JP4143824B2 - Lightning protection system - Google Patents

Lightning protection system Download PDF

Info

Publication number
JP4143824B2
JP4143824B2 JP2002358018A JP2002358018A JP4143824B2 JP 4143824 B2 JP4143824 B2 JP 4143824B2 JP 2002358018 A JP2002358018 A JP 2002358018A JP 2002358018 A JP2002358018 A JP 2002358018A JP 4143824 B2 JP4143824 B2 JP 4143824B2
Authority
JP
Japan
Prior art keywords
lightning
transformer
shield
resistant
surge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002358018A
Other languages
Japanese (ja)
Other versions
JP2004194409A (en
Inventor
良作 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kouatsu Electric Co
Original Assignee
Nippon Kouatsu Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kouatsu Electric Co filed Critical Nippon Kouatsu Electric Co
Priority to JP2002358018A priority Critical patent/JP4143824B2/en
Priority to CN 200380105702 priority patent/CN1723596A/en
Priority to US10/538,080 priority patent/US7256977B2/en
Priority to KR1020057010558A priority patent/KR20050084244A/en
Priority to AU2003302828A priority patent/AU2003302828A1/en
Priority to PCT/JP2003/014546 priority patent/WO2004054062A1/en
Publication of JP2004194409A publication Critical patent/JP2004194409A/en
Application granted granted Critical
Publication of JP4143824B2 publication Critical patent/JP4143824B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、商用周波電源線から侵入する落雷に伴って発生する雷サージから電子機器を保護する耐雷トランスを具備した雷害保護システムに関するもので、より詳しくは平常時は耐雷トランスを電路より切離し、雷接近時には耐雷トランスを電路に接続するようにして、耐雷トランスの電力損を極力無くすようにした雷害保護システムの改良に関するものである。
【0002】
【従来の技術】
従来から、落雷によって発生する雷サージが商用周波電源線を伝播して建物内に侵入し、電源線に接続されている電気機器等を破壊させることが知られており、雷サージ過電圧から電気機器を保護するために種々の保護システムが提案されている。
その中の1つに、商用周波電源線の屋内への引込口に耐雷トランスを設置して、電源線から建物内に侵入する雷サージを阻止する保護システムが提案されている。(例えば、特許文献1参照。)
【0003】
しかしながら、上記耐雷トランスには鉄損などによる電力損失がそのトランス容量の3〜10%程度と大きいため、雷襲来時を検出して雷接近時以外は耐雷トランスを電源線路より切り離したいという要望がある。
【0004】
そこで、本出願人は先に雷襲来を検出して、雷接近時のみ耐雷トランスを電路に接続させることにより、耐雷トランスの電力損失を無くした耐雷システムを特願2002−204756号において提案している。
【0005】
【特許文献1】
特公平7−89712号公報(第4−5頁、第1図)
【0006】
【発明が解決しようとする課題】
そして前記耐雷システムにおける雷襲来を検出する方法としては、雷光、雷鳴、電磁波、静電界などを各種センサで計測する方法と、低圧線路上を伝播する雷サージを低圧線路と接地間に設けた結合コンデンサを介してCT等の検出器により検出する方法とが一般に知られている。
【0007】
ところで上記検出方法にあって後者の結合コンデンサを設ける検出方法においては、低圧線に流れる雷サージを結合コンデンサを介して直接検出するため、比較的精度良く検出できる利点があるが、この場合結合コンデンサに雷サージ過電圧が直接印加されて絶縁破壊を生じて破損したりすることがあるため、その対策として高耐電圧値の高価なコンデンサを使用していた。
また同時に結合コンデンサにより装置が大型化になるという問題点があった。
【0008】
本発明は上記結合コンデンサを設けた検出方法において、上記問題点を解決するために成されたもので、特に高価な結合コンデンサを使用することなく、低圧線から雷襲来情報を確実に検出して、耐雷トランスを電路に対して接続/切離しを行い、耐雷トランスの電力損失を無くすことができる安価でコンパクトな雷害保護システムを提供することにある。
【0009】
【発明が解決するための手段】
本発明は前記課題を解決するためになされたもので、
耐雷トランスと、前記耐雷トランスを電路に対して接続/切離しを行う開閉機構と、雷襲来の接近を検出するための雷サージ検出器とを具備し、前記雷サージ検出器からの信号により前記開閉機構を動作させて前記耐雷トランスを電路に対し接続/切離しを行うとともに、更に前記耐雷トランスのシールド及び鉄心を接地するようにした雷害保護システムにおいて、
前記雷サージ検出器を前記シールド及び/又は前記鉄心の接地線に設けるとともに前記開閉機構の開閉装置は低圧引込線と屋内配線とをバイパス線により耐雷トランスを介さずに接続させる平常状態と、耐雷トランスを介して接続する耐雷状態とを切り替えるための接点を具備し
前記耐雷トランスの二次側 N 相端子と前記開閉装置のバイパス線二次側 N 相端子及び前記屋内配線の N 相は接点を設けずに電気的に常時接続し、前記耐雷トランスのコイルとシールド線間或いはコイルと鉄心間の浮遊容量を利用して雷サージを検出することを特徴とする雷害保護システムである。
【0011】
【発明の実施の形態】
本発明の実施例について図を用いて説明する。
図1は本発明の実施例(平常状態)を示す説明図であり、
10は低圧引込線で、屋外に設けられいている電柱上に設置された変圧器により商用周波数の100V又は200Vに降圧された低圧配電線に接続されている。
【0012】
20は建物内の屋内配線で、TV、ビデオ、電話機、ファクシミリ、コンピュータ、洗濯機、電子レンジ、エアコン等の一般家庭内或いはオフィス内等で使用される電気機器の電源端子に接続されている。
【0013】
30はシールド33を備えた耐雷トランスであり、図4に示すように鉄心30bを中心に、一次側コイル31、シールド33、二次側コイル32を巻装させた構造となっている。
【0014】
耐雷トランス30の一次側コイル31と低圧引込線10の間及び耐雷トランス30のニ次側コイル32と屋内配線20の間には、図1に示すように耐雷トランス30を線路に対して接続/切離しを行うための接点41、42並びにバイパス線43を設けた開閉装置40が設けられている。
【0015】
接点41、42は後述する制御装置55からの信号によって動作する図示されていない開閉装置40の駆動機構により連動して動作し、低圧引込線10と屋内配線20とをバイパス線43により耐雷トランス30を介さずに接続させる平常状態と、耐雷トランス30を介して接続させる耐雷状態とを、屋内配線20に接続されている電気機器を無停電状態で切替えることができる構成になっている。
【0016】
なお無停電状態での切替とは、切替後において電気機器のメモリ等の情報が消去されたり或いはリセット状態にならなずに切替える状態のことを示す。
【0017】
また耐雷トランス30の二次側N相端子32bと開閉装置40のバイパス線二次側N相端子43b及び屋内配線20のN相20bは接点を設けずに電気的に常時接続されている構造になっている。
【0018】
なお、本実施例では、耐雷トランス30の二次側N相端子32bと開閉装置40のバイパス線二次側N相端子43b及び屋内配線20のN相20bは接点を設けずに電気的に常時接続されている構造になっているが、常時接続させる相は本実施例に限定させるものではなく、二次側U相32a、二次側V相32c、一次側U相31a、一次側V相31c、一次側N相31bのどの相を用いてもよく、いずれかの1つの相を用いることができる。
【0019】
この場合、耐雷トランス30への接続箇所が1箇所(1つの相)であるため、接続しても耐雷トランス30の一次側コイル31又は二次側コイル32には電流が流れる事が無いため、このように常時接続させても耐雷トランス30に電力損失を生じさせることがない。
【0020】
またシールド33は接地60と接地線39により電気的に接続されており、接地線39には検出器50が接続されている。
【0021】
検出器50は、変流器51の一次側端子に接地線39を接続し、変流器51の二次側端子に共振回路52を設けた構成となっており、シールド33を流れる電流から雷サージ信号を検出するものである。
【0022】
つまり図3に示すように、耐雷トランス30の一次側コイル31又は二次側コイル32とシールド33との間には浮遊容量30aが存在しているため、
低圧引込線10より侵入した雷サージ信号は、常時低圧引込線10と直接接続されている耐雷トランス30の一次側コイル31、或いは低圧引込線10とバイパス線43を介して接続されている二次側コイル32より侵入し、浮遊容量30aを介してシールド33に流れることになるため、シールド33と接地60を接続している接地線39に検出器50を設けることにより容易に検出することができる。
【0023】
而も耐雷トランス30の一次側コイル31或いは二次側コイル32とシールド33との間の耐電圧は極めて高いものであるため、侵入してくる雷サージ過電圧により絶縁破壊されることがない。
【0024】
また本実施例では、検出器50をシールド33と接地60とを接続している接地線39に設けているが、図4に示すように耐雷トランス30の鉄心30bと接地60とを接続する接地線38に設けて、鉄心30bに流れる雷サージ電流を検出するようにしても良い。
【0025】
つまり鉄心30bに対してもシールド33と同様に、耐雷トランス30の一次側コイル31又は二次側コイル32と鉄心30bの間には浮遊容量30aが存在しており、低圧引込線10より侵入した雷サージ信号は一次側コイル31又は二次側コイル32と浮遊容量30aを介して鉄心30bにも流れることになり、鉄心30bと接地60を接続している接地線38に検出器50を設けることにより、容易に検出することができるためである。
【0026】
而も耐雷トランス30の一次側コイル31或いは二次側コイル32と鉄心30bとの間の耐電圧もシールド33と同様に極めて高いものであるため、侵入してくる雷サージ過電圧により絶縁破壊されることがない。
【0027】
検出器50ではシールド33を流れる電流から中心周波数12kHz、帯域幅1.1kHzの周波数成分の信号を取り出し、制御装置55に送出する。
【0028】
なお検出器50で取り出す信号は、雷放電に伴って発生する信号であればよいため、上記実施例の周波数帯に限定されることはなく、例えばMHzオーダーの高周波帯などの周波数帯を用いてもよい。
【0029】
なお、雷サージ信号とは雷放電の前駆現象時に発生するサージ信号或いは落雷時に発生するサージ信号などの雷放電に伴って発生する信号のことを示す。
【0030】
制御装置55は検出器50により検出された信号に基づいて雷襲来判定を行って、開閉装置40へ切替え指令を与えるもので、開閉装置40は制御装置55からの指令により平常状態から耐雷状態、或いは耐雷状態から平常状態へ切替え動作を行う。
【0031】
制御装置55では予め設定しておいた危険レベル設定値(大きさ、持続時間、頻度など)を越えるなどの判定条件に従って、これらと検出器50からの送出信号を比較して雷の接近判定を行う。
その結果危険と判断した場合には、開閉装置40に動作指令を与えて、開閉装置40の接点41、42を耐雷トランス側へ切替え動作させて、図2に示す耐雷トランス30を電路に挿入させた耐雷状態に切替える。
【0032】
そして制御装置55は所定時間経過後、雷サージ信号が未検出または雷サージ信号が危険レベル設定値以下になった等の判定条件で安全と判断して開閉装置40を平常状態に切替え動作させるように開閉装置40に動作指令を与え、耐雷トランス30を電路より切り離し、図1に示す平常状態に戻す。
【0033】
なお開閉装置40による耐雷トランス30を電路に対して接続又は切離しする動作は、負荷側に接続されている電気機器が停止しないように無停電状態で行うことが必要であり、開閉装置40の切替え操作に伴う負荷側屋内配線20の瞬間停電時間が商用周波数の1サイクル以内に行うことが好ましく、1/2サイクル以内に行うことがより好ましい。
このような時間内に切替えを行うことにより、負荷側電気機器のメモリ等の情報が消去或いはリセットされることなく、無停電状態で切替えることができる。
【0034】
低圧引込線10と屋内配線20には、図1に示すように線間或いは大地間にZnO素子からなるサージアブソーバ90を設けてもよく、屋内配線20側のサージアブソーバを省略したり、或いは耐雷トランス30の二次側コイル32へサージアブソーバを設けてもよい。
【0035】
このように、本発明によりシールド33又は鉄心30bを接地60に接続する接地線39又は38に設けた検出器50により低圧引込線10を介して侵入する落雷に起因する雷サージ信号を耐雷トランスの浮遊容量を利用して検出するため、検出用の結合コンデンサを設けなくても雷サージを検出することができる。
【0036】
建物内へ接続される低圧引込線に発生している危険な雷サージ過電圧信号を直接検出するために、ノイズ等による誤検出、誤動作の無い雷保護システムを提供することができる。
【0037】
本発明は本実施例に限定されるものではなく、トランスを使用した雷保護装置、耐雷システムのすべてにおいて雷の接近を検出するために使用することができる。
【0038】
【発明の効果】
本発明により、耐雷トランスの浮遊容量を利用し、これを検出用の結合コンデンサの代替に使用するため、特別に高い耐電圧性能の高価な結合コンデンサを使用しなくてもよいため、安価にできる。
また同時に結合コンデンサが不要になるため、大きさは従来の耐雷トランスの大きさのままでよく、装置を小型化できる。
【図面の簡単な説明】
【図1】本発明の実施例の平常状態を示す説明図である。
【図2】本発明の実施例の耐雷状態を示す説明図である。
【図3】本発明の動作原理を示す説明図である。
【図4】耐雷トランスの構造断面図である。
【符号の説明】
10 低圧引込線
20 屋内配線
30 耐雷トランス
40 開閉装置
50 検出器
55 制御装置
90 サージアブソーバ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lightning damage protection system equipped with a lightning protection transformer that protects electronic equipment from lightning surges generated by lightning strikes that enter from a commercial frequency power line. More specifically, the lightning protection transformer is normally disconnected from an electric circuit. The present invention relates to an improvement in a lightning damage protection system in which a lightning resistant transformer is connected to an electric circuit when lightning approaches, so that the power loss of the lightning resistant transformer is minimized.
[0002]
[Prior art]
Conventionally, it is known that a lightning surge generated by a lightning strike propagates through a commercial frequency power line and enters the building, destroying the electrical equipment connected to the power line. Various protection systems have been proposed to protect the system.
As one of them, a protection system has been proposed in which a lightning-proof transformer is installed at the entrance of the commercial frequency power line into the interior to prevent a lightning surge entering the building from the power line. (For example, refer to Patent Document 1.)
[0003]
However, since the power loss due to iron loss or the like is as large as about 3 to 10% of the transformer capacity in the above lightning-resistant transformer, there is a demand to detect the lightning strike and to disconnect the lightning-resistant transformer from the power line except when it is approaching lightning. is there.
[0004]
In view of this, the present applicant has proposed in Japanese Patent Application No. 2002-204756 a lightning protection system that first detects a lightning attack and connects the lightning protection transformer to the electric circuit only when lightning approaches, thereby eliminating the power loss of the lightning protection transformer. Yes.
[0005]
[Patent Document 1]
Japanese Patent Publication No. 7-89712 (page 4-5, Fig. 1)
[0006]
[Problems to be solved by the invention]
And, as a method of detecting a lightning attack in the lightning protection system, a method of measuring lightning, thunder, electromagnetic waves, electrostatic field, etc. with various sensors, and a lightning surge propagating on the low-voltage line is provided between the low-voltage line and the ground A method of detecting by a detector such as CT through a capacitor is generally known.
[0007]
By the way, in the detection method in which the latter coupling capacitor is provided in the above detection method, since the lightning surge flowing in the low voltage line is directly detected through the coupling capacitor, there is an advantage that it can be detected with relatively high accuracy. In some cases, a lightning surge overvoltage is directly applied to the capacitor, resulting in breakdown and damage. Therefore, an expensive capacitor with a high withstand voltage is used as a countermeasure.
At the same time, there is a problem in that the size of the device increases due to the coupling capacitor.
[0008]
The present invention is made in order to solve the above-mentioned problems in the detection method provided with the above-described coupling capacitor, and can detect lightning strike information reliably from a low-voltage line without using an expensive coupling capacitor. It is an object of the present invention to provide an inexpensive and compact lightning damage protection system that can connect / disconnect a lightning resistant transformer to / from an electric circuit and eliminate power loss of the lightning resistant transformer.
[0009]
[Means for Solving the Invention]
The present invention has been made to solve the above problems,
A lightning transformer, an open / close mechanism for connecting / disconnecting the lightning transformer to / from the electric circuit, and a lightning surge detector for detecting the approach of a lightning attack, and the opening / closing by a signal from the lightning surge detector In the lightning damage protection system in which the mechanism is operated to connect / disconnect the lightning-resistant transformer to / from the electric circuit, and further, the shield and iron core of the lightning-resistant transformer are grounded,
The lightning surge detector is provided on the shield and / or the grounding wire of the iron core, and the switchgear of the switching mechanism includes a normal state in which the low-voltage lead-in line and the indoor wiring are connected by a bypass line without a lightning-proof transformer, and a lightning-proof transformer comprising a contact for switching between lightning-protection state which connects via,
The lightning transformer secondary N-phase terminal and N-phase of the bypass line secondary N-phase terminal and the interior wiring of the switchgear electrically always connected without providing the contact, the lightning transformer coil and the shield The lightning damage protection system is characterized by detecting a lightning surge using a stray capacitance between wires or between a coil and an iron core.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory view showing an embodiment (normal state) of the present invention,
Reference numeral 10 denotes a low-voltage lead wire, which is connected to a low-voltage distribution line that is stepped down to a commercial frequency of 100 V or 200 V by a transformer installed on a power pole provided outdoors.
[0012]
Reference numeral 20 denotes an indoor wiring in the building, which is connected to a power supply terminal of an electric device used in a general home or office such as a TV, a video, a telephone, a facsimile, a computer, a washing machine, a microwave oven, and an air conditioner.
[0013]
30 is a lightning transformer with a shield 33, around the iron core 30b as shown in FIG. 4, the primary coil 31, the shield 33 has a structure obtained by winding a secondary coil 32.
[0014]
As shown in FIG. 1, the lightning transformer 30 is connected to / disconnected from the line between the primary coil 31 of the lightning transformer 30 and the low-voltage lead wire 10 and between the secondary coil 32 of the lightning transformer 30 and the indoor wiring 20. An opening / closing device 40 provided with contacts 41 and 42 and a bypass line 43 is provided.
[0015]
The contacts 41 and 42 operate in conjunction with a drive mechanism of a switching device 40 (not shown) that operates in response to a signal from a control device 55 described later. The lightning transformer 30 is connected to the low-voltage lead-in wire 10 and the indoor wiring 20 by a bypass wire 43. The electric equipment connected to the indoor wiring 20 can be switched between a normal state in which connection is made without going through and a lightning-proof state in which connection is made through the lightning-proof transformer 30 in an uninterruptible state.
[0016]
Note that the switching in the uninterruptible state refers to a state in which the information such as the memory of the electric device is switched without being erased or being reset after the switching.
[0017]
In addition, the secondary side N-phase terminal 32b of the lightning transformer 30, the bypass line secondary side N-phase terminal 43b of the switchgear 40, and the N-phase 20b of the indoor wiring 20 are always electrically connected without providing a contact. It has become.
[0018]
In the present embodiment, the secondary side N-phase terminal 32b of the lightning transformer 30 and the bypass line secondary side N-phase terminal 43b of the switchgear 40 and the N-phase 20b of the indoor wiring 20 are always electrically connected without providing a contact. Although the structure is connected, the phase to be always connected is not limited to the present embodiment, and the secondary U phase 32a, the secondary V phase 32c, the primary U phase 31a, and the primary V phase. Any phase of 31c and primary side N phase 31b may be used, and any one phase may be used.
[0019]
In this case, since the connection location to the lightning resistant transformer 30 is one location (one phase), no current flows through the primary side coil 31 or the secondary side coil 32 of the lightning resistant transformer 30 even if connected. Thus, even if it is always connected, no power loss is caused in the lightning proof transformer 30.
[0020]
The shield 33 is electrically connected to the ground 60 through a ground line 39, and the detector 50 is connected to the ground line 39.
[0021]
The detector 50 has a configuration in which the ground line 39 is connected to the primary side terminal of the current transformer 51 and the resonance circuit 52 is provided to the secondary side terminal of the current transformer 51, and lightning is detected from the current flowing through the shield 33. A surge signal is detected.
[0022]
That is, as shown in FIG. 3, since the stray capacitance 30a exists between the primary side coil 31 or the secondary side coil 32 of the lightning proof transformer 30 and the shield 33 ,
The lightning surge signal that has entered from the low-voltage lead-in wire 10 is always connected to the primary-side coil 31 of the lightning-resistant transformer 30 that is always directly connected to the low-voltage lead-in wire 10 or the secondary-side coil 32 that is connected to the low-voltage lead-in wire 10 via the bypass wire 43. Since it penetrates more and flows to the shield 33 through the stray capacitance 30 a, it can be easily detected by providing the detector 50 on the ground line 39 connecting the shield 33 and the ground 60.
[0023]
In addition, since the withstand voltage between the primary side coil 31 or the secondary side coil 32 of the lightning resistant transformer 30 and the shield 33 is extremely high, the dielectric breakdown is not caused by the incoming lightning surge overvoltage.
[0024]
In this embodiment, the detector 50 is provided on the ground line 39 that connects the shield 33 and the ground 60. However, as shown in FIG. 4, the ground 30 that connects the iron core 30b of the lightning transformer 30 and the ground 60 is provided. It may be provided on the line 38 to detect a lightning surge current flowing in the iron core 30b.
[0025]
That is, the stray capacitance 30a exists between the primary coil 31 or the secondary coil 32 of the lightning-resistant transformer 30 and the iron core 30b in the same manner as the shield 33, and the lightning that has entered from the low-voltage lead-in wire 10 also exists in the iron core 30b. The surge signal also flows to the iron core 30b via the primary side coil 31 or the secondary side coil 32 and the stray capacitance 30a, and by providing the detector 50 on the ground wire 38 connecting the iron core 30b and the ground 60. This is because it can be easily detected.
[0026]
Since the withstand voltage between the primary side coil 31 or the secondary side coil 32 of the lightning resistant transformer 30 and the iron core 30b is extremely high like the shield 33, the dielectric breakdown is caused by the incoming lightning surge overvoltage. There is nothing.
[0027]
The detector 50 extracts a signal having a frequency component having a center frequency of 12 kHz and a bandwidth of 1.1 kHz from the current flowing through the shield 33 and sends it to the control device 55.
[0028]
In addition, since the signal taken out by the detector 50 should just be a signal generate | occur | produced with a lightning discharge, it is not limited to the frequency band of the said Example, For example, using frequency bands, such as a high frequency band of a MHz order, Also good.
[0029]
The lightning surge signal refers to a signal generated along with a lightning discharge such as a surge signal generated during a lightning discharge precursor phenomenon or a surge signal generated during a lightning strike.
[0030]
The control device 55 performs a lightning attack determination based on the signal detected by the detector 50, and gives a switching command to the switchgear 40. The switchgear 40 is switched from a normal state to a lightning proof state by a command from the controller 55. Alternatively, the switching operation from the lightning resistant state to the normal state is performed.
[0031]
In the control device 55, according to a determination condition such as exceeding a preset danger level setting value (size, duration, frequency, etc.), the control device 55 compares these signals with the transmission signal from the detector 50 to determine the approach of lightning. Do.
As a result, if it is determined to be dangerous, an operation command is given to the switchgear 40, the contacts 41 and 42 of the switchgear 40 are switched to the lightning transformer side, and the lightning transformer 30 shown in FIG. Switch to a lightning-resistant state.
[0032]
Then, after a predetermined time has elapsed, the control device 55 determines that the lightning surge signal has not been detected or the lightning surge signal has fallen below the danger level setting value, so that the switch device 40 is switched to the normal state. An operation command is given to the switchgear 40, and the lightning proof transformer 30 is disconnected from the electric circuit and returned to the normal state shown in FIG.
[0033]
The operation of connecting or disconnecting the lightning resistant transformer 30 with respect to the electric circuit by the switchgear 40 needs to be performed in an uninterruptible state so that the electrical equipment connected to the load side does not stop. The instantaneous power failure time of the load-side indoor wiring 20 associated with the operation is preferably performed within one cycle of the commercial frequency, and more preferably within ½ cycle.
By switching within such a time, it is possible to switch in an uninterruptible state without erasing or resetting information in the memory of the load-side electrical device.
[0034]
As shown in FIG. 1, the low-voltage lead-in wire 10 and the indoor wiring 20 may be provided with a surge absorber 90 made of a ZnO element between the lines or between the grounds, or the surge absorber on the side of the indoor wiring 20 may be omitted, or a lightning transformer A surge absorber may be provided in the 30 secondary side coils 32.
[0035]
As described above, the lightning surge signal caused by the lightning strike entering through the low-voltage lead-in wire 10 by the detector 50 provided on the ground wire 39 or 38 connecting the shield 33 or the iron core 30b to the ground 60 according to the present invention is floated in the lightning transformer. Since the detection is performed using the capacitance, it is possible to detect a lightning surge without providing a detection coupling capacitor.
[0036]
In order to directly detect a dangerous lightning surge overvoltage signal generated in a low-voltage lead-in wire connected to a building, it is possible to provide a lightning protection system free from false detection and malfunction due to noise or the like.
[0037]
The present invention is not limited to this embodiment, and can be used to detect the approach of lightning in all lightning protection devices and lightning protection systems using a transformer.
[0038]
【The invention's effect】
According to the present invention, since the stray capacitance of the lightning-proof transformer is used and used as an alternative to the detection coupling capacitor, it is not necessary to use an expensive coupling capacitor having a particularly high withstand voltage performance, so that the cost can be reduced. .
At the same time, since a coupling capacitor is not necessary, the size can be the same as that of a conventional lightning-proof transformer, and the device can be downsized.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a normal state of an embodiment of the present invention.
FIG. 2 is an explanatory diagram showing a lightning protection state according to an embodiment of the present invention.
FIG. 3 is an explanatory diagram showing the operation principle of the present invention.
FIG. 4 is a structural cross-sectional view of a lightning resistant transformer.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Low voltage lead-in wire 20 Indoor wiring 30 Lightning-proof transformer 40 Switchgear 50 Detector 55 Control apparatus 90 Surge absorber

Claims (1)

耐雷トランスと、前記耐雷トランスを電路に対して接続/切離しを行う開閉機構と、雷襲来の接近を検出するための雷サージ検出器とを具備し、前記雷サージ検出器からの信号により前記開閉機構を動作させて前記耐雷トランスを電路に対し接続/切離しを行うとともに、更に前記耐雷トランスのシールド及び鉄心を接地するようにした雷害保護システムにおいて、
前記雷サージ検出器を前記シールド及び/又は前記鉄心の接地線に設けるとともに前記開閉機構の開閉装置は低圧引込線と屋内配線とをバイパス線により耐雷トランスを介さずに接続させる平常状態と、耐雷トランスを介して接続する耐雷状態とを切り替えるための接点を具備し
前記耐雷トランスの二次側 N 相端子と前記開閉装置のバイパス線二次側 N 相端子及び前記屋内配線の N 相は接点を設けずに電気的に常時接続し、前記耐雷トランスのコイルとシールド線間或いはコイルと鉄心間の浮遊容量を利用して雷サージを検出することを特徴とする雷害保護システム。
A lightning-resistant transformer, an opening / closing mechanism for connecting / disconnecting the lightning-resistant transformer to / from an electric circuit, and a lightning surge detector for detecting the approach of a lightning attack, and the opening / closing by a signal from the lightning surge detector In the lightning damage protection system in which the mechanism is operated to connect / disconnect the lightning-resistant transformer to / from the electric circuit, and further, the shield and iron core of the lightning-resistant transformer are grounded,
The lightning surge detector is provided on the shield and / or the grounding wire of the iron core, and the switchgear of the switching mechanism includes a normal state in which the low-voltage lead-in wire and the indoor wiring are connected by a bypass line without a lightning-proof transformer, and a lightning-proof transformer comprising a contact for switching between lightning-protection state which connects via,
The lightning transformer secondary N-phase terminal and N-phase of the bypass line secondary N-phase terminal and the interior wiring of the switchgear electrically always connected without providing the contact, the lightning transformer coil and the shield A lightning damage protection system characterized by detecting a lightning surge using a stray capacitance between wires or between a coil and an iron core.
JP2002358018A 2002-12-10 2002-12-10 Lightning protection system Expired - Fee Related JP4143824B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002358018A JP4143824B2 (en) 2002-12-10 2002-12-10 Lightning protection system
CN 200380105702 CN1723596A (en) 2002-12-10 2003-11-14 Device for protection from thunder
US10/538,080 US7256977B2 (en) 2002-12-10 2003-11-14 Device for protection from thunder
KR1020057010558A KR20050084244A (en) 2002-12-10 2003-11-14 Device for protection from thunder
AU2003302828A AU2003302828A1 (en) 2002-12-10 2003-11-14 Thunderbolt Disaster Protecting Apparatus
PCT/JP2003/014546 WO2004054062A1 (en) 2002-12-10 2003-11-14 Device for protection from thunder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002358018A JP4143824B2 (en) 2002-12-10 2002-12-10 Lightning protection system

Publications (2)

Publication Number Publication Date
JP2004194409A JP2004194409A (en) 2004-07-08
JP4143824B2 true JP4143824B2 (en) 2008-09-03

Family

ID=32757852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002358018A Expired - Fee Related JP4143824B2 (en) 2002-12-10 2002-12-10 Lightning protection system

Country Status (2)

Country Link
JP (1) JP4143824B2 (en)
CN (1) CN1723596A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102882182A (en) * 2012-09-29 2013-01-16 青岛浩海网络科技股份有限公司 Intelligent lightning arrester and using method thereof
CN105700658B (en) * 2015-12-31 2018-08-10 联想(北京)有限公司 Electronic equipment and control method
CN113572146A (en) * 2021-07-27 2021-10-29 四川鑫星源科技有限公司 Secondary system strong current intrusion prevention protection device and method thereof
JP7268102B2 (en) * 2021-09-08 2023-05-02 西芝電機株式会社 power storage system

Also Published As

Publication number Publication date
JP2004194409A (en) 2004-07-08
CN1723596A (en) 2006-01-18

Similar Documents

Publication Publication Date Title
US7542252B2 (en) Circuit interrupting device having integrated enhanced RFI suppression
KR100506477B1 (en) Ground fault interrupter
US9219360B2 (en) Safe quick disconnect leakage protector
US9396866B2 (en) Blocker of geomagnetically induced currents (GIC)
WO1999043066A1 (en) Zone arc fault detection
US7149066B2 (en) Fault detector for two line power distribution system and protection apparatus incorporating the same
JP4143824B2 (en) Lightning protection system
JP2002320325A (en) Power transmission and distribution equipment
CN219513785U (en) Surge protection device and charging system
JP4583642B2 (en) Distribution board with lightning arrester
US7256977B2 (en) Device for protection from thunder
JPH1118285A (en) Protector against lightning surge
KR102042379B1 (en) Electrical equipment panel with surge protection apparatus
JP4182517B2 (en) Lightning protection device
KR20020041973A (en) Breaker for a leakage of electrocity
JP3338688B2 (en) Power transmission and distribution equipment
KR102444837B1 (en) Outlet device and operation method therefor
KR100353268B1 (en) Home Panel Board for Electromagnetic Compatibility
JP2000261957A (en) Surge absorber and indoor wiring method using the same
JPH0946887A (en) Zero-phase voltage detector
JPS6112007A (en) Detector for internal partial discharge of stationary induction electrical apparatus
JPS6326609B2 (en)
JP2019216387A (en) Communication device
JPH01150747A (en) Earth leak breaker for electric device
JPH09219912A (en) Gas-insulated equipment fitted with current detecting electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080603

R150 Certificate of patent or registration of utility model

Ref document number: 4143824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140627

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees