JPS6326513B2 - - Google Patents

Info

Publication number
JPS6326513B2
JPS6326513B2 JP57118795A JP11879582A JPS6326513B2 JP S6326513 B2 JPS6326513 B2 JP S6326513B2 JP 57118795 A JP57118795 A JP 57118795A JP 11879582 A JP11879582 A JP 11879582A JP S6326513 B2 JPS6326513 B2 JP S6326513B2
Authority
JP
Japan
Prior art keywords
gas
fuel cell
reformer
power generation
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57118795A
Other languages
Japanese (ja)
Other versions
JPS599871A (en
Inventor
Kenji Arisaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP57118795A priority Critical patent/JPS599871A/en
Publication of JPS599871A publication Critical patent/JPS599871A/en
Publication of JPS6326513B2 publication Critical patent/JPS6326513B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は燃料電池発電装置に係り、特に燃料電
池システムとガスタービンとの組合せで高効率の
発電システムを可能とした燃料電池発電装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel cell power generation device, and more particularly to a fuel cell power generation device that enables a highly efficient power generation system by combining a fuel cell system and a gas turbine.

〔従来の技術とその問題点〕[Conventional technology and its problems]

従来ガスタービンからの廃熱を利用するために
ガスタービンとスチームタービンとを組合せた複
合発電装置が知られている。この発電装置を第1
図を基に説明する。
2. Description of the Related Art A combined power generation device that combines a gas turbine and a steam turbine in order to utilize waste heat from a gas turbine is conventionally known. This power generation device is
This will be explained based on the diagram.

第1図において燃料1(天然ガス)はコンプレ
ツサ2から供給される圧縮空気により燃焼器3で
燃焼し、燃焼器3からの燃焼ガス4がガスタービ
ン5に導入され、これによつてコンプレツサ2を
駆動すると共に発電機6を駆動して高効率の発電
を行なうようになつている。
In FIG. 1, fuel 1 (natural gas) is combusted in a combustor 3 by compressed air supplied from a compressor 2, and combustion gas 4 from the combustor 3 is introduced into a gas turbine 5. At the same time, the generator 6 is driven to generate highly efficient power.

ガスタービン5の廃熱ガス7は通常200〜400℃
の廃熱温度を有しているので、これを廃熱ボイラ
ーユニツト8で顕熱をスチームで回収している。
即ち給水9はまずエコノマイザーコイル10で加
熱され、ボイラードラム11およびボイラーコイ
ル12でスチームを発生する。発生したスチーム
はスーパーヒータコイル13で過熱され過熱スチ
ーム14となつてスチームタービン15を駆動し
これによつて発電機17を駆動して発電する。こ
のように発電装置全体では発電機6と発電機17
が同時に発電することになる。
The waste heat gas 7 of the gas turbine 5 is usually 200 to 400℃
The waste heat boiler unit 8 recovers the sensible heat as steam.
That is, the feed water 9 is first heated by the economizer coil 10, and the boiler drum 11 and boiler coil 12 generate steam. The generated steam is superheated by the super heater coil 13 and becomes superheated steam 14, which drives the steam turbine 15, which drives the generator 17 to generate electricity. In this way, the entire power generation device consists of generator 6 and generator 17.
will generate electricity at the same time.

しかしながらこのような複合発電装置において
は、ガスタービンの廃ガスを利用しているが、廃
熱ボイラによるスチームタービン発電は熱効率が
悪いため、より高効率の発電装置が望まれてい
る。
However, in such a combined power generation device, waste gas from a gas turbine is utilized, but since steam turbine power generation using a waste heat boiler has poor thermal efficiency, a power generation device with higher efficiency is desired.

一方燃料電池ではメタン等の炭化水素ガスが改
質器に導入され、改質器において改質触媒により
水素(H2)と一酸化炭素(CO)の混合ガスであ
る改質ガスを生成し、この改質ガスが転化器にお
いてCOガスがH2ガスに転化され得られた水素ガ
スが燃料電池に供給され水素の酸化反応の過程で
発電が起こる。このような燃料電池システムでは
水素リツチガスが排出されると共に改質器におい
ても高温の廃ガスが排出される。しかしながら従
来はこのような廃ガスの有効利用は末だ研究段階
であり確立された方法が切望されていた。
On the other hand, in a fuel cell, hydrocarbon gas such as methane is introduced into a reformer, where a reforming catalyst generates reformed gas, which is a mixture of hydrogen (H 2 ) and carbon monoxide (CO). This reformed gas is used in a converter to convert CO gas into H 2 gas, and the resulting hydrogen gas is supplied to the fuel cell, where electricity is generated in the process of hydrogen oxidation reaction. In such a fuel cell system, hydrogen rich gas is discharged, and high temperature waste gas is also discharged from the reformer. However, until now, the effective use of such waste gas was still at the research stage, and an established method was desperately needed.

本発明はこのような事情に鑑みてなされたもの
で、その目的は、燃料電池システムにおける廃ガ
スを有効利用すると共にガスタービンからの高温
廃ガスの有する熱エネルギをも有効利用して、高
効率の発電システムとすることができる燃料電池
発電装置を提供することにある。
The present invention was made in view of the above circumstances, and its purpose is to effectively utilize the waste gas in the fuel cell system and also effectively utilize the thermal energy of the high temperature waste gas from the gas turbine, thereby achieving high efficiency. An object of the present invention is to provide a fuel cell power generation device that can be used as a power generation system.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために本発明は、燃料電池
発電装置を、反応管を備えた改質器と、燃料電池
から排出される水素リツチガスを前記改質器に導
入する手段と、前記水素リツチガスを燃焼させる
ための燃焼用ガスとしてガスタービンからの廃ガ
スを前記改質器に導入する手段とを備えた構成と
したものである。
In order to achieve the above object, the present invention provides a fuel cell power generation device including a reformer equipped with a reaction tube, a means for introducing hydrogen rich gas discharged from the fuel cell into the reformer, and a means for introducing the hydrogen rich gas discharged from the fuel cell into the reformer. The present invention is configured to include means for introducing waste gas from the gas turbine into the reformer as combustion gas for combustion.

〔作用〕[Effect]

このような構成とすれば、燃料電池からの水素
リツチガスを改質器の燃料用ガスとして有効利用
でき、さらにガスタービンからの廃ガスを改質器
の燃焼用ガスとして有効利用できるため、ガスタ
ービンシステムと燃料電池システムとの複合組合
せによりスチームタービンに替る高効率の発電シ
ステムが可能となる。
With this configuration, the hydrogen-rich gas from the fuel cell can be effectively used as fuel gas for the reformer, and the waste gas from the gas turbine can also be effectively used as combustion gas for the reformer. A complex combination of the system and the fuel cell system enables a highly efficient power generation system to replace a steam turbine.

〔実施例〕〔Example〕

以下添付図面によつて本発明の実施例を説明す
る。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

第2図において天然ガス(メタン)1は燃焼器
3においてコンプレツサ2からの空気で燃焼し、
この燃焼ガス4がガスタービン5を駆動し発電機
6で発電する。ガスタービン5からの廃ガス7は
充分加圧の状態で抽気され改質器22に導入され
る。なお、ガスタービンの廃ガスは通常10%程度
の酸素を含有する高温の廃ガスであり、十分燃焼
用ガスとして用いることができる。
In Fig. 2, natural gas (methane) 1 is combusted in a combustor 3 with air from a compressor 2,
This combustion gas 4 drives a gas turbine 5 and a generator 6 generates electricity. The waste gas 7 from the gas turbine 5 is extracted in a sufficiently pressurized state and introduced into the reformer 22 . Note that the waste gas from a gas turbine is a high-temperature waste gas that normally contains about 10% oxygen and can be used as combustion gas.

一方メタンガス20とプロセススチーム21の
混合気は改質器22内に設置された反応管23に
供給される。反応管23には改質触媒が充填され
ており管外から加熱すると通常800〜900℃でメタ
ンは水素(H2)と一酸化炭素(CO)との混合ガ
スである改質ガス24を生成する。この改質ガス
24はシフトコンバータ25において改質ガス中
のCOガスがH2ガスに転化され水素ガス26を生
成する。水素ガス26は燃料電池27に供給され
る。水素ガスの大部分は酸化反応によつてその反
応エネルギが電気に変換され発電する。未反応水
素を含有する水素リツチガス28は充分圧力を持
つた状態で改質器22に戻される。改質器22に
おいて、水素リツチガス28はガスタービン5か
ら供給される高温廃ガスによつて燃焼し反応管2
3を加熱する。
On the other hand, a mixture of methane gas 20 and process steam 21 is supplied to a reaction tube 23 installed in a reformer 22 . The reaction tube 23 is filled with a reforming catalyst, and when heated from outside the tube, methane generates a reformed gas 24, which is a mixed gas of hydrogen (H 2 ) and carbon monoxide (CO), usually at 800 to 900°C. do. In this reformed gas 24, CO gas in the reformed gas is converted into H2 gas in a shift converter 25 to generate hydrogen gas 26. Hydrogen gas 26 is supplied to fuel cell 27 . Most of the hydrogen gas undergoes an oxidation reaction, and the reaction energy is converted into electricity to generate electricity. The hydrogen-rich gas 28 containing unreacted hydrogen is returned to the reformer 22 under sufficient pressure. In the reformer 22, the hydrogen-rich gas 28 is combusted by high-temperature waste gas supplied from the gas turbine 5 and
Heat 3.

ここで改質器22の改質圧力はおおよそ10Kg/
cm2程度であるため燃料電池27の廃ガス28の圧
力も通常3〜4Kg/cm2程度は充分にある。さらに
第2図に示す実施例においては改質器22は第3
図に示すような触媒燃焼方式となつている。燃焼
触媒41は一般に白金(Pt)系またはパラジウ
ム(Pd)系などが用いられ、一般に200〜300℃
で着火し少なくとも500℃の温度があれば充分着
火燃焼が可能である。ところがガスタービン5か
らの廃ガス7は燃焼触媒を着火燃焼させる温度レ
ベルを満足するので廃ガス7の持ち込みエンタル
ピ分のみ燃料の低減に繋がることになる。さらに
触媒燃焼方式ではバーナ等の複雑な設備を用いる
必要がないので機構上シンプルな構造とすること
ができる。
Here, the reforming pressure of the reformer 22 is approximately 10 kg/
cm 2 , the pressure of the waste gas 28 from the fuel cell 27 is usually about 3 to 4 kg/cm 2 , which is sufficient. Furthermore, in the embodiment shown in FIG.
It uses a catalytic combustion method as shown in the figure. The combustion catalyst 41 is generally made of platinum (Pt) or palladium (Pd), and is generally heated at 200 to 300°C.
If the temperature is at least 500°C, sufficient ignition and combustion will be possible. However, since the waste gas 7 from the gas turbine 5 satisfies the temperature level for igniting and burning the combustion catalyst, the amount of fuel is reduced by the amount of enthalpy brought in by the waste gas 7. Furthermore, since the catalytic combustion method does not require the use of complicated equipment such as burners, it can have a mechanically simple structure.

第4図は第2図における改質器の他の例を示
し、反応管23の外周囲に複数個のバーナ51が
設けられた燃焼システムとなつている。本実施例
においても燃料電池27からの水素リツチガス2
8をバーナ51に導入しガスタービン5からの高
温廃ガスを燃焼用空気の替りに用いることができ
る。本実施例によれば燃料電池27から排出され
る水素リツチガス28を有効に使用でき、かつガ
スタービン5からの高温廃ガス7の有する熱エネ
ルギをも有効に利用することができる。したがつ
て、本実施例ではガスタービンと燃料電池の複合
発電システムとすることによつて高効率の発電シ
ステムを提供することができる。
FIG. 4 shows another example of the reformer shown in FIG. 2, which is a combustion system in which a plurality of burners 51 are provided around the outer circumference of the reaction tube 23. Also in this embodiment, the hydrogen rich gas 2 from the fuel cell 27
8 can be introduced into the burner 51 and the high temperature waste gas from the gas turbine 5 can be used instead of combustion air. According to this embodiment, the hydrogen-rich gas 28 discharged from the fuel cell 27 can be used effectively, and the thermal energy of the high-temperature waste gas 7 from the gas turbine 5 can also be used effectively. Therefore, in this embodiment, a highly efficient power generation system can be provided by using a combined power generation system of a gas turbine and a fuel cell.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、燃料電池からの水素リツチガ
スを改質器の燃料用ガスとして有効利用でき、さ
らにガスタービンからの廃ガスを改質器の燃焼用
ガスとして有効利用できるため、ガスタービンシ
ステムと燃料電池システムとの複合組合せにより
スチームタービンに替る高効率の発電システムと
することができる。
According to the present invention, the hydrogen-rich gas from the fuel cell can be effectively used as fuel gas for the reformer, and the waste gas from the gas turbine can be effectively used as the combustion gas for the reformer. By combining it with a fuel cell system, it is possible to create a highly efficient power generation system that can replace a steam turbine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のガスタービン発電装置を示す概
略的構成図、第2図は本発明の燃料電池発電装置
の一例を示す概略的構成図、第3図および第4図
はそれぞれ第2図における改質器の例を示す概略
的構成図である。 1……メタンガス、2……コンプレツサ、3…
…燃焼器、5……ガスタービン、6……発電機、
7……廃ガス、20……メタンガス、21……プ
ロセススチーム、22……改質器、23……反応
管、24……改質ガス、25……シフトコンバー
タ、26……水素ガス、27……燃料電池、28
……水素リツチガス、30……廃ガス、31……
膨張タービン、41……燃焼触媒、51……バー
ナ。
FIG. 1 is a schematic configuration diagram showing a conventional gas turbine power generation device, FIG. 2 is a schematic configuration diagram showing an example of the fuel cell power generation device of the present invention, and FIGS. 3 and 4 are respectively the same as those shown in FIG. FIG. 1 is a schematic configuration diagram showing an example of a reformer. 1...Methane gas, 2...Compressor, 3...
...Combustor, 5... Gas turbine, 6... Generator,
7...Waste gas, 20...Methane gas, 21...Process steam, 22...Reformer, 23...Reaction tube, 24...Reformed gas, 25...Shift converter, 26...Hydrogen gas, 27 ...fuel cell, 28
...Hydrogen rich gas, 30...Waste gas, 31...
Expansion turbine, 41... combustion catalyst, 51... burner.

Claims (1)

【特許請求の範囲】 1 反応管を備えた改質器と、燃料電池から排出
される水素リツチガスを前記改質器に導入する手
段と、前記水素リツチガスを燃焼させるための燃
焼用ガスとしてガスタービンからの廃ガスを前記
改質器に導入する手段とを備えた燃料電池発電装
置。 2 前記改質器は、前記反応管の外周囲に燃焼触
媒を充填した触媒燃焼システムからなることを特
徴とする特許請求の範囲第1項記載の燃料電池発
電装置。 3 前記改質器が、前記反応管の外周囲にバーナ
を設けたバーナ燃焼システムからなることを特徴
とする特許請求の範囲第1項記載の燃料電池発電
装置。
[Scope of Claims] 1. A reformer equipped with a reaction tube, means for introducing hydrogen-rich gas discharged from a fuel cell into the reformer, and a gas turbine as a combustion gas for combusting the hydrogen-rich gas. and means for introducing waste gas from the fuel cell into the reformer. 2. The fuel cell power generation device according to claim 1, wherein the reformer comprises a catalytic combustion system in which the outer periphery of the reaction tube is filled with a combustion catalyst. 3. The fuel cell power generation device according to claim 1, wherein the reformer comprises a burner combustion system in which a burner is provided around the outer periphery of the reaction tube.
JP57118795A 1982-07-08 1982-07-08 Fuel cell power generating device Granted JPS599871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57118795A JPS599871A (en) 1982-07-08 1982-07-08 Fuel cell power generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57118795A JPS599871A (en) 1982-07-08 1982-07-08 Fuel cell power generating device

Publications (2)

Publication Number Publication Date
JPS599871A JPS599871A (en) 1984-01-19
JPS6326513B2 true JPS6326513B2 (en) 1988-05-30

Family

ID=14745292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57118795A Granted JPS599871A (en) 1982-07-08 1982-07-08 Fuel cell power generating device

Country Status (1)

Country Link
JP (1) JPS599871A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7306871B2 (en) * 2004-03-04 2007-12-11 Delphi Technologies, Inc. Hybrid power generating system combining a fuel cell and a gas turbine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119164A (en) * 1982-01-07 1983-07-15 Toshiba Corp Combined cycle plant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119164A (en) * 1982-01-07 1983-07-15 Toshiba Corp Combined cycle plant

Also Published As

Publication number Publication date
JPS599871A (en) 1984-01-19

Similar Documents

Publication Publication Date Title
US4128700A (en) Fuel cell power plant and method for operating the same
JP5051974B2 (en) System and method for simultaneously generating hydrogen and electricity
US4622275A (en) Fuel cell power plant
US5896738A (en) Thermal chemical recuperation method and system for use with gas turbine systems
EP0761942A1 (en) Process for generating power in a gas turbine cycle
NO931354L (en) PROCEDURE AND PLANT FOR COMBINED GENERATION OF ELECTRICAL AND MECHANICAL ENERGY
JPS62274563A (en) Composite power generating plant
KR100260461B1 (en) Method for combined generation of synthesis gas and power
NZ501741A (en) Process for heat integration of an autothermal reformer and cogeneration power plant
MY121598A (en) Integration of steam reforming unit and cogeneration power plant
KR920701627A (en) Method of generating mechanical energy and apparatus thereof
JPH0845523A (en) Fuel cell/gas turbine combined generation system
JP2000331698A (en) Fuel cell generating device using gas turbine exhaust gas
JP2000204965A (en) Gas turbine generation system using methane gas
JPS6326513B2 (en)
JP3072630B2 (en) Fuel cell combined cycle generator
JP3257604B2 (en) Fuel cell generator
JP2995295B1 (en) High efficiency power generation method and system by reformed gas combustion
JPH0778626A (en) Fuel cell power-generating device
JP3263936B2 (en) Fuel cell generator
JP2002089841A (en) Combustion device for gas turbine
JPH0218553B2 (en)
JPS597803A (en) Combined cycle generating system
JPS62258107A (en) Compound prime mover device
JPH0665061B2 (en) Fuel cell combined cycle generator