、しかも各ブリッジを構成する抵抗素子は
、機械的変形によって電気抵抗が変化する性質をもつ。
Method for Manufacturing Detection Unit Each of the bridges described above is formed on an insulating substrate such as a polyimide film, and the resistance elements constituting each bridge have a property that the electrical resistance changes due to mechanical deformation.

第2図に絶縁基板上の具体的な構成図を示す。この第2
図は第1図に示す検出部を切断線A・−Aで切った断面
図に相当する。
FIG. 2 shows a specific configuration diagram on an insulating substrate. This second
The figure corresponds to a cross-sectional view of the detection section shown in FIG. 1 taken along cutting line A.-A.

以下、この検出部の製造方法の一例を示す。まず、ポリ
イミドなどの絶縁基板1上に、プラズマCvDあるいは
光CVD法によってシリコンを堆積し、ピエゾ抵抗効果
を有するシリコン薄膜(たとえば、マイクロクリスタル
シリコン、ポリシリコンなど)を形成する。そしてこの
シリコン薄膜をパターニングしブリッジ回路を形成する
。第1図の装置では、下層にあるブリッジYl、Y2が
形成されることになる。第2図の断面図では、ブリッジ
Y1の構成要素である抵抗索子R8の断面が示されてい
る。
An example of a method for manufacturing this detection section will be shown below. First, silicon is deposited on an insulating substrate 1 made of polyimide or the like by plasma CVD or photoCVD to form a silicon thin film (eg, microcrystalline silicon, polysilicon, etc.) having a piezoresistance effect. This silicon thin film is then patterned to form a bridge circuit. In the device of FIG. 1, the underlying bridges Yl, Y2 will be formed. In the cross-sectional view of FIG. 2, a cross-section of a resistive cable R8, which is a component of the bridge Y1, is shown.

続いて酸化シリコン、窒化シリコンなどの層間絶縁膜2
をCVD法で堆積したのち、再びシリコン薄膜を形成、
バターニングしてブリッジ回路を形成する。第1図の装
置では、上層にあるブリッジXI、X2が形成される。
Next, an interlayer insulating film 2 of silicon oxide, silicon nitride, etc.
After depositing by CVD method, a silicon thin film is formed again.
Pattern it to form a bridge circuit. In the device of FIG. 1, the upper layer bridges XI, X2 are formed.

ことになる。第2図の断面図では、ブリッジX1の構成
要素である抵抗素子R2,R4の断面示示されている。
It turns out. The cross-sectional view of FIG. 2 shows a cross-section of resistive elements R2 and R4, which are constituent elements of the bridge X1.

ここで再び層間絶縁膜2をCVD法で堆積すれば、第2
図に示すような構造を得る。このあと、コンタクトホー
ルの開口を行い、後述する所定の配線をアルミニウムな
どの導体で行う。
Here, if the interlayer insulating film 2 is deposited again by the CVD method, the second
Obtain the structure shown in the figure. After this, contact holes are opened, and predetermined wiring, which will be described later, is performed using a conductor such as aluminum.

ブリッジ回路の配線 第3図にブリッジX1についての配線を一例として示す
。前述のようにこのブリッジは4つの抵抗素子R1〜R
4によって構成されているが、図にハツチングで示すそ
れぞれの連結部3にアルミニウムによる配線層W1〜W
4が接続される。第3図に示すように配線層Wl、W3
を下方に、配線層W2.W4を上方にそれぞれ配線し、
下方の配線層W1.W3間に電源4を、上方の配線層W
2.W4間に電圧計5をそれぞれ接続すれば、第4図に
示すブリッジ回路が構成される。ブリッジY1について
も同様に、配線層W5〜W8を接続し、配線層W5.W
7間に電源を、配線層W6゜W8間に電圧計を、それぞ
れ接続してブリッジ回路を構成する。
Wiring of Bridge Circuit FIG. 3 shows the wiring for bridge X1 as an example. As mentioned above, this bridge consists of four resistive elements R1 to R.
4, wiring layers W1 to W made of aluminum are provided at each connecting portion 3 shown by hatching in the figure.
4 is connected. As shown in FIG. 3, wiring layers Wl, W3
below, the wiring layer W2. Wire W4 upwards,
Lower wiring layer W1. Power supply 4 is connected between W3 and the upper wiring layer W
2. If a voltmeter 5 is connected between W4, a bridge circuit shown in FIG. 4 is constructed. Similarly, for the bridge Y1, the wiring layers W5 to W8 are connected, and the wiring layers W5. W
A power supply is connected between wiring layers W6 and W8, and a voltmeter is connected between wiring layers W6 and W8 to form a bridge circuit.

第5図は、多数の抵抗素子を上述のようにブリッジ構成
し、これを1チツプに納めた装置である。
FIG. 5 shows a device in which a large number of resistive elements are arranged in a bridge structure as described above and housed in one chip.

半導体チップ6の中には、第1図に示すような構造をし
た多数のブリッジからなる第1の抵抗素子群と、第2の
抵抗素子群とが形成されており、それぞれから配線層W
1〜W8が導出されている。
In the semiconductor chip 6, there are formed a first resistance element group and a second resistance element group consisting of a large number of bridges having a structure as shown in FIG.
1 to W8 have been derived.

そこで配線層Wl、W3.W5.W7には電源を、配線
層W2.W4.W6.W8には電圧計を、それぞれ半導
体チップ6の外部に接続して用いることになる。なお、
半導体チップ6は支持基体7の上の固着されている。
Therefore, the wiring layers Wl, W3. W5. A power supply is applied to W7, and a wiring layer W2. W4. W6. Voltmeters are connected to the outside of the semiconductor chip 6 for each W8. In addition,
A semiconductor chip 6 is fixed on a support base 7.

装置の動作 各抵抗素子Rは、ピエゾ抵抗効果を有するシリコンの薄
膜からなる。このため、力が加わると、電気抵抗が変化
することになる。いま、たとえば第3図の構成において
、検出用抵抗素子R2゜R4に力が加わったとすると、
第4図に示すようにこの検出用抵抗素子R2,R4はブ
リッジの対辺をなすので、ブリッジ電圧が電圧計5によ
って検出できる。検出面のX方向には第3図に示すブリ
ッジX1と同じ構造をもったブリッジが多数配列されて
第1の抵抗素子群を構成しているため、検出面の任意の
一点に力が作用した場合、そのX方向の位置は、第1の
抵抗素子群に属するブリッジのブリッジ電圧を検出する
ことによって特定でき、その大きさはブリッジ電圧の大
きさによって特定できる。また、Y方向の位置について
は、第2の抵抗素子群に属するブリッジによって同様に
特定できる。このようにして二次元平面」二の加重分布
の測定が可能になる。
Operation of the Device Each resistive element R is made of a silicon thin film having a piezoresistive effect. Therefore, when force is applied, the electrical resistance changes. For example, in the configuration shown in FIG. 3, if a force is applied to the detection resistance element R2°R4,
As shown in FIG. 4, the detection resistance elements R2 and R4 form opposite sides of the bridge, so the bridge voltage can be detected by the voltmeter 5. In the X direction of the detection surface, a large number of bridges having the same structure as bridge In this case, its position in the X direction can be specified by detecting the bridge voltage of the bridge belonging to the first resistance element group, and its magnitude can be specified by the magnitude of the bridge voltage. Further, the position in the Y direction can be similarly specified by the bridge belonging to the second resistance element group. In this way, it becomes possible to measure the weight distribution in a two-dimensional plane.

本発明の原理によれば、各抵抗素子を必ずしもブリッジ
構成する必要はない。各抵抗素子を単独で配列しても検
出を行うことはできる。しかしながら、抵抗素子は応力
以外の要因によって電気抵抗が変化する可能性があり、
このような要因の影響を相殺するためには本実施例のよ
うにブリッジ構成するのが好ましい。たとえば、温度の
変化によって抵抗素子の電気抵抗に変化が生じるが、ブ
リッジを構成しておけば、検出用抵抗素子と同様に連結
用抵抗素子も抵抗変化を生じるため、温度、変化による
影響はブリッジによって相殺され、温度変化が測定値に
与える影響を軽減することができる。
According to the principles of the present invention, each resistance element does not necessarily have to be configured in a bridge configuration. Detection can also be performed by arranging each resistance element singly. However, the electrical resistance of resistive elements may change due to factors other than stress.
In order to offset the influence of such factors, it is preferable to use a bridge configuration as in this embodiment. For example, a change in temperature causes a change in the electrical resistance of a resistance element, but if a bridge is configured, the resistance of the connection resistance element will also change in the same way as the detection resistance element, so the effects of temperature and changes will be eliminated by the bridge. The effect of temperature changes on measured values can be reduced.

なお前述のように、連結用抵抗素子は検出用抵抗素子に
比べて長さが非常に短くなる。ところが、ブリッジの精
度を高めるためには、ブリッジを構成する4つの抵抗素
子の抵抗値をなるべく同じ大きさにするのが好ましい。
Note that, as described above, the length of the connection resistance element is much shorter than that of the detection resistance element. However, in order to improve the accuracy of the bridge, it is preferable to make the resistance values of the four resistance elements constituting the bridge the same as possible.

したがって、検出用抵抗素子に比べて連結用抵抗素子の
幅を狭くし、両者の抵抗値をほぼ等しくするのがよい。
Therefore, it is preferable to make the width of the connecting resistive element narrower than that of the detecting resistive element, and to make the resistance values of both approximately equal.

また、第5図に示す支持基体7として、シリコンゴムの
ような弾性体を用いれば、検出面の各微小位置における
荷重の有無を0N10FFの形で測定するのに適した装
置が構成でき、弾性領域の広い金属を用いれば、荷重値
に対する線形出力を得るのに適した装置が構成できる。
Furthermore, if an elastic body such as silicone rubber is used as the support base 7 shown in FIG. By using a metal with a large area, a device suitable for obtaining a linear output with respect to a load value can be constructed.

以上のように、本実施例に係る装置は従来のものに比べ
て構造が非常に単純になる。たとえば、X方向を100
分割、Y方向を100分割した分解能で荷重分布の測定
を行なえる装置について考えると、従来装置では100
X100−10000個もの検出素子を二次元的に配列
し、これらそれぞれについて配線を行わねばならなかっ
たが、本実施例に係る装置では、同じ分解能のものを1
00+100−200個のブリッジで実現でき、この2
00個のブリッジについての配線を行うだけでよい。し
かも、本実施例に係る装置は半導体プレーナプロセスに
よって製造することができ、量産性も向上する。
As described above, the device according to this embodiment has a much simpler structure than the conventional device. For example, set the X direction to 100
Considering a device that can measure load distribution with a resolution of 100 divisions in the Y direction, conventional devices have a resolution of 100 divisions.
It was necessary to arrange 100 to 10,000 detection elements two-dimensionally and conduct wiring for each of them, but in the device according to this embodiment, detection elements with the same resolution can be arranged in one
It can be realized with 00+100-200 bridges, and these 2
Only 00 bridges need to be wired. Moreover, the device according to this embodiment can be manufactured by a semiconductor planar process, and mass productivity is improved.

〔発明の効果〕〔Effect of the invention〕

以上のとおり本発明によれば、二次元平面上の力検出装
置を構成する絶縁基板上に2とおりの方向を向いた多数
の検出用抵抗素子を形成し、この検出用抵抗素子の電気
抵抗の変化によって加わる力を検出するようにしたため
、構造が単純になり、量産に適したものになる。
As described above, according to the present invention, a large number of detection resistance elements oriented in two directions are formed on an insulating substrate constituting a force detection device on a two-dimensional plane, and the electrical resistance of the detection resistance elements is Since it detects the force applied due to change, the structure is simple and suitable for mass production.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る二次元平面上の力検出
装置の検出部の構成図、第2図は第1図に示す装置にお
ける単結晶基板内の具体的構成例を示す断面図、第3図
は第1図に示す装置のブリッジX1についての配線例を
示す図、第4図は第3図のブリッジの等価回路図、第5
図は、多数の抵抗素子をブリッジ構成して1チツプに納
めた装置の斜視図である。 1・・・絶縁基板、2・・・層間絶縁膜、3・・・連結
部、4・・・電源、5・・・電圧計、6・・・半導体チ
ップ、7・・・支持基体、XI、X2.Yl、Y2・・
・ブリッジ、R1−R8・・・抵抗素子、W1〜W8・
・・配線層。 出願人代理人  佐  藤  −雄 も5図
FIG. 1 is a configuration diagram of a detection unit of a two-dimensional plane force detection device according to an embodiment of the present invention, and FIG. 2 is a cross section showing a specific example of the configuration inside a single crystal substrate in the device shown in FIG. 3 is a diagram showing a wiring example for the bridge X1 of the device shown in FIG. 1, FIG. 4 is an equivalent circuit diagram of the bridge in FIG. 3, and FIG.
The figure is a perspective view of a device in which a large number of resistive elements are arranged in a bridge configuration and housed in one chip. DESCRIPTION OF SYMBOLS 1... Insulating substrate, 2... Interlayer insulating film, 3... Connecting part, 4... Power supply, 5... Voltmeter, 6... Semiconductor chip, 7... Support base, XI ,X2. Yl, Y2...
・Bridge, R1-R8...Resistance element, W1-W8・
...Wiring layer. Applicant's representative Mr. Sato-O also Figure 5

Claims (1)

【特許請求の範囲】 1、検出面となる二次元平面上に広がった絶縁基板上の
第1の層上に、第1の方向を向いた多数の検出用抵抗素
子からなる第1の抵抗素子群を形成し、前記第1の層と
は異なる第2の層上に、前記第1の方向とは異なる第2
の方向を向いた多数の検出用抵抗素子からなる第2の抵
抗素子群を形成し、 前記各抵抗素子は、機械的変形によって電気抵抗が変化
する性質をもつものとし、 前記第1の抵抗素子群の電気抵抗の変化と、前記第2の
抵抗素子群の電気抵抗の変化とを検出し、これらの検出
結果に基づいて前記検出面上に作用する力の位置および
大きさを検出できるようにしたことを特徴とする二次元
平面上の力検出装置。 2、第1の方向を長手方向とした2つの検出用抵抗素子
と、第2の方向を向き前記検出用抵抗素子に比べて十分
短い長さをもった2つの連結用抵抗素子とをそれぞれ接
続して構成されるブリッジを複数並べることにより第1
の抵抗素子群を構成し、 前記第2の方向を長手方向とした2つの検出用抵抗素子
と、前記第1の方向を向き前記検出用抵抗素子に比べて
十分短い長さをもった2つの連結用抵抗索子とをそれぞ
れ接続して構成されるブリッジを複数並べることにより
第2の抵抗素子群を構成し、 前記各ブリッジのブリッジ電圧によって抵抗素子の電気
抵抗の変化を検出することを特徴とする特許請求の範囲
第1項記載の二次元平面上の力検出装置。 3、検出用抵抗素子の抵抗値と連結用抵抗素子の抵抗値
がほぼ等しくなるように構成したことを特徴とする特許
請求の範囲第2項記載の二次元平面上の力検出装置。 4、連結用抵抗素子の幅を検出用抵抗素子の幅に比べて
狭くすることにより両者の抵抗値をほぼ等しくしたこと
を特徴とする特許請求の範囲第3項記載の二次元平面上
の力検出装置。 5、連結用抵抗素子の不純物濃度を検出用抵抗素子の不
純物濃度に比べて低くすることにより両者の抵抗値をほ
ぼ等しくしたことを特徴とする特許請求の範囲第3項記
載の二次元平面上の力検出装置。 6、抵抗素子が半導体プレーナプロセスによって絶縁基
板上に形成されていることを特徴とする特許請求の範囲
第1項乃至第5項のいずれかに記載の二次元平面上の力
検出装置。 7、絶縁基板の下層に弾性をもった支持基板が形成され
ていることを特徴とする特許請求の範囲第1項乃至第6
項のいずれかに記載の二次元平面上の力検出装置。
[Claims] 1. A first resistive element consisting of a large number of detecting resistive elements facing in a first direction on a first layer on an insulating substrate spread over a two-dimensional plane serving as a detection surface. on a second layer different from the first layer, a second layer different from the first direction.
forming a second resistance element group consisting of a large number of detection resistance elements facing in the direction of the first resistance element, each of the resistance elements having a property that electrical resistance changes due to mechanical deformation; A change in the electrical resistance of the group and a change in the electrical resistance of the second resistance element group are detected, and the position and magnitude of the force acting on the detection surface can be detected based on these detection results. A force detection device on a two-dimensional plane characterized by the following. 2. Connecting two detection resistance elements whose longitudinal direction is in the first direction and two connection resistance elements which are oriented in the second direction and have a sufficiently shorter length than the detection resistance elements. By arranging multiple bridges configured as
two detection resistance elements whose longitudinal direction is oriented in the second direction, and two detection resistance elements whose longitudinal direction is oriented in the first direction and whose length is sufficiently shorter than that of the detection resistance elements. A second resistance element group is formed by arranging a plurality of bridges each connected to a connecting resistance cord, and a change in the electrical resistance of the resistance element is detected based on the bridge voltage of each bridge. A force detection device on a two-dimensional plane according to claim 1. 3. The device for detecting force on a two-dimensional plane according to claim 2, characterized in that the resistance value of the detection resistance element and the resistance value of the connection resistance element are substantially equal. 4. A force on a two-dimensional plane according to claim 3, characterized in that the width of the connecting resistive element is made narrower than the width of the detecting resistive element, so that the resistance values of both are made almost equal. Detection device. 5. On a two-dimensional plane according to claim 3, wherein the impurity concentration of the connecting resistive element is lower than that of the detecting resistive element, so that the resistance values of both are made almost equal. force detection device. 6. A force detection device on a two-dimensional plane according to any one of claims 1 to 5, wherein the resistance element is formed on an insulating substrate by a semiconductor planar process. 7. Claims 1 to 6, characterized in that an elastic supporting substrate is formed under the insulating substrate.
2. A force detection device on a two-dimensional plane according to any one of the items.
JP10127187A 1987-04-24 1987-04-24 Force detector on two-dimensional plane Expired - Lifetime JPH0640037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10127187A JPH0640037B2 (en) 1987-04-24 1987-04-24 Force detector on two-dimensional plane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10127187A JPH0640037B2 (en) 1987-04-24 1987-04-24 Force detector on two-dimensional plane

Publications (2)

Publication Number Publication Date
JPS63266328A true JPS63266328A (en) 1988-11-02
JPH0640037B2 JPH0640037B2 (en) 1994-05-25

Family

ID=14296220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10127187A Expired - Lifetime JPH0640037B2 (en) 1987-04-24 1987-04-24 Force detector on two-dimensional plane

Country Status (1)

Country Link
JP (1) JPH0640037B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2040053A1 (en) * 2006-07-06 2009-03-25 Fundacio Privada Per A La Innovacio Textil D'Igual Torsion and/or tension and/or pressure textile sensor
JP2020016444A (en) * 2018-07-23 2020-01-30 ミネベアミツミ株式会社 Tactile sensor
JP2022177203A (en) * 2018-07-23 2022-11-30 ミネベアミツミ株式会社 tactile sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2040053A1 (en) * 2006-07-06 2009-03-25 Fundacio Privada Per A La Innovacio Textil D'Igual Torsion and/or tension and/or pressure textile sensor
JP2009543030A (en) * 2006-07-06 2009-12-03 ファンダシオ プリヴァーダ パー ア ラ イノヴァシオ テクスティル ドイグアラダ Pressure and / or tension and / or twist fiber sensor
EP2040053A4 (en) * 2006-07-06 2014-05-07 Fundacio Privada Per A La Innovacio Textil D Igual Torsion and/or tension and/or pressure textile sensor
JP2020016444A (en) * 2018-07-23 2020-01-30 ミネベアミツミ株式会社 Tactile sensor
WO2020022011A1 (en) * 2018-07-23 2020-01-30 ミネベアミツミ株式会社 Tactile sensor
JP2022177203A (en) * 2018-07-23 2022-11-30 ミネベアミツミ株式会社 tactile sensor
US11796402B2 (en) 2018-07-23 2023-10-24 Minebea Mitsumi Inc. Tactile sensor

Also Published As

Publication number Publication date
JPH0640037B2 (en) 1994-05-25

Similar Documents

Publication Publication Date Title
TWI612852B (en) Process condition sensing device and method for plasma chamber
US6542835B2 (en) Data collection methods and apparatus
US20040183554A1 (en) Reduction of positional errors in a four point probe resistance measurement
US4739381A (en) Piezoresistive strain sensing device
KR890000880A (en) Detector using the rotating element
US8550707B2 (en) Device for detecting temperature variations in a chip
Alpuim et al. Piezoresistive silicon thin film sensor array for biomedical applications
US7934430B2 (en) Die scale strain gauge
JP3579040B2 (en) Current measuring device and current measuring method
JPS63266328A (en) Force detector on two-dimensional plane
US3341772A (en) Device for measuring locally dependent differences between the magnetic field gradient at different points of a magnetic field
JPS63266325A (en) Force detector
JPH11118616A (en) Temperature sensor, semiconductor wafer with temperature measuring function, and method of forming thermocouple sensor
JP2551625B2 (en) Semiconductor acceleration sensor
JP2017505425A (en) System and corresponding method for determining at least part of the shape of a three-dimensional object
CN202609923U (en) Online synchronous testing device of thickness of phosphorosilicate glass and polycrystalline silicon
JP2020085668A (en) Magnetic sensor
Herrmann et al. Design and characterization of in-plane silicon stress sensors with isotropic sensitivity
JPH0564863B2 (en)
JPH0326931A (en) Strain gage type load cell
Mian et al. A high sensitive piezoresistive sensor for stress measurements in packaged semiconductor die
JPH0431533Y2 (en)
CN102701146A (en) Device for testing thickness of phosphorosilicate glass and polycrystalline silicon synchronously on line
JPS61214582A (en) Semiconductor pressure converter
JP2890682B2 (en) Semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term