JPS63266016A - Nozzle for blowing gas - Google Patents

Nozzle for blowing gas

Info

Publication number
JPS63266016A
JPS63266016A JP15208287A JP15208287A JPS63266016A JP S63266016 A JPS63266016 A JP S63266016A JP 15208287 A JP15208287 A JP 15208287A JP 15208287 A JP15208287 A JP 15208287A JP S63266016 A JPS63266016 A JP S63266016A
Authority
JP
Japan
Prior art keywords
nozzle
gas
small diameter
diameter metal
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15208287A
Other languages
Japanese (ja)
Inventor
Masao Kurosaki
将夫 黒崎
Takeshi Koyanagi
健 小柳
Takayoshi Sato
佐藤 高芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15208287A priority Critical patent/JPS63266016A/en
Publication of JPS63266016A publication Critical patent/JPS63266016A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To obtain a nozzle for blowing gas forming stable and suitable mushroom by constituting the nozzle by collecting many small diameter metal pipes and specifying relation between an interval of the metal pipes side by side and an inner diameter thereof. CONSTITUTION:The small diameter metal pipes 1 are collected by >=20 pieces in a non-porous refractory 2 and connected with a gas introducing pipe 5 through a gas equalizing space 6, and thus the nozzle for blowing gas arranging furnace bottom, etc., of a molten metal refining furnace, is obtd. The above nozzle is constituted, so that the relation between the interval (l) of the small diameter metal pipes 1 side by side and the inner diameter (r) thereof satisfies the inequality: l<=4r<9/4> [mm: unit of (r), (l)]. Further the nearest distance between the small diameter metal pipe 1 and the outer circle of the non-porous refractory 2 is to be >=45mm, desirably >=55mm. By this method, even if at the time of blowing only a little quantity of gas, the stable mushroom is formed and erosion of the nozzle caused by the molten steel and clogging of the nozzle caused by the slag are prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、溶融金属精練炉の炉底等に設けたガス吹込用
ノズルの構造に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to the structure of a gas blowing nozzle provided at the bottom of a molten metal smelting furnace.

(従来の技術) 従来非多孔質耐火物に小径金属管を多数配設したガス吹
込用ノズルについては、例えば特開昭58−16771
6号公報、あるいは特開昭59−31814号公報によ
って開示されているがごとく非多孔質耐火物に内径が0
.11mm〜4.0IIImの小径金属管を多数埋設し
たものである。
(Prior Art) Conventionally, a gas blowing nozzle in which a large number of small diameter metal tubes are arranged in a non-porous refractory is disclosed in, for example, Japanese Patent Application Laid-Open No. 58-16771.
6 or Japanese Patent Application Laid-open No. 59-31814, non-porous refractories have an inner diameter of 0.
.. A large number of small diameter metal tubes of 11mm to 4.0IIIm are buried.

上記形式のノズルにおいては、近年溶湯が小径金属管内
に侵入する限界流量を下げる目標で、使用する小径金属
管の内径を小さくし、低流量操業時には小径金属管内へ
の溶湯役人の限界流量で操業する場合が多い。
In recent years, with the above type of nozzle, the inner diameter of the small diameter metal pipe used has been reduced with the goal of lowering the critical flow rate at which molten metal enters the small diameter metal pipe, and during low flow operation, the molten metal is operated at the critical flow rate of the molten metal into the small diameter metal pipe. Often.

又一方、実公昭60−2177号公報の如く溶鋼撹拌用
の金属パイプ羽目を複数本設置するに当たり、羽口とし
て内径が0.5〜6maφのものを用い、隣り合う各羽
目の距離を当該羽口内径の11倍以下になるように配置
するというものが提案されている。しかしこの技術は底
吹ガスによる撹拌力の向上を目的としたもので、本発明
がα図するマツシュルームの形べを容易にして羽口溶損
の抑制を図るというものでない。
On the other hand, when installing a plurality of metal pipes for stirring molten steel as in Publication of Utility Model Publication No. 60-2177, tuyeres with an inner diameter of 0.5 to 6 maφ are used, and the distance between adjacent pipes is determined by It has been proposed that the diameter be 11 times or less the inner diameter of the mouth. However, this technique is aimed at improving the stirring power by bottom blowing gas, and is not intended to facilitate shaping of the pine mushroom and suppress tuyere melting, which is the aim of the present invention.

また、特開昭61−207505号公報には上下吹き転
炉の底吹きノズルのガス吹込用貫通孔の配置をいずれも
正三角形の頂点になるように形成するという技術が開示
されている。
Further, Japanese Patent Application Laid-Open No. 61-207505 discloses a technique in which the gas injection through holes of the bottom blowing nozzle of a top-bottom blowing converter are arranged so that they are all located at the vertices of an equilateral triangle.

しかしながらこの技術はノズルの配置についての記載は
あるもののマツシュルームの形状を最適にするための貫
通孔間の間隔をどのようにするかという点については全
く記載されていない。
However, although this technique describes the arrangement of nozzles, it does not describe at all how to space the through holes to optimize the shape of the pine mushroom.

(発明の解決しようとする問題点) ところで第3図に示す様に小径金属管の内径が小さくな
ればなる程、小径金属管表面に形成される凝固地金(以
下マツシュルームと呼ぶ)の径も小さくなり、第4図に
示す様な隣り合う小径金属管lに形成されたマツシュル
ーム同志が連結して小径金属管1を埋設しであるノズル
表面部全体を覆うような大きなマツシュルーム3Δに成
長することが著しく困難となる。図中4は細孔である。
(Problems to be Solved by the Invention) As shown in Fig. 3, the smaller the inner diameter of the small diameter metal tube, the smaller the diameter of the solidified metal (hereinafter referred to as pine mushroom) formed on the surface of the small diameter metal tube. As shown in FIG. 4, the pine mushrooms formed in adjacent small diameter metal tubes 1 are connected and grow into a large pine mushroom 3Δ that covers the entire surface of the nozzle where the small diameter metal tube 1 is buried. becomes extremely difficult. 4 in the figure is a pore.

したがって第5図に示す様な小径金属管1をノズル全体
に分散させた構造のノズルであると低流h1吹込時には
第6図に示す様に個々の小径金属管1の表面部に微少の
マツシュルーム3Bが形成されるのみでノズル全体を覆
うようなマツシュルームは形成することができない。そ
のためノズルの溶損速度が速いとか、スラグにより羽目
が埋り込んでしまい。底吹効果が発揮されない等の問題
があった。
Therefore, if the nozzle has a structure in which the small diameter metal tubes 1 are dispersed throughout the nozzle as shown in FIG. 5, when a low flow h1 is blown, minute amounts of mushrooms will be formed on the surface of each small diameter metal tube 1 as shown in FIG. 6. Only 3B is formed, and a pine mushroom that covers the entire nozzle cannot be formed. As a result, the nozzle erodes at a high rate, and the slag gets stuck in the nozzle. There were problems such as the bottom blowing effect not being achieved.

(問題点を解決するための手段) 本発明は前記従来技術の問題点を解決するためになされ
たしので、小径金属管を集合させた形式のノズルを用い
て、低流量ガス吹込操業を実施したときにも小径金属管
を埋設しである耐火物のノズル表面部全体を覆う安定し
たマツシュルームが形成される様にしたものである。
(Means for Solving the Problems) The present invention has been made to solve the problems of the prior art, and therefore a low flow rate gas blowing operation is carried out using a nozzle in which small diameter metal tubes are assembled. Even when this happens, a stable pine mushroom is formed that covers the entire nozzle surface of the refractory material in which the small-diameter metal pipe is buried.

即ち、本発明の要旨とするところは小径金属管を20本
以上集合させた形式のノズルにおいて、その隣り合う小
径金属管の間隔Qと当該小径金属すように配置間隔を設
定するものであり、更にはこれに加えて小径金属管と非
多孔質耐火物外周との最短距離を45ffiI11以上
望ましくは55IIII+以上とするものである。
That is, the gist of the present invention is that in a nozzle in which 20 or more small diameter metal tubes are assembled, the arrangement interval is set so that the distance Q between adjacent small diameter metal tubes and the small diameter metal tube are the same. Furthermore, in addition to this, the shortest distance between the small diameter metal tube and the outer periphery of the non-porous refractory is set to 45ffiI11 or more, preferably 55III+ or more.

以下本発明について図面に基づき詳細に述べる。The present invention will be described in detail below based on the drawings.

第1図(イ)及び(ロ)は本発明のノズルの縦断面及び
平面図(稼動面)を例示したものである。同図において
Iは小4乞金属管、2は非多孔質耐火物、5はガス導入
管、6はガス均圧室であり、小径金属管1はノズルの中
心部に設置しである。金属管の内径は0.1〜3.0で
あり、肉厚は0.2〜3.01Mmである。小径金属管
の肉厚はなるべく厚い方が好ましい。これはマツシュル
ームの成長の基点となる金属面が広がるため、より大き
なマツシュルームの成長が可能となるからである。
FIGS. 1A and 1B illustrate a longitudinal section and a plan view (operating surface) of the nozzle of the present invention. In the figure, I is a small metal pipe, 2 is a non-porous refractory, 5 is a gas introduction pipe, 6 is a gas pressure equalization chamber, and the small diameter metal pipe 1 is installed in the center of the nozzle. The metal tube has an inner diameter of 0.1 to 3.0 mm and a wall thickness of 0.2 to 3.01 mm. It is preferable that the wall thickness of the small diameter metal tube is as thick as possible. This is because the metal surface, which is the base point for the growth of pine mushrooms, expands, making it possible for larger pine mushrooms to grow.

本発明において、隣り合う小径金属管lの間隔としたの
は以下の理由による。
In the present invention, the interval between adjacent small-diameter metal tubes l is determined for the following reasons.

第8図に示す如く小径金属管先端に形成されるマツシュ
ルームの半径R(mn+)と、小径金属管内径r(II
llI+)、小径金属管1本当たりのガス流m F(Q
/1in)との間には伝熱計算の結果より以下の関係が
ある。
As shown in Fig. 8, the radius R (mn+) of the pine mushroom formed at the tip of the small diameter metal tube and the inner diameter r (II
llI+), gas flow m F(Q
/1 inch), there is the following relationship based on the results of heat transfer calculations.

Rdr・・・・・・・・(2) また小径金属管内への溶湯侵入限界流m F ’ に関
しては溶湯静圧とガスの浮力とのつり合いから次式に示
す関係が求められる。
Rdr (2) Regarding the critical flow mF' of molten metal intrusion into a small diameter metal pipe, the relationship shown in the following equation can be obtained from the balance between the static pressure of the molten metal and the buoyancy of the gas.

(1)、(2)、(3)を組み合わせることにより溶湯
侵入限界流量で形成されるマツシュルーム半径が求まり
、以下の式で示される R=Ar   (Aは定数)・・・(4)定数Δは実操
業で使用した羽目を回収し、形成されたマツシュルーム
半径を測定することにより求めA=2.0を得た。
By combining (1), (2), and (3), the radius of the pine mushroom formed at the limit flow rate of molten metal penetration can be found, and it is expressed by the following formula: R=Ar (A is a constant)... (4) Constant Δ was determined by collecting the lining used in the actual operation and measuring the radius of the formed pine mushroom, and obtained A=2.0.

更に隣り合う小径金属管に形成されたマツシュルーム同
志が連結するためには第8図より明らかな様に e≦2R・・・・・・・・・・(5) であればよ<(4)式と(5)式を組み合わせるとa≦
よって上記ノズルでガス吹込を行えば少量のガス吹込時
においても、各金属管に生成したマツシュルームが相互
に連結し合い小径金属管配置部全体を覆うマツシュルー
ムを形成することができる。
Furthermore, in order for the pine mushrooms formed on adjacent small-diameter metal tubes to connect, e≦2R (5) should be satisfied (4), as is clear from Fig. 8. Combining formula and formula (5), a≦
Therefore, if gas is blown using the above-mentioned nozzle, even when a small amount of gas is blown, the pine mushrooms generated in each metal tube can be interconnected to form a pine mushroom that covers the entire small-diameter metal tube arrangement section.

本発明において、小径金属管Iと非多孔質耐火物2の外
周との最短距離αは45mm以上とするのが望ましい。
In the present invention, it is desirable that the shortest distance α between the small diameter metal tube I and the outer periphery of the non-porous refractory 2 is 45 mm or more.

即ちこうすることによって炉底からの吹込みガスによる
バックアタックでれんが目地部(羽目の外周部)が先行
溶損するのを軽減させることができる。炉底から吹き込
むガス量が50ONn+’/It以上と大流量になる場
合にはガスによるバックアタックも顕著になることを考
慮してαを55mm以上とするのが望ましい。
That is, by doing so, it is possible to reduce the possibility that the brick joints (outer periphery of the siding) will be melted in advance due to back attack caused by gas blown from the bottom of the furnace. When the amount of gas blown from the bottom of the furnace becomes large, such as 50ONn+'/It or more, it is desirable to set α to 55 mm or more, considering that the back attack caused by the gas becomes significant.

(実 施 例) 第2図(イ)、 (ロ)に示す様に内径2mm、肉厚1
amの小径金属管1を12a+mの間隔で116本、α
を54mmとして非多孔質耐火物に埋設したノズルを用
いるとガス吹込量は70〜600 Nn+’/hr (
元圧10 Kg/cm″)の範囲が可能であり、かつ少
量(7ONm’/hr)のガス吹込時においても小径金
属管配置部を覆うマツシュルームが安定して形成できた
(Example) As shown in Figure 2 (a) and (b), the inner diameter is 2 mm and the wall thickness is 1 mm.
116 am small diameter metal tubes 1 at intervals of 12a+m, α
When using a nozzle embedded in a non-porous refractory with a diameter of 54 mm, the gas injection amount is 70 to 600 Nn+'/hr (
A range of original pressure of 10 Kg/cm'') was possible, and even when a small amount of gas (7 ONm'/hr) was blown, it was possible to stably form a pine mushroom covering the small-diameter metal tube arrangement part.

そのためノズルの溶損速度はQ 、l 9 is/ah
であった。
Therefore, the erosion rate of the nozzle is Q, l 9 is/ah
Met.

これに対し間隔を24 am、αを231II11とし
、肉厚、本数を同等とした比較例(第7図(イ)、C口
)のノズル使用時)のノズルの溶損速度は0.5mm/
chであった。
On the other hand, in a comparative example (when using the nozzle shown in Figure 7 (a), port C) where the spacing was 24 am, α was 231II11, and the wall thickness and number were the same, the nozzle erosion rate was 0.5 mm/
It was ch.

さらに本発明のノズルを用いると安定したマツシュルー
ムが形成されるため、不活性ガス使用時に生ずるスラグ
による羽目の埋り込みという問題も解消でき2000回
以上の安定したノズルの稼動が可能となった。
Furthermore, since a stable pine mushroom is formed when using the nozzle of the present invention, the problem of embedding of slag due to the slag that occurs when using an inert gas can be solved, and the nozzle can be stably operated more than 2,000 times.

(発明の効果) 以上の如く本発明のノズルによれば少量のガス吹込時に
おいても安定したマツシュルームが形成されるため溶湯
によるノズルの溶損を極端に小さく抑えることができ、
かつスラグによるノズルの埋り込みが防止できる。
(Effects of the Invention) As described above, according to the nozzle of the present invention, a stable pine mushroom is formed even when a small amount of gas is blown, so that erosion of the nozzle due to molten metal can be extremely suppressed.
In addition, embedding of the nozzle due to slag can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)及び(ロ)は本発明に係る小径金属管を例
示する断面図及び平面図、第2図(イ)及び(ロ)は本
発明に係る小径金属管の配置例を示す平面図及び拡大図
、第3図は小径金属管内径と溶鋼侵入限界域で形成され
るマツシュルーム半径との関係を示す図、第4図は大き
なマツシュルーム形成状況を例示する図、第5図はノズ
ル配置例を示す平面図、第6図は微小なマツシュルーム
形成状況を例示する図、第7図(イ)及び(ロ)は従来
の小径金属管配置例を示す平面図及び拡大図、第8図は
本発明の詳細な説明する図である。 1・・・・・小径金属管 2・・・・・非多孔質耐火物 3A、3B・・・・マツシュルーム 4・・・・・細孔 5・・・・・ガス導入管 6・・・・・ガス均圧室 第1図 (イ) 、/     Z 第3図 小イ畳り4Aη「dq怪で2゜ 第4図 第5図 第6図 R 第7図 (イ)             (口J第8図
Figures 1 (a) and (b) are cross-sectional views and plan views illustrating small-diameter metal tubes according to the present invention, and Figures 2 (a) and (b) illustrate examples of arrangement of small-diameter metal tubes according to the present invention. Plan view and enlarged view, Figure 3 is a diagram showing the relationship between the inner diameter of a small metal pipe and the radius of a pine mushroom formed in the molten steel penetration limit area, Figure 4 is a diagram illustrating the state of formation of a large pine mushroom, and Figure 5 is a nozzle. FIG. 6 is a plan view showing an example of arrangement; FIG. 6 is a view illustrating the state of formation of minute mushrooms; FIGS. FIG. 2 is a diagram illustrating the present invention in detail. 1... Small diameter metal tube 2... Non-porous refractories 3A, 3B... Pine mushroom 4... Pore 5... Gas introduction pipe 6...・Gas pressure equalization chamber Fig. 1 (A), / Z Fig. 3 Small A tatami mat 4 Aη "dq strange 2° Fig. 4 Fig. 5 Fig. 6 R Fig. 7 (A) (mouth J Fig. 8

Claims (2)

【特許請求の範囲】[Claims] (1)小径金属管を20本以上集合させた形式のノズル
において、その隣り合う小径金属管の間隔lと当該小径
金属管内径rとの関係を以下に示す式を満すように配置
したことを特徴とするガス吹込用ノズル l≦4r^θ^/^4(r、lの単位はmm)。
(1) In a nozzle in which 20 or more small-diameter metal tubes are assembled, the relationship between the interval l between adjacent small-diameter metal tubes and the inner diameter r of the small-diameter metal tubes must be arranged so that the following formula is satisfied. A gas blowing nozzle characterized by l≦4r^θ^/^4 (r and l are in mm).
(2)小径金属管と非多孔質耐火物外周との最短距離を
45mm以上望ましくは55mm以上とした特許請求の
範囲第1項記載のガス吹込 用ノズル。
(2) The gas blowing nozzle according to claim 1, wherein the shortest distance between the small diameter metal tube and the outer periphery of the non-porous refractory is 45 mm or more, preferably 55 mm or more.
JP15208287A 1986-12-29 1987-06-18 Nozzle for blowing gas Pending JPS63266016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15208287A JPS63266016A (en) 1986-12-29 1987-06-18 Nozzle for blowing gas

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP31251986 1986-12-29
JP61-312519 1986-12-29
JP15208287A JPS63266016A (en) 1986-12-29 1987-06-18 Nozzle for blowing gas

Publications (1)

Publication Number Publication Date
JPS63266016A true JPS63266016A (en) 1988-11-02

Family

ID=26481107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15208287A Pending JPS63266016A (en) 1986-12-29 1987-06-18 Nozzle for blowing gas

Country Status (1)

Country Link
JP (1) JPS63266016A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602177B2 (en) * 1980-03-05 1985-01-19 住友電気工業株式会社 heat recoverable articles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602177B2 (en) * 1980-03-05 1985-01-19 住友電気工業株式会社 heat recoverable articles

Similar Documents

Publication Publication Date Title
CA2341898A1 (en) A direct smelting process
CN109234543A (en) Bottom blowing refining furnace and its application
CN1006897B (en) Molten material outlet
JPS63266016A (en) Nozzle for blowing gas
US5911946A (en) Snorkel for a degassing vessel
EP0128987B1 (en) Tuyere and method for blowing gas into molten metal
US4477279A (en) Annular tuyere and method
US4462825A (en) Method for increasing the scrap melting capability of metal refining processes
JP4761937B2 (en) Blowing method for converter
JPS59153818A (en) Refining process in top and bottom-blown converter
JPS6326168B2 (en)
JP3769060B2 (en) Method of blowing gas into molten metal
JPH03274218A (en) Multiple purpose three-ply pipe lance
JP2007046116A (en) Furnace body of converter
SU1044606A1 (en) Feeder for glass melting furnace
JP2007077492A (en) Blowing method for converter
JPS58167717A (en) Nozzle for refining molten metal
JPH0613253Y2 (en) Blowing tuyere
JPS62205215A (en) Apparatus for cleaning metallurgical container
JPS63310914A (en) Method for refining molten iron by gas blowing
JP2809058B2 (en) Refining method in converter type refining vessel
JPH051316A (en) Furnace hearth structure for fitting bottom gas nozzle in electric furnace
JP2000096119A (en) Blow-refining method for restraining sticking of metal in converter type refining furnace
JPS6049688B2 (en) How to construct the bottom of a converter
JP4979209B2 (en) How to adjust furnace profile