JPS6326609B2 - - Google Patents

Info

Publication number
JPS6326609B2
JPS6326609B2 JP57176590A JP17659082A JPS6326609B2 JP S6326609 B2 JPS6326609 B2 JP S6326609B2 JP 57176590 A JP57176590 A JP 57176590A JP 17659082 A JP17659082 A JP 17659082A JP S6326609 B2 JPS6326609 B2 JP S6326609B2
Authority
JP
Japan
Prior art keywords
pulse
circuit
time
discharge
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57176590A
Other languages
Japanese (ja)
Other versions
JPS5967822A (en
Inventor
Tatsuo Okamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Co Ltd
Priority to JP57176590A priority Critical patent/JPS5967822A/en
Publication of JPS5967822A publication Critical patent/JPS5967822A/en
Publication of JPS6326609B2 publication Critical patent/JPS6326609B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は密閉された高電圧機器内部の部分放電
監視装置、とくに変圧器等の実運転中に機器内部
で発生する部分放電を機器外部の電気的、音響的
ノイズと弁別して監視する装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a device for monitoring partial discharges inside sealed high-voltage equipment, particularly for monitoring partial discharges occurring inside the equipment during actual operation of transformers, etc., by detecting electrical and acoustic noise outside the equipment. This invention relates to improvements in discriminating and monitoring devices.

高電圧静止電器とくに油入変圧器やリアクトル
などにおいては、実運転中に内部の局部的な絶縁
異常により部分放電が発生すると、これが発端と
なつて絶縁破壊などの重大事故に発展する可能性
があるために、この局部的な絶縁異常の発生を極
く初期段階で確度よく検出することのできる予防
保全装置の開発が望まれている。またこの種の装
置は一般に変電所や発電所の構内に変圧器等と近
接して屋外に設置されることが多く、このため機
器に接続されている高電圧送電線の気中コロナ放
電や雷誘導電圧あるいは遮断器等の開閉サージ等
が電気的ノイズとして監視装置のパルス伝送回路
に影響を及ぼしたり、被監視機器の容器に雨、
霰、砂れきなどが当たることによつて生ずる異物
音により放電音検出素子に音響ノイズが検出され
たりする。監視装置はこれらの電気的ノイズや音
響ノイズがあつても誤動作しないことが望まれ
る。
In high-voltage stationary electrical equipment, especially oil-immersed transformers and reactors, if a partial discharge occurs due to a local insulation abnormality during actual operation, this may trigger a serious accident such as insulation breakdown. Therefore, it is desired to develop a preventive maintenance device that can accurately detect the occurrence of this local insulation abnormality at an extremely early stage. In addition, this type of equipment is generally installed outdoors in close proximity to transformers, etc. within the premises of substations and power plants, and as a result, it is possible to prevent airborne corona discharge from high-voltage power transmission lines connected to the equipment, and lightning strikes. Induced voltage or opening/closing surges of circuit breakers, etc. may affect the pulse transmission circuit of the monitoring device as electrical noise, or rain or other damage may occur on the container of the monitored device.
Acoustic noise may be detected by the discharge sound detection element due to foreign object sounds caused by hail, sand, etc. hitting the discharge sound detection element. It is desired that the monitoring device does not malfunction even in the presence of these electrical noises and acoustic noises.

かゝる装置としては例えば特開昭55−117421号
公報が知られている。すなわち複数個の放電音検
出素子のそれぞれに対応して、電気的検出素子に
放電パルスが検出されたとき時間カウントを開始
する時間カウンタが設けられ、この時間カウンタ
は対応する放電音検出素子に放電音が検出された
とき時間カウントを停止するように設定され、各
放電音検出素子毎に各時間カウンタによりカウン
トされた時間を読み取り、この時間がいずれも予
め定められた所定時間内にあるかどうかを判断
し、多数条件満足判断部で上記条件を満足する放
電音検出数が所定数に満たない場合はノイズと判
定しその旨プリントアウトされる。所定数を越え
た場合は音同志時間差判別部に導かれ相互に時間
差がなければ電気的誘導ノイズと判断されその旨
プリントアウトされる。音同志時間差判別部で時
間差が確認されるとはじめて機器内部放電と判定
されて司令部を介して機器の停止信号が発令され
るとともに、演算部に送られて部分放電発生位置
の計算が行なわれる。
Such a device is known, for example, from Japanese Patent Laid-Open No. 117421/1983. That is, a time counter that starts counting time when a discharge pulse is detected by the electrical detection element is provided corresponding to each of the plurality of discharge sound detection elements. It is set to stop time counting when a sound is detected, reads the time counted by each time counter for each discharge sound detection element, and determines whether all of these times are within a predetermined time. If the number of detected discharge sounds that satisfy the above conditions is less than a predetermined number in the majority condition satisfaction determination section, it is determined to be noise and a printout to that effect is printed out. If the number exceeds a predetermined number, the sound is guided to a sound-to-sound time difference determining section, and if there is no time difference between the sounds, it is determined to be electrically induced noise and a printout to that effect is printed out. When the time difference determination section confirms the time difference, it is determined that it is an internal discharge in the device, and a signal to stop the device is issued via the command center, and the signal is sent to the calculation section to calculate the location of partial discharge occurrence. .

上記において予め定められた所定時間とは被監
視機器の大きさ、放電音検出素子の取付位置、絶
縁媒体や鉄板等の音の伝搬速度等によつて定まる
放電音の検出遅れ時間の最大最小範囲であり、検
出された音響出力の遅れ時間が上記範囲から外れ
た場合は機器外部からの電気的、音響的ノイズと
判定されて機器内部の部分放電と識別される。
In the above, the predetermined time is the maximum and minimum range of the discharge sound detection delay time determined by the size of the monitored equipment, the mounting position of the discharge sound detection element, the sound propagation speed of the insulating medium and iron plate, etc. If the delay time of the detected acoustic output is out of the above range, it is determined to be electrical or acoustic noise from outside the device, and is identified as partial discharge inside the device.

また監視装置の信号伝送回路に誘導する外部気
中コロナや開閉サージ等は一般に時間遅れがない
ため音同志時間差判別部で識別できる。しかし被
測定機器に接続される送電線などで外部気中放電
が頻繁に発生しかつ雨、霰、砂れきなどが機器に
頻繁に当たるような気象条件では、電気パルスが
検出されかつ上記所定時間内に時間差を有する音
響出力が検出されて、これら電気的、音響的ノイ
ズを機器内部放電と誤認する危険性が高い。
Further, external airborne corona, opening/closing surge, etc. induced into the signal transmission circuit of the monitoring device generally have no time delay and can therefore be identified by the sound-to-sound time difference discriminator. However, under weather conditions where external air discharge frequently occurs in power transmission lines connected to the device under test, and where the device is frequently exposed to rain, hail, sand, etc., electrical pulses may be detected and There is a high risk that acoustic outputs with time differences will be detected and these electrical and acoustic noises will be mistaken for internal discharges in the device.

一方油入絶縁機器内部で部分放電が発生した場
合放電音検出素子に検出される超音波波形は一般
に第1図に示す特性のパターンを示すことが知ら
れている(昭和39年電気学会東京支部大会No.
131)。すなわち機器内部の部分放電により電気パ
ルスが検出されてからt1時間遅れて振巾の小さな
音波W1が検出され、ついでt2時間遅れて振巾が
大きく減変振動する音波W2が音波W1と1対を
なして検出される。
On the other hand, when a partial discharge occurs inside oil-filled insulated equipment, the ultrasonic waveform detected by the discharge sound detection element is generally known to exhibit the characteristic pattern shown in Figure 1 (1966 Institute of Electrical Engineers of Japan Tokyo Branch Tournament No.
131). That is, after an electric pulse is detected due to partial discharge inside the device, a sound wave W1 with a small amplitude is detected with a delay of t1 time, and then a sound wave W2 with a large amplitude and reduced vibration is detected with a delay of t2 time, and a sound wave W2 with a large amplitude is detected as a pair with the sound wave W1. Detected without.

第2図は上記のようになる理由を図解したもの
である。図において1は油入変圧器巻線、2は密
閉容器、3は密閉容器2の外壁のA点に取付けら
れた超音波マイクロフオン等の放電音検出素子で
あり、今巻線1のX点で部分放電が発生しX点を
中心に放電音が放射されたと仮定する。この時放
電音検出素子3にはX点から変圧器油中を伝搬し
てA点で容器壁に入射する径路と、X点から最短
距離にあるB点で容器壁に入射して容器壁を伝わ
つてA点で検出される径路との2種類の伝搬径路
を通つて放電音が検出されることが考えられる。
一般に音の伝搬速度は油中で約1500m毎秒、鋼板
中で約5000m毎秒であり、音の伝搬径路の材質に
より到達時間が異なる。前記W2=X→A径路を
直達音、W1=X→B→A径路を容器伝搬音と呼
ぶこととする、この場合直達音の伝搬距離に比べ
容器伝搬音の伝搬距離の方が長いが、伝搬径路の
材質の影響で伝搬時間は直達音はt2時間、容器伝
搬音はt1時間となり、容器伝搬音の遅れ時間の方
が一般に短かくなる。ただし放電音検出素子が第
2図B点に置かれていたとすれば直達音のみが検
出されることになる。また直達音と容器伝搬音の
振巾の差は容器伝搬中の音響エネルギーの損失が
大きいことで説明できる。このように機器内部の
部分放電音を容器壁に取付けた放電音検出素子で
検出する場合には容器伝搬音と直達音との1対の
音波として検出される場合が多いのに対し、容器
に物が当たつた場合の検出波形は容器伝搬音のみ
検出されるので、この波形の差から内部部分放電
音と音響ノイズとを弁別することができる。前記
公知例の場合には上述の音響波形の特徴を考慮し
ておらず、電気パルスに対する音波の遅れ時間の
みに着目しているため、例えば容器伝搬音の遅れ
時間で判定を下すよう装置が設定される可能性が
あり、この場合は部分放電発生位置の標定が不可
能となり、実際に部分放電が発生しているにかか
わらずこれをノイズと判定するような誤認をおか
すおそれもある。
Figure 2 illustrates the reason for the above. In the figure, 1 is an oil-immersed transformer winding, 2 is an airtight container, 3 is a discharge sound detection element such as an ultrasonic microphone attached to the outer wall of the airtight container 2 at point A, and now the X point of winding 1. Assume that a partial discharge occurs at point X and discharge sound is radiated around point X. At this time, the discharge sound detection element 3 has a path that propagates through the transformer oil from point X and enters the container wall at point A, and a path that enters the container wall at point B, which is the shortest distance from point It is conceivable that the discharge sound is detected through two types of propagation paths: a path where the discharge sound is transmitted and detected at point A;
Generally, the propagation speed of sound is approximately 1,500 m/s in oil and approximately 5,000 m/s in steel plate, and the arrival time varies depending on the material of the sound propagation path. The W2=X→A path is called direct sound, and the W1=X→B→A path is called container-borne sound.In this case, the propagation distance of container-borne sound is longer than that of direct sound. Due to the influence of the material of the propagation path, the propagation time is t2 hours for direct sound and t1 time for vessel-borne sound, and the delay time of vessel-borne sound is generally shorter. However, if the discharge sound detection element were placed at point B in FIG. 2, only direct sound would be detected. Furthermore, the difference in amplitude between direct sound and vessel-propagated sound can be explained by the large loss of acoustic energy during vessel propagation. In this way, when partial discharge sound inside the equipment is detected by a discharge sound detection element attached to the container wall, it is often detected as a pair of sound waves consisting of the container propagating sound and the direct sound. Since only the vessel propagating sound is detected in the detection waveform when an object hits, internal partial discharge sound and acoustic noise can be discriminated from the difference in waveform. In the case of the above-mentioned known example, the characteristics of the acoustic waveform described above are not considered, and the focus is only on the delay time of the sound wave with respect to the electric pulse. Therefore, for example, the device is set to make a determination based on the delay time of the sound propagating through the container. In this case, it becomes impossible to locate the position where a partial discharge occurs, and there is a risk that a partial discharge may be mistakenly determined to be noise even though it actually occurs.

本発明は前述の従来技術の欠点を除去して、
雨、霰、砂れきなどが容器に当たつて生ずる音響
ノイズと内部放電音との区別がより精度よくでき
る部分放電監視装置を提供することを目的とす
る。
The present invention eliminates the drawbacks of the prior art mentioned above, and
It is an object of the present invention to provide a partial discharge monitoring device that can more accurately distinguish between acoustic noise caused by rain, hail, sand, etc. hitting a container and internal discharge sound.

本発明によれば上記目的はつぎのように構成す
ることにより達成された。複数個の放電音検出素
子のそれぞれに対応してパルス発生回路を設け、
電気パルス検出と同時に上記パルス発生回路が所
定時間待期状態になるとともに、この所定時間内
に各放電音検出素子からパルス発生回路に伝送さ
れた直達音、容器伝搬音がそれぞれ所定のしきい
値を超えた時点ごとにそれぞれ所定のパルス幅を
有する第1および第2のパルス信号を発するよう
にするとともに、このパルス発生回路ごとに前記
第1および第2のパルスの非重なり時間の存在を
検出して出力信号を発する複数個のパルス照合回
路と、このパルス照合回路からの出力信号が所定
個以上のパルス照合回路からあるとき部分放電が
発生したものと判定する。
According to the present invention, the above object has been achieved by the following configuration. A pulse generation circuit is provided corresponding to each of the plurality of discharge sound detection elements,
At the same time as the electric pulse is detected, the pulse generation circuit enters the standby state for a predetermined period of time, and the direct sound and container propagation sound transmitted from each discharge sound detection element to the pulse generation circuit within this predetermined period reach a predetermined threshold value. The first and second pulse signals each having a predetermined pulse width are emitted at each point in time when the pulse width is exceeded, and the existence of a non-overlapping time of the first and second pulses is detected for each pulse generation circuit. When a plurality of pulse matching circuits generate output signals, and a predetermined number of pulse matching circuits or more output signals from the pulse matching circuits, it is determined that a partial discharge has occurred.

以下図面を参照して本発明の実施例について説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

第3図は本発明の実施例を示すブロツク図で油
入電器における例である。図において5は例えば
油入変圧器、6は接地された密閉容器であり、変
圧器の高圧巻線は接地線7により接地されてい
る。8は接地線7に一端が接地されて接地線に磁
気的に結合した電気パルス検出素子であり、変圧
器5の内部で部分放電が発生すると同時に電気パ
ルス検出素子8に電気パルスが現われる。この電
気パルスはケーブル8aを介して部分放電検出器
9に入力され、ここで増巾整形されてケーブル9
aを介してパルス制御回路10に伝送される。パ
ルス制御回路10は電気パルスを受けると直ちに
パルス発生回路41,42,43を一定時間
tmaxだけ待機状態とする制御パルスをケーブル
10aに出力するとともに、上記tmax時間中に
重ねて電気パルスが検出された場合は重ねて制御
パルスを発生しない禁止回路と、前記tmax時間
後にリセツト信号を発するリセツト信号発生回路
とを備える。21,22,23は変圧器密閉容器
6の外壁の互いに異なる位置に取付けられた放電
音検出素子であり、放電音をこれに対応した電気
的出力に変換してそれぞれケーブル21a,22
a,23aを介して増巾回路31,32,33に
伝送する。増巾回路は上記放電音検出素子の出力
をパルス発生回路で処理するに必要な所定の大き
さに増巾しケーブル31a,32a,33aを介
してそれぞれのパルス発生回路に伝送する。こゝ
でパルス発生回路の待機時間tmaxは変圧器密閉
容器6の寸法や放電音検出素子21,22,23
の取付位置と変圧器内および容器壁の放電音伝搬
速度を考慮して決められる最大伝搬時間であり、
tmaxを越える遅れ時間を持つた音響出力は音響
ノイズと判断されてパルス発生回路が動作しない
ことによつて監視対象から除外される。
FIG. 3 is a block diagram showing an embodiment of the present invention, and is an example of an oil-filled electrical appliance. In the figure, 5 is, for example, an oil-immersed transformer, 6 is a grounded closed container, and the high voltage winding of the transformer is grounded by a grounding wire 7. Reference numeral 8 denotes an electric pulse detection element whose one end is grounded to the ground line 7 and magnetically coupled to the ground line. When a partial discharge occurs inside the transformer 5, an electric pulse appears on the electric pulse detection element 8 at the same time. This electric pulse is input to the partial discharge detector 9 via the cable 8a, where it is amplified and shaped.
a to the pulse control circuit 10. Upon receiving an electric pulse, the pulse control circuit 10 immediately controls the pulse generation circuits 41, 42, 43 for a certain period of time.
A control pulse is output to the cable 10a to put the device in a standby state for tmax, and if an electric pulse is detected again during the tmax time, a prohibition circuit is provided that does not generate the control pulse again, and a reset signal is generated after the tmax time. and a reset signal generation circuit. Reference numerals 21, 22, and 23 are discharge sound detection elements installed at different positions on the outer wall of the transformer sealed container 6, which convert the discharge sound into corresponding electrical outputs and connect the cables 21a and 22, respectively.
It is transmitted to amplification circuits 31, 32, and 33 via a and 23a. The amplifying circuit amplifies the output of the discharge sound detection element to a predetermined size necessary for processing by the pulse generating circuit, and transmits the amplified output to the respective pulse generating circuits via cables 31a, 32a, and 33a. Here, the standby time tmax of the pulse generation circuit depends on the dimensions of the transformer sealed container 6 and the discharge sound detection elements 21, 22, 23.
The maximum propagation time is determined by considering the installation position of the transformer and the discharge sound propagation speed inside the transformer and on the vessel wall.
Acoustic output with a delay time exceeding tmax is determined to be acoustic noise and is excluded from the monitoring target because the pulse generation circuit does not operate.

パルス発生回路例えば41は1対のコンパレー
タおよび矩形波パルス発生回路よりなり、1対の
コンパレータは第1図に示した放電音検出波形の
容器伝搬音W1および直達音W2の振巾V1,V
2に対応しパルス増幅器の増巾率を考慮して定め
られたしきい値にそれぞれ設定され、上記2段階
のしきい値をそれぞれ超える音響入力があつた時
矩形波パルス発生回路にそれぞれ信号を伝送す
る。矩形波パルス発生回路は電気パルスによる制
御信号に基づいて回路が待機状態にある時間
tmax内に前記コンパレータから1対の信号が入
力されると、これに基づいて第1および第2の矩
形波パルスを発生し、ケーブル41a,41bを
介してパルス照合回路51に前記第1および第2
の矩形波パルスを伝送する。こゝで上記第1の矩
形波パルスの時間幅tp1は容器伝搬音と直達音と
の伝搬時間の差の最大値(通常0.05ms〜1ms
程度)を超える所定時間に設定されるか、あるい
は容器伝搬音の検出と同時に立上り前記tmaxで
立下がるように設定される。また前記第2の矩形
波パルスはその立下り時刻が前記第1の矩形波パ
ルスの立下り時刻と等しく、直達音の検出と同時
に立上るよう設定される。したがつて第1図のよ
うな内部部分放電が検出された場合、電気パルス
が検出されてからt1時間遅れて容器伝搬音W1に
対応する第1の矩形波パルスが発生し、ついでt2
時間遅れて直達音W2に対応する第2の矩形波パ
ルスが発生するが、第2の矩形波パルスの時間幅
は第1の矩形波パルスの時間幅tp1に比べて(t2
−t1)時間短くなる。
The pulse generating circuit 41, for example, is composed of a pair of comparators and a rectangular wave pulse generating circuit, and the pair of comparators has amplitudes V1 and V of the vessel propagating sound W1 and the direct sound W2 of the discharge sound detection waveform shown in FIG.
Corresponding to 2, each threshold value is set in consideration of the amplification rate of the pulse amplifier, and when an acoustic input exceeding each of the above two thresholds is received, a signal is sent to the rectangular wave pulse generation circuit. Transmit. The square wave pulse generation circuit determines the time the circuit is in standby mode based on the control signal using electric pulses.
When a pair of signals is input from the comparator within tmax, first and second rectangular wave pulses are generated based on the signals, and the first and second rectangular wave pulses are sent to the pulse comparison circuit 51 via cables 41a and 41b. 2
transmits a square wave pulse. Here, the time width tp1 of the first rectangular wave pulse is the maximum value of the difference in propagation time between the vessel propagating sound and the direct sound (usually 0.05 ms to 1 ms).
tmax), or it is set to rise at the same time as the container propagation sound is detected and fall at tmax. Further, the fall time of the second rectangular wave pulse is equal to the fall time of the first rectangular wave pulse, and the second rectangular wave pulse is set to rise simultaneously with the detection of the direct sound. Therefore, when an internal partial discharge as shown in Fig. 1 is detected, the first rectangular wave pulse corresponding to the vessel propagation sound W1 is generated with a delay of t1 after the electric pulse is detected, and then t2
A second rectangular wave pulse corresponding to the direct sound W2 is generated after a time delay, but the time width of the second rectangular wave pulse is (t2
-t1) time becomes shorter.

このように複数個のパルス発生器41〜43に
ついてそれぞれ上述のようにして発生した第1お
よび第2の矩形波パルスは、それぞれパルス照合
回路51,52,53に伝送され、上記第1およ
び第2の矩形波パルスの時間幅に非重なり部分が
あるかどうか照合される。すなわちパルス照合回
路51〜53はそれぞれ排他論理回路とモノステ
ーブルマルチ回路とで構成され、前記第1および
第2の矩形波パルスのパルス幅に伝搬時間の差に
起因する非重なり時間がある場合には排他論理回
路により非重なり時間に対応する時間幅の矩形波
パルスが出力され、モノステーブルマルチ回路で
前記非重なり時間とは無関係な時間幅tp2なる矩
形波パルスが発生し、ケーブル51a,52a,
53aを介して判定回路60に入力される。判定
回路60は前記照合回路51〜53の出力信号が
すべて入力される1個のAND回路と、このAND
回路の出力パルスの時間幅に関係なくAND回路
の出力が出た時点から所定時間tp3の間出力信号
を出すモノステーブルマルチ回路とから構成さ
れ、照合回路51〜53のいずれも第1および第
2の矩形波パルスを検出し、かつ非重なり時間が
ある時に内部放電と判定して時間幅tp2の出力信
号を出した時に限り時間幅tp3の出力信号を発生
し、ケーブル60aを介して出力回路70に信号
を伝送する。71は上記出力回路の出力端子であ
つて、この出力信号によつて前記変圧器5等の運
転を停止したり、その他各種警報装置や記録装置
が接続されるようになつている。
The first and second rectangular wave pulses generated as described above for each of the plurality of pulse generators 41 to 43 are transmitted to pulse matching circuits 51, 52, and 53, respectively, and It is checked whether there is a non-overlapping portion in the time widths of the two rectangular wave pulses. That is, each of the pulse matching circuits 51 to 53 is composed of an exclusive logic circuit and a monostable multi-circuit, and when the pulse widths of the first and second rectangular wave pulses have a non-overlapping time due to a difference in propagation time, The exclusive logic circuit outputs a rectangular wave pulse with a time width corresponding to the non-overlapping time, and the monostable multi-circuit generates a rectangular wave pulse with a time width tp2 unrelated to the non-overlapping time, and the cables 51a, 52a,
The signal is input to the determination circuit 60 via 53a. The determination circuit 60 includes one AND circuit into which all the output signals of the collation circuits 51 to 53 are input, and this AND circuit.
It consists of a monostable multi-circuit that outputs an output signal for a predetermined time tp3 from the time when the output of the AND circuit is output regardless of the time width of the output pulse of the circuit, and each of the matching circuits 51 to 53 has a first and second It detects the rectangular wave pulse of transmit signals to. Reference numeral 71 is an output terminal of the output circuit, and this output signal is used to stop the operation of the transformer 5, etc., and to which various other alarm devices and recording devices are connected.

なお上述の説明では判定回路60はパルス照合
回路51〜53の出力がいずれも第1および第2
の矩形波パルスよりなり、かつ第1および第2の
矩形波パルスに非重なり時間がある場合にのみこ
れを機器の内部放電と判定して出力回路70に出
力信号を伝送するよう構成する例をのべたが、機
器の内部放電発生位置と放電音検出素子の取付位
置とが特定の条件を満たす場合には容器伝搬音が
検出されない場合も想定されるので、判定回路6
0を多数回路とモノステーブルマルチ回路とで構
成し、所定数以上のパルス照合回路の出力が第1
および第2の矩形波パルスよりなり、かつ非重な
り時間を有する場合、これを機器内部の部分放電
と判定するよう構成してもよい。
Note that in the above explanation, the determination circuit 60 assumes that the outputs of the pulse comparison circuits 51 to 53 are both the first and second
An example is shown in which the first and second rectangular wave pulses are composed of a rectangular wave pulse, and only when there is a non-overlapping time between the first and second rectangular wave pulses, this is determined to be an internal discharge of the device and an output signal is transmitted to the output circuit 70. However, if the internal discharge occurrence position of the device and the installation position of the discharge sound detection element meet certain conditions, it is assumed that the container propagated sound may not be detected.
0 is composed of multiple circuits and monostable multi-circuits, and the output of a predetermined number or more of pulse matching circuits is the first
and a second rectangular wave pulse and have a non-overlapping time, the configuration may be such that this is determined to be a partial discharge inside the device.

また判定回路10が電気パルスの検出と同時に
発生する時間幅tmaxの制御パルスによりパルス
発生回路41〜43を待機状態とし、放電音検出
素子21〜23の検出音が上記tmax時間を越え
る遅れをもつて検出された場合は音響ノイズと判
定し、パルス発生回路が動作しないことによりこ
れを監視対象から除外するよう構成した例につい
て説明したが、この判定をパルス照合回路または
判定回路で行なうよう構成することも可能であ
る。
Further, the determination circuit 10 puts the pulse generation circuits 41 to 43 into a standby state by a control pulse with a time width tmax that is generated simultaneously with the detection of the electric pulse, so that the detection sound of the discharge sound detection elements 21 to 23 has a delay exceeding the above tmax time. An example has been described in which if a noise is detected, it is determined to be acoustic noise, and the pulse generation circuit does not operate so that it is excluded from the monitoring target. It is also possible.

第4図は本発明の実施例におけるタイムチヤー
トで、機器の内部放電が検出された場合の例であ
る。図において9aは部分放電検出器9の電気パ
ルス検出波形、31a,32a,33aは増幅回
路31〜33の放電音出力波形で電気パルス9a
が検出されてからそれぞれta1、tb1、tc1時間遅
れて検出される容器伝搬音と、ta2、tb2、tc2時
間遅れて検出される直達音とからなる超音波音で
あり、最大伝搬遅れ時間tmaxに対して例えば
tmax>ta2>ta1なる内部放電の条件を満たして
いる。41a〜43bはパルス発生回路41〜4
3の出力パルスのタイムチヤートであり、41
a,42a,43aは、放電音31a〜33aの
容器伝搬音に対応して発生した第1の矩形波パル
ス、41b,42b,43bは直達音に対応して
発生した第2の矩形波パルスである。51a〜5
3aはパルス照合回路の出力パルスで例えば第1
の矩形波パルス41aと第2の矩形波パルス41
bの非重なり時間(ta2−ta1)を検出して所定の
パルス幅tp2なる矩形波パルス51aを出力した
ものである。パルス60は判定回路60のAND
回路の出力波形で、そのパルス幅は前記矩形波パ
ルス51a〜53aの重なり時間に相当する、し
たがつてパルス51a〜53aのパルス幅は互い
の重なり時間が無くならないだけの時間幅を想定
して決められる。60aは判定回路60の出力パ
ルス波形である。
FIG. 4 is a time chart in an embodiment of the present invention, and is an example when an internal discharge of the device is detected. In the figure, 9a is the electric pulse detection waveform of the partial discharge detector 9, and 31a, 32a, 33a are the discharge sound output waveforms of the amplifier circuits 31 to 33, and the electric pulse 9a is
Ultrasonic sound consists of vessel propagation sound that is detected with a delay of ta1, tb1, and tc1 hours, and direct sound that is detected with a delay of ta2, tb2, and tc2 hours after the detection of For example,
The internal discharge condition of tmax>ta2>ta1 is satisfied. 41a to 43b are pulse generation circuits 41 to 4
This is a time chart of the output pulse of 3, and 41
a, 42a, 43a are the first rectangular wave pulses generated in response to the vessel propagation sounds of the discharge sounds 31a to 33a, and 41b, 42b, 43b are the second rectangular wave pulses generated in response to the direct sound. be. 51a-5
3a is the output pulse of the pulse matching circuit, for example, the first
square wave pulse 41a and second square wave pulse 41
The non-overlapping time (ta2-ta1) of b is detected and a rectangular wave pulse 51a having a predetermined pulse width tp2 is output. The pulse 60 is the AND of the judgment circuit 60
This is the output waveform of the circuit, and its pulse width corresponds to the overlapping time of the rectangular wave pulses 51a to 53a. Therefore, the pulse width of the pulses 51a to 53a is assumed to be long enough to ensure that their mutual overlapping time does not disappear. It can be decided. 60a is the output pulse waveform of the determination circuit 60.

以上機器の内部放電が検出された場合、本発明
の実施例における監視装置の動作およびそのタイ
ムチヤートについて説明したが、検出された音が
密閉容器6に雨、霰、砂れき等が当つた時生ずる
音響ノイズであつた場合には、これらの音響ノイ
ズは容器の壁を伝わつて放電音検出素子に到達す
るため、容器伝搬音が単独で検出されることにな
る。第5図はこのような音響ノイズに対するタイ
ムチヤートであり、音響ノイズがパルス発生回路
の2段階のしきい値を超える大きな音として検出
された場合の例である。今9aなる電気的ノイズ
が検出され、これからt11、t12、t13時間遅れて
音響ノイズ31a,32a,33aが検出された
とする。パルスの振幅が2段階のしきい値を超え
ているので、各パルス発生回路には41a,41
bで示すように遅れ時間t11、パルス幅tp1なる第
1および第2の矩形波パルスが同時に発生する。
これらの矩形波パルスはパルス照合回路で非重な
り時間を照合されるが、第1および第2の矩形波
パルスの遅れ時間が共にt1と等しいために非重な
り時間が存在せず、したがつてパルス照合回路で
音響ノイズと判定され、監視対象から除外され
る。
The operation of the monitoring device according to the embodiment of the present invention and its time chart when an internal discharge of the device is detected has been explained above. In the case of acoustic noise, these acoustic noises propagate through the wall of the container and reach the discharge sound detection element, so that the container propagated sound is detected alone. FIG. 5 is a time chart for such acoustic noise, and is an example of a case where acoustic noise is detected as a loud sound that exceeds the two-step threshold of the pulse generation circuit. Assume that an electrical noise 9a is detected now, and acoustic noises 31a, 32a, and 33a are detected after a delay of time t11, t12, and t13. Since the amplitude of the pulse exceeds the two-step threshold, each pulse generating circuit has 41a and 41.
As shown by b, first and second rectangular wave pulses with a delay time t11 and a pulse width tp1 are generated simultaneously.
These square wave pulses are checked for non-overlapping time in a pulse matching circuit, but since the delay times of the first and second square wave pulses are both equal to t1, there is no non-overlapping time, so the pulse The verification circuit identifies it as acoustic noise and excludes it from monitoring.

つぎに音響ノイズが前記2段階のしきい値のう
ち低い方のしきい値を超え高い方のしきい値以下
の範囲のレベルであつた場合、パルス発生回路か
らは1個の矩形波パルスが出力されるが、この時
排他論理回路では非重なり時間があるように誤ま
つた判定をすることになる。この点に関しては第
3図の実施例の説明では述べなかつたが、パルス
照合回路に1対の放電音が入力された時にのみ出
力回路を導通状態にするスイツチング回路が付加
されており、前記誤まつた判定のないよう構成さ
れる。また放電音検出素子とその信号電送回路に
前述の電気的ノイズが入つた場合にはパルス発生
回路に現われるノイズに時間差がないためにパル
ス照合回路でノイズと判定される。
Next, if the acoustic noise is at a level that exceeds the lower threshold of the two thresholds and is below the higher threshold, the pulse generator generates a single rectangular pulse. However, at this time, the exclusive logic circuit incorrectly judges that there is a non-overlapping time. Although this point was not mentioned in the explanation of the embodiment shown in FIG. 3, a switching circuit is added that makes the output circuit conductive only when a pair of discharge sounds is input to the pulse comparison circuit, and this eliminates the above-mentioned error. It is configured so that there is no judgment. Furthermore, when the aforementioned electrical noise enters the discharge sound detection element and its signal transmission circuit, the noise appearing in the pulse generation circuit is determined to be noise by the pulse matching circuit because there is no time difference.

上述のように本発明によれば被監視電気機器内
部で生じた部分放電を前記電気機器の密閉容器の
互いに異なる位置に取付けられた複数個の放電音
検出素子で検出する場合、振巾ならびに伝搬時間
が異なる容器伝搬音および直達音からなる1対の
検出波形が得られることが多いことに着目し、前
記放電音検出素子毎に2個のしきい値を越えた時
点でそれぞれ所定のパルス幅の第1および第2の
矩形波パルスを発するパルス発生回路を設け、上
記第1および第2の矩形波パルスに非重なり時間
が存在することを検出して出力信号を発する複数
個のパルス照合回路と、このパルス照合回路から
の出力信号が所定個以上のパルス照合回路からあ
つたとき被監視機器内部で部分放電が発生したも
のと判定する判定回路を備え、上記監視動作が電
気パルスが検出されてから所定時間tmaxを単位
として電気パルスが検出される度に繰返し動作す
るような制御パルスを発生する判定回路を備える
よう構成したことにより、被監視機器内部の部分
放電の音響的検出波形を他の電気的、音響的ノイ
ズに対して特定し弁別する精度が高まつた、その
結果送電線の気中放電ノイズ、雷放電ノイズ、開
閉ノイズ、霰や砂塵等の飛来による異物音等各種
ノイズレベルの高い発電所や変電所において、上
記外来ノイズにより誤動作することなく電気機器
の内部放電を精度よく検出できる部分放電監視装
置を提供できた。また本発明の装置は外来ノイズ
に影響されやすい特殊な回路やマイクロコンピユ
ータ、ミニコンピユータなどを用いず、比較的簡
単な回路を用いて構成したため誘導雷サージや開
閉サージ等の異常電圧に対しても誤動作や故障が
少なく、長期信頼性が優れ、かつ安価に製作でき
るという利点がある。
As described above, according to the present invention, when a partial discharge generated inside an electrical equipment to be monitored is detected by a plurality of discharge sound detection elements installed at different positions in a sealed container of the electrical equipment, the amplitude and propagation are Focusing on the fact that a pair of detection waveforms consisting of container propagation sound and direct sound that differ in time are often obtained, each discharge sound detection element has a predetermined pulse width when two thresholds are exceeded. a plurality of pulse matching circuits that detect the presence of a non-overlapping time between the first and second rectangular wave pulses and generate an output signal; and a determination circuit that determines that a partial discharge has occurred within the monitored device when the output signal from the pulse verification circuit is received from a predetermined number or more of the pulse verification circuits, and the monitoring operation is performed when an electrical pulse is detected. The configuration includes a determination circuit that generates a control pulse that repeatedly operates every time an electric pulse is detected for a predetermined period of time tmax, so that the acoustic detection waveform of partial discharge inside the monitored equipment can be As a result, various noise levels such as aerial discharge noise of power transmission lines, lightning discharge noise, switching noise, and foreign object noise due to flying hail and sand dust have been improved. We have been able to provide a partial discharge monitoring device that can accurately detect internal discharges in electrical equipment without causing malfunctions due to the above-mentioned external noise in power plants and substations with high levels of noise. Furthermore, since the device of the present invention is constructed using a relatively simple circuit without using special circuits, microcomputers, minicomputers, etc. that are susceptible to external noise, it is resistant to abnormal voltages such as induced lightning surges and switching surges. It has the advantage of being less likely to malfunction or break down, has excellent long-term reliability, and can be manufactured at low cost.

本発明は前述の実施例で説明した油入変圧器ば
かりでなく、油入りアクトル、油入計器用変成
器、ガス絶縁密閉開閉装置、ガス絶縁管路気中ケ
ーブルなど高電圧静止電気機器の部分放電監視装
置に適用できる。
The present invention applies not only to oil-filled transformers as explained in the above-mentioned embodiments, but also to parts of high-voltage stationary electrical equipment such as oil-filled actors, oil-filled instrument transformers, gas-insulated sealed switchgear, gas-insulated conduit aerial cables, etc. Applicable to discharge monitoring equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は公知の内部放電音検出波形の模試図、
第2図は密閉電器内部の放電音伝搬径路図、第3
図は本発明の実施例を示すブロツク図、第4図は
本発明実施例における各部パルスのタイムチヤー
ト、第5図は本発明の実施例におけるノイズに対
する各部パルスのタイムチヤートである。 図において、1……変圧器巻線、2,6……密
閉容器、7……接地線、8……電気パルス検出素
子、9……部分放電検出器、10……制御回路、
3,21,22,23……放電音検出素子、3
1,32,33……増巾回路、41,42,43
……パルス発生回路、51,52,53……パル
ス照合回路、60……判定回路、70……出力回
路、71……出力端子。
Figure 1 is a mock diagram of a known internal discharge sound detection waveform.
Figure 2 is a diagram of the discharge sound propagation path inside a sealed electrical appliance, Figure 3
FIG. 4 is a block diagram showing an embodiment of the present invention, FIG. 4 is a time chart of various pulses in the embodiment of the present invention, and FIG. 5 is a time chart of various pulses with respect to noise in the embodiment of the present invention. In the figure, 1...Transformer winding, 2, 6...Airtight container, 7...Grounding wire, 8...Electric pulse detection element, 9...Partial discharge detector, 10...Control circuit,
3, 21, 22, 23...discharge sound detection element, 3
1, 32, 33... Amplifying circuit, 41, 42, 43
... Pulse generation circuit, 51, 52, 53 ... Pulse verification circuit, 60 ... Judgment circuit, 70 ... Output circuit, 71 ... Output terminal.

Claims (1)

【特許請求の範囲】[Claims] 1 電気機器内に生じた部分放電に伴つて該電気
機器の外部端子に現われる電気パルスを検出する
電気パルス検出素子と、前記電気機器を収納する
容器壁の互いに異なる位置に取り付けられて部分
放電に伴つて生じる音響パルスを検出する複数個
の放電音検出素子と、前記電気パルス検出素子に
電気パルスが検出されたとき制御パルスを発生す
る制御回路と、前記放電音検出素子にそれぞれ対
応して設けられ前記制御パルスを受けて所定時間
待機状態に入るとともに前記放電音検出素子から
放電音信号を受けこの信号が互いに異なる2個の
しきい値を越えた時点ごとにそれぞれ所定のパル
ス幅を有する第1および第2のパルスを発する複
数個のパルス発生回路と、このパルス発生回路ご
とに前記第1および第2のパルスの非重なり時間
が存在することを検出して出力信号を発する複数
個のパルス照合回路と、このパルス照合回路から
の出力信号が所定個以上のパルス照合回路からあ
るとき部分放電が発生したものと判定する判定回
路と、前記判定回路の出力信号により前記電気機
器の運転の制御等を行なう出力回路を備えたこと
を特徴とする部分放電監視装置。
1. An electric pulse detection element that detects an electric pulse appearing at an external terminal of an electric device due to a partial discharge generated in the electric device, and an electric pulse detection element that is attached to a wall of a container housing the electric device at different positions to detect a partial discharge. a plurality of discharge sound detection elements for detecting accompanying acoustic pulses, a control circuit for generating a control pulse when an electric pulse is detected by the electric pulse detection element, and a control circuit provided corresponding to the discharge sound detection element, respectively. In response to the control pulse, the controller enters a standby state for a predetermined period of time, receives a discharge sound signal from the discharge sound detection element, and at each point in time when this signal exceeds two different thresholds, a second pulse having a predetermined pulse width, respectively. a plurality of pulse generation circuits that emit first and second pulses, and a plurality of pulses that detect the existence of a non-overlapping time of the first and second pulses for each pulse generation circuit and generate an output signal. a verification circuit; a determination circuit that determines that a partial discharge has occurred when an output signal from the pulse verification circuit is present from a predetermined number or more of the pulse verification circuits; and control of the operation of the electrical equipment based on the output signal of the determination circuit. A partial discharge monitoring device characterized by comprising an output circuit that performs the following.
JP57176590A 1982-10-07 1982-10-07 Partial discharge monitor Granted JPS5967822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57176590A JPS5967822A (en) 1982-10-07 1982-10-07 Partial discharge monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57176590A JPS5967822A (en) 1982-10-07 1982-10-07 Partial discharge monitor

Publications (2)

Publication Number Publication Date
JPS5967822A JPS5967822A (en) 1984-04-17
JPS6326609B2 true JPS6326609B2 (en) 1988-05-31

Family

ID=16016220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57176590A Granted JPS5967822A (en) 1982-10-07 1982-10-07 Partial discharge monitor

Country Status (1)

Country Link
JP (1) JPS5967822A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02193759A (en) * 1988-11-18 1990-07-31 Konrad Doppelmayr & Sohn Mas Fab Gmbh & Co Kg Cable carrier

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0241764B1 (en) * 1986-04-14 1990-08-01 Siemens Aktiengesellschaft Process and devices for detecting and localizing damages in electrical installations
JPH0349511A (en) * 1989-07-13 1991-03-04 Toshiba Corp High tension enclosed switchboard

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02193759A (en) * 1988-11-18 1990-07-31 Konrad Doppelmayr & Sohn Mas Fab Gmbh & Co Kg Cable carrier

Also Published As

Publication number Publication date
JPS5967822A (en) 1984-04-17

Similar Documents

Publication Publication Date Title
CN105334433A (en) Cable partial discharge detection method and device
JP2017208913A (en) Degradation monitoring device for gas-insulation switchgear
JPS6326609B2 (en)
Sidhu et al. Multisensor secondary device for detection of low-level arcing faults in metal-clad MCC switchgear panel
JPS6112451B2 (en)
Leterme et al. HVDC grid protection algorithm performance assessment
KR101899010B1 (en) Partial discharge diagnose apparatus and method based on time-pulse relation analysys
JP4143824B2 (en) Lightning protection system
JP4074805B2 (en) Partial discharge detector
JPS604433B2 (en) Partial discharge detection device for oil-filled electrical equipment
JPH055064B2 (en)
JPH08129047A (en) Microwave sensor
JP2536111B2 (en) Automatic partial discharge monitoring device
US11843236B2 (en) Arc detection system and method for an aircraft high voltage and direct current electrical circuit
US11726131B2 (en) Method for detecting an electrical discharge in an electrical apparatus and system therefor
Su et al. New techniques for on-line partial discharge measurements
CN113866621B (en) Partial discharge signal detection system of high-voltage switch cabinet
JPS6069570A (en) Impulse corona detector of stationary electric apparatus
Maekawa et al. Partial discharge locating system for GIS
JP3198856B2 (en) Abnormality monitoring method and device for stationary induction device
JPS6349453B2 (en)
CN116420088A (en) Monitoring operation of an electrical coil arrangement
JPH0769372B2 (en) Partial discharge monitoring device for gas insulated equipment
JP2940142B2 (en) Metallic foreign matter detection device in insulating gas
JPH0599977A (en) Abnormality detecting apparatus