JPS6326563B2 - - Google Patents

Info

Publication number
JPS6326563B2
JPS6326563B2 JP9191279A JP9191279A JPS6326563B2 JP S6326563 B2 JPS6326563 B2 JP S6326563B2 JP 9191279 A JP9191279 A JP 9191279A JP 9191279 A JP9191279 A JP 9191279A JP S6326563 B2 JPS6326563 B2 JP S6326563B2
Authority
JP
Japan
Prior art keywords
amplifier
output
mosfet
power supply
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9191279A
Other languages
Japanese (ja)
Other versions
JPS5616304A (en
Inventor
Tsutomu Oogishi
Tooru Akyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP9191279A priority Critical patent/JPS5616304A/en
Publication of JPS5616304A publication Critical patent/JPS5616304A/en
Publication of JPS6326563B2 publication Critical patent/JPS6326563B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は広い電源電圧範囲で周波数変化及び振
幅変化の小さい発振出力を得ることの出来る水晶
発振回路に関する。 水晶発振回路は例えば水晶時計の基準クロツク
としてまた周波数シンセサイザーラジオ受信機の
基準クロツクとして或いはラジオ受信機の受信周
波数計数用の基準クロツクとして利用されてい
る。このような機器に於いて例えば電源として自
動車用バツテリーを利用した場合、充電時には17
〜18Vになるが、エンジン起動時には4〜5V位
まで低下する。従つて電源電圧の安定化回路を加
えることも必要であるが、水晶発振回路に於いて
も広い電源電圧で安定に動作することが望まし
い。更にバツテリーの寿命の点から電流が少ない
方が望ましい。一方ラジオ受信機等で使用する基
準発振出力は出力が大き過ぎると、他の機器へ悪
影響を及ぼすので電源電圧が変化しても必要最小
限の一定の出力振幅の発振出力が得られることが
望ましい。更にまた、水晶時計や周波数シンセサ
イザーラジオ受信機では発振周波数が電源電圧の
変化により変動しないことが望ましい。 本発明は上述した点に鑑み、提案されるもので
あり、以下、図面に示す実施例を参照して説明す
る。第1図に於いてXは水晶振動子であり、その
一端は第1増幅器(反転増幅器)1の入力端に接
続されている。第1増幅器1はエンハンスメント
型MOSFET(電界効果型トランジスタ)T3及び
デイプリージヨン型MOSFET T4より構成され
ている。第1増幅器1の出力端は第2増幅器2の
入力端に接続されている。第2増幅器2はエンハ
ンスメント型MOSFET T1及びデイプリージヨ
ン型若しくはしきい値電圧Vtが0V近傍の
MOSFET T2より構成されている。第1増幅器
1及び第2増幅器2は周知の如く全体としてプツ
シユプル型の反転増幅器として機能する。第2増
幅器2の出力端は水晶振動子Xの他端に接続され
ている。そして回路の動作点を自己バイアスする
帰還抵抗Rfを付け、更に水晶振動子Xの各端子
とアース間にコンデンサーC1,C2を接続すれば、
端子4より発振出力を得ることが出来る。斯かる
構成となる水晶発振回路の電源電圧VDD、発振
周波数、出力振幅、出力電流IDDは第1表に示す
通りであり、電源電圧の変動に対応して出力特性
も比較的大きく変化している。そこで本発明に於
いては第1増幅器1の出力端にクランプ回路3を
接続したものである。第1図の実施例に於いては
MOSFET T5にてクランプ回路を構成したもの
であり、第1増幅器1の出力電圧V1がMOSFET
T5のしきい値電圧以上になると、MOSFET T5
(エンハンスメント型)は導通するので、結局出
力電圧V1はMOSFET T5のしきい値電圧より若
干高い電圧以上にはならない。この為、本発明に
係る水晶発振回路に於いては、第2表に示す如く
出力V2の振幅は電源電圧が5V以上では殆ど一定
となる。出力振幅が一定である為、反転増幅器の
出力インピーダンスの電源電圧による変化が小さ
くなり、以つて発振周波数の変化も小さい。即
ち、第2表に示す如く、電源電圧5V以上で変化
が小さい。更に電流IDDの変化も小さいことが分
る。尚、第1、第2表はc1=c2=20PF、T1
T3,T5をしきい値電圧1Vのエンハンスメント型
MOSFET、T4をしきい値電圧−2.5Vのデイプリ
ージヨン型MOSFET、T2をしきい値電圧0Vの
MOSFETとした場合の実測値を示している。 第2図は他の実施例を示すものであり、クラン
プ回路3が複数個のMOSFETで構成されており
且つ、帰還抵抗がMOSFET T6にて構成されて
いる例である。 尚、図面に示すFETは全てN伝導型にて構成
することが出来る。 以上述べた本発明に依れば、電源電圧の変動に
も拘らず、出力振幅、発振周波数、消費電流の変
化を小さくすることが出来る。また水晶振動子以
外の素子をFETにて構成することが出来、集積
回路化が容易である。
The present invention relates to a crystal oscillation circuit that can obtain an oscillation output with small frequency and amplitude changes over a wide power supply voltage range. Crystal oscillator circuits are used, for example, as a reference clock for quartz clocks, as a reference clock for frequency synthesizer radio receivers, or as a reference clock for counting received frequencies in radio receivers. For example, if a car battery is used as a power source for such a device, 17
It will be ~18V, but it will drop to about 4-5V when the engine starts. Therefore, it is necessary to add a power supply voltage stabilizing circuit, but it is desirable that the crystal oscillation circuit also operate stably over a wide range of power supply voltages. Furthermore, from the viewpoint of battery life, it is desirable that the current be lower. On the other hand, if the standard oscillation output used in radio receivers etc. is too large, it will have a negative effect on other equipment, so it is desirable to be able to obtain an oscillation output with a constant minimum output amplitude even if the power supply voltage changes. . Furthermore, in a crystal clock or a frequency synthesizer radio receiver, it is desirable that the oscillation frequency does not fluctuate due to changes in power supply voltage. The present invention has been proposed in view of the above points, and will be described below with reference to embodiments shown in the drawings. In FIG. 1, X is a crystal oscillator, one end of which is connected to the input end of a first amplifier (inverting amplifier) 1. The first amplifier 1 includes an enhancement type MOSFET (field effect transistor) T3 and a depletion type MOSFET T4 . The output terminal of the first amplifier 1 is connected to the input terminal of the second amplifier 2. The second amplifier 2 is an enhancement type MOSFET T 1 and a depletion type MOSFET or one with a threshold voltage Vt near 0V.
Consists of MOSFET T 2 . As is well known, the first amplifier 1 and the second amplifier 2 function as a push-pull type inverting amplifier as a whole. The output end of the second amplifier 2 is connected to the other end of the crystal resonator X. Then, if we add a feedback resistor Rf to self-bias the operating point of the circuit, and connect capacitors C 1 and C 2 between each terminal of the crystal oscillator X and the ground, we get
Oscillation output can be obtained from terminal 4. The power supply voltage VDD, oscillation frequency, output amplitude, and output current IDD of the crystal oscillator circuit with such a configuration are shown in Table 1, and the output characteristics also change relatively significantly in response to fluctuations in the power supply voltage. . Therefore, in the present invention, a clamp circuit 3 is connected to the output terminal of the first amplifier 1. In the embodiment shown in FIG.
A clamp circuit is configured with MOSFET T5 , and the output voltage V1 of the first amplifier 1 is connected to the MOSFET T5.
Above the threshold voltage of T 5 , MOSFET T 5
(enhancement type) conducts, so the output voltage V 1 will not exceed a voltage slightly higher than the threshold voltage of MOSFET T 5 . Therefore, in the crystal oscillator circuit according to the present invention, as shown in Table 2, the amplitude of the output V2 is almost constant when the power supply voltage is 5V or higher. Since the output amplitude is constant, the change in the output impedance of the inverting amplifier due to the power supply voltage is small, and therefore the change in the oscillation frequency is also small. That is, as shown in Table 2, the change is small when the power supply voltage is 5V or more. Furthermore, it can be seen that the change in current IDD is also small. Furthermore, in Tables 1 and 2, c 1 = c 2 = 20PF, T 1 ,
T 3 and T 5 are enhancement type with a threshold voltage of 1V.
MOSFET, T 4 is a dip-region MOSFET with a threshold voltage of −2.5V, and T 2 is a depletion MOSFET with a threshold voltage of 0V.
The actual measured values are shown when using MOSFET. FIG. 2 shows another embodiment, in which the clamp circuit 3 is composed of a plurality of MOSFETs, and the feedback resistor is composed of a MOSFET T6 . Note that all the FETs shown in the drawings can be constructed of N conduction type. According to the present invention described above, changes in output amplitude, oscillation frequency, and current consumption can be reduced despite fluctuations in power supply voltage. Furthermore, elements other than the crystal oscillator can be configured with FETs, making it easy to integrate into an integrated circuit.

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る水晶発振回路の一実施
例、第2図は他の実施例である。 1は第1増幅器、2は第2増幅器、3はクラン
プ回路、Xは水晶振動子。
FIG. 1 shows one embodiment of a crystal oscillation circuit according to the present invention, and FIG. 2 shows another embodiment. 1 is a first amplifier, 2 is a second amplifier, 3 is a clamp circuit, and X is a crystal resonator.

Claims (1)

【特許請求の範囲】 1 水晶振動子の一端を第1増幅器の入力端に接
続すると共に、この第1増幅器の出力端を第2増
幅器の入力端に接続し、この第2増幅器の出力端
を前記水晶振動子の他端に接続する構成とした水
晶発振回路であつて、前記第1増幅器の出力端に
クランプ回路を接続したことを特徴とする水晶発
振回路。 2 クランプ回路が電界効果型トランジスタにて
構成されており、そのドレイン・ゲートを第1増
幅器の出力端に接続したことを特徴とする特許請
求の範囲第1項記載の水晶発振回路。
[Claims] 1. One end of the crystal oscillator is connected to the input end of a first amplifier, and the output end of this first amplifier is connected to the input end of a second amplifier, and the output end of this second amplifier is connected to the input end of the first amplifier. A crystal oscillation circuit configured to be connected to the other end of the crystal oscillator, characterized in that a clamp circuit is connected to the output end of the first amplifier. 2. The crystal oscillation circuit according to claim 1, wherein the clamp circuit is constituted by a field effect transistor, the drain and gate of which are connected to the output terminal of the first amplifier.
JP9191279A 1979-07-18 1979-07-18 Quartz oscillating circuit Granted JPS5616304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9191279A JPS5616304A (en) 1979-07-18 1979-07-18 Quartz oscillating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9191279A JPS5616304A (en) 1979-07-18 1979-07-18 Quartz oscillating circuit

Publications (2)

Publication Number Publication Date
JPS5616304A JPS5616304A (en) 1981-02-17
JPS6326563B2 true JPS6326563B2 (en) 1988-05-30

Family

ID=14039785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9191279A Granted JPS5616304A (en) 1979-07-18 1979-07-18 Quartz oscillating circuit

Country Status (1)

Country Link
JP (1) JPS5616304A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5457433A (en) * 1993-08-25 1995-10-10 Motorola, Inc. Low-power inverter for crystal oscillator buffer or the like

Also Published As

Publication number Publication date
JPS5616304A (en) 1981-02-17

Similar Documents

Publication Publication Date Title
US4710730A (en) Data clock oscillator having accurate duty cycle
JPS5852364B2 (en) Complementary MOS transistor
US3868597A (en) Integrable quartz oscillator circuit employing field effect transistors
GB1074577A (en) Signal translating circuits using field-effect transistors
US4309665A (en) Complementary amplifier circuit
US3979698A (en) Crystal oscillator circuit
KR102047189B1 (en) Self-polarised quartz oscillator circuit
US3959744A (en) CMOS oscillator having bias circuit outside oscillator feedback loop
US7362190B2 (en) Oscillator circuit with high pass filter and low pass filter in output stage
US3585527A (en) Oscillator circuit including a quartz crystal operating in parallel resonance
EP0335493A2 (en) Oscillator
JPS6326563B2 (en)
JP2002515664A (en) Integrated circuit including oscillator
CH641316GA3 (en)
GB785538A (en) Improvements in or relating to transistor circuits
US20090219103A1 (en) Oscillator Arrangement and Method for Operating an Oscillating Crystal
JPS6230410A (en) Voltage controlled oscillation circuit
US2930990A (en) Stabilized oscillator
US2751498A (en) Crystal controlled oscillator circuit
JPS6056005B2 (en) oscillation circuit
JP2524399B2 (en) Crystal oscillator circuit
JP2753031B2 (en) Oscillation circuit
JP2721213B2 (en) Oscillator
JPS5472945A (en) Oscillator circuit
KR830001559B1 (en) Complementary MIS Amplifier Circuit