JPS63264537A - Selective separation of 2,6-dichlorotoluene - Google Patents

Selective separation of 2,6-dichlorotoluene

Info

Publication number
JPS63264537A
JPS63264537A JP9623987A JP9623987A JPS63264537A JP S63264537 A JPS63264537 A JP S63264537A JP 9623987 A JP9623987 A JP 9623987A JP 9623987 A JP9623987 A JP 9623987A JP S63264537 A JPS63264537 A JP S63264537A
Authority
JP
Japan
Prior art keywords
dct
molecular sieve
adsorbent
dichlorotoluene
adsorbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9623987A
Other languages
Japanese (ja)
Inventor
Hiroaki Hiraide
平出 博昭
Hideo Maeda
英雄 前田
Kikuo Otomo
大友 喜久雄
Akihiro Imai
章博 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hodogaya Chemical Co Ltd
Original Assignee
Hodogaya Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hodogaya Chemical Co Ltd filed Critical Hodogaya Chemical Co Ltd
Priority to JP9623987A priority Critical patent/JPS63264537A/en
Publication of JPS63264537A publication Critical patent/JPS63264537A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To selectively separate the titled substance useful as an intermediate for agriculatural chemicals, pharmaceuticals, dyes, etc., in high purity as a non-adsorbed component, by using an AlPO4-11 molecular sieve as an adsorbent and contacting a mixture of dichlorotoluene isomers with the adsorbent. CONSTITUTION:The titled substance can be selectively separated as a non- adsorbed component by carrying out adsorptive separation of a dichlorotoluene isomer mixture using an AlPO4-11 molecular sieve as an adsorbent. The AlPO4-11 molecular sieve is a crystalline aluminophosphate-type molecular sieve of formula (R is organic templete agent; x is 0-3 y is 0-500 is preferably used in the form of pellets of 0.1-10mm diameter. It is necessary to remove the crystallization water by heating the molecular sieve at 200-600 deg.C before using as an adsorbent. Other isomers separated as a firmly adsorbed components can be also effectively utilized.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はジクロロトルエン(以下DCTと略記する)異
性体混合物から選択的に高純度で2,6−DCTを吸争
分離する方法における吸着剤の提供に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention provides an adsorbent for a method for selectively adsorption-separating 2,6-DCT with high purity from a dichlorotoluene (hereinafter abbreviated as DCT) isomer mixture. Regarding the provision of

2.6− D CTは盤薬、医薬、染料等の重要な合成
中間体である。
2.6-DCT is an important synthetic intermediate for pharmaceuticals, pharmaceuticals, dyes, etc.

(従来の技術) DCT異性体混合物はトルエンまたはクロロトルエンの
塩素化によって合成されるが、各種異性体の沸点が極め
て近似しているため2.6− D CTを精留により分
離することは非常に困難である。
(Prior art) DCT isomer mixtures are synthesized by chlorination of toluene or chlorotoluene, but since the boiling points of the various isomers are very similar, it is extremely difficult to separate 2.6-DCT by rectification. It is difficult to

このため工業的にはp−)ルエンスルホン酸のジ塩素化
後、脱スルホン化により製造されている。
For this reason, it is industrially produced by dichlorination of p-)luenesulfonic acid followed by desulfonation.

またDCT異性体混合物からホージャサイト型ゼオライ
トを用いるDCT異性体混合物の吸着分離方法が米圓特
許第4254062号および特開昭第59−19964
2号に開示されている。
In addition, a method for adsorption and separation of a DCT isomer mixture using a faujasite type zeolite is disclosed in U.S. Pat.
It is disclosed in No. 2.

(発明が解決しようとしている問題点)しかしながらp
−)ルエンスルホン酸からの方法では高純度の2.6−
 D CTは得難<、かつ経済的な方法ではない。
(The problem that the invention is trying to solve)However, p
-) High purity 2.6- in the method from luenesulfonic acid
DCT is difficult to obtain and is not an economical method.

また後者のゼオライトによる吸着分離技術はDCT異性
体混合物から2.6− D CTをエクストラクト成分
として分離回収するものであるが、ホージャサイト型ゼ
オライトに対する被吸着力は満足できるものではなく、
高純度の2.6− D CTを分離回収することが実質
的に不可能であるが、ベンゼン置換体化合物の存在下に
吸着分離しなければ分離回収出来ない等の欠点を有する
In addition, the latter adsorption separation technology using zeolite separates and recovers 2.6-DCT as an extract component from a DCT isomer mixture, but its adsorption power to faujasite-type zeolite is not satisfactory;
Although it is virtually impossible to separate and recover high-purity 2.6-DCT, it has drawbacks such as the fact that it cannot be separated and recovered unless it is adsorbed and separated in the presence of a benzene substituted compound.

AtPO4−11!モレキュラーシーブは異性化あるい
は不均化触媒として知られておシ、また、吸着分離に用
いた例としては脂肪族炭化水素の分離等に適用したもの
が公知であるが、DCT異性体の吸着分離の例は知られ
ていない。
AtPO4-11! Molecular sieves are known as isomerization or disproportionation catalysts, and examples of their use in adsorption separation include those applied to the separation of aliphatic hydrocarbons. There are no known examples.

(問題を解決するための手段) 本発明者らは、このような現状にかんがみ、DCT異性
体混合物から高純度の2.6− D CTを効果的に吸
着分離回収する方法につき鋭意研究を重ねた結果、選択
的に2.6− D CTを非吸着成分として分離するこ
とが出来る特異的な吸着剤を見出すに至p本発明を完成
した。
(Means for Solving the Problem) In view of the current situation, the present inventors have conducted extensive research into a method for effectively adsorbing and separating and recovering highly pure 2.6-DCT from a mixture of DCT isomers. As a result, we have completed the present invention by discovering a specific adsorbent that can selectively separate 2.6-DCT as a non-adsorbed component.

すhわち本発明は、モレキュラーシーブ系吸着剤を用い
てDCT異性体混合物を吸着分離する方法において、吸
着剤としてAAPO,−11型モレキユラ=シーブを使
用し、2.6− D CT t−選択的に非吸着分とし
て分離することを特徴とする2、6−DCTの選択的分
離法である。
That is, the present invention is a method for adsorbing and separating a DCT isomer mixture using a molecular sieve-based adsorbent, in which an AAPO, -11 type molecular sieve is used as an adsorbent, and a 2.6-D CT t- This is a selective separation method for 2,6-DCT, which is characterized by selectively separating non-adsorbed components.

本発明で用いるktPo4−11型モレキエ?−シープ
は1.2.4−位トリ置換ベンゼン類を強吸着成分とす
るのに対し、本発明の目的とする2、6−DCTを代表
とする1、2.3−位トリ置換ベンゼン類は吸着しない
極めて特異的な性質を有する吸着剤である。
ktPo4-11 type Molecuie used in the present invention? -While SEEP has 1,2,4-position trisubstituted benzenes as a strongly adsorbed component, 1,2,3-position trisubstituted benzenes such as 2,6-DCT, which is the object of the present invention, are strongly adsorbed components. is an adsorbent with a very specific property of not adsorbing.

本発明に供されるDCT異性体混合物はトルエンを塩素
化して得られる2、3−DCT(8〜12%含有)、2
.4−DCT (20〜35%)、2,5−DCT (
25〜55%)、2.6−DCT(5〜25%)、およ
び3.4−DCT(5〜12%)から成る組成のDCT
異性体混合物、または。−クロロトルエンを核塩素化し
て得られる2、5−DCT(5〜20%)、2.4−D
CT (10〜25%)、2.5−DCT (3o〜7
0%)および2.6−DCT(5〜30%)からなる組
成のDCT異性体混合物である。
The DCT isomer mixture used in the present invention is 2,3-DCT (containing 8 to 12%) obtained by chlorinating toluene, 2
.. 4-DCT (20-35%), 2,5-DCT (
25-55%), 2.6-DCT (5-25%), and 3.4-DCT (5-12%)
mixture of isomers, or. -2,5-DCT (5-20%) obtained by nuclear chlorination of chlorotoluene, 2.4-D
CT (10-25%), 2.5-DCT (3o-7
0%) and 2.6-DCT (5-30%).

本発明は好ましくは上記DCT異性体混合物をさらに精
留し、沸点201℃の2,4−12.5−および2.6
− D CTからなる成分を含む留分と沸点約208℃
〜209℃の2,5−および/または3゜4−DC’r
からなる留分に精留分離したOff者DCで異性体混合
物留分から2.6− D CTを分離回収する際に特に
効果的な方法である。
The present invention preferably further rectifies the DCT isomer mixture to obtain 2,4-12.5- and 2.6-
- A fraction containing a component consisting of DCT and a boiling point of approximately 208°C
2,5- and/or 3°4-DC'r at ~209°C
This is a particularly effective method when separating and recovering 2.6-DCT from an isomer mixture fraction using an off-site DC that has been rectified into a fraction consisting of 2.6-DCT.

本発明に使用される人tPO4−11型モレキユラーシ
ーブは次の一般式で示される結晶質アルミノフォスフェ
ート型のモレキュラーシープである。
The PO4-11 type molecular sieve used in the present invention is a crystalline aluminophosphate type molecular sieve represented by the following general formula.

xR@埠、・(1±α2 )P2O,” i/H20式
中、Rは有機テンプレート剤を表わし2は0〜3の範囲
内にあシ、Vは0〜500の値を有する。
xR@Bu, .(1±α2)P2O,"i/H20 In the formula, R represents an organic template agent, 2 is within the range of 0 to 3, and V has a value of 0 to 500.

また、モレキュラーシープを吸着剤として使用する餌に
、その結晶水を予め除去しておくことが必要である。
In addition, it is necessary to remove the water of crystallization in advance from baits that use molecular sheep as an adsorbent.

通常は100℃以上で結晶水含量を小さくすることがで
き、好ましくは200〜600℃で加熱することにより
結晶水をほとんど除去することができる。
Usually, the water of crystallization content can be reduced at 100°C or higher, and most of the water of crystallization can be removed preferably by heating at 200 to 600°C.

本発明で用いられるモレキュラーシープの形状は粉末状
、砕塊状でもよいし、圧縮成型、押し出し成型およびマ
ルメライザーによる成型法などによって得られる成型品
であってもよい。また、成型の際必要ならばアルミナゾ
ル、ベントナイトなどのバインダーを加えることも可能
である。
The shape of the molecular sheep used in the present invention may be powder, crushed blocks, or a molded product obtained by compression molding, extrusion molding, marmerizer molding, or the like. Furthermore, it is also possible to add a binder such as alumina sol or bentonite if necessary during molding.

小規模の場合は粉末の使用も可能であるが、工業的には
圧損を避けるため直径11〜10gのペレット状成型品
が好ましく用いられる。
In the case of small-scale production, it is possible to use powder, but in order to avoid pressure loss, a pellet-shaped molded product with a diameter of 11 to 10 g is preferably used industrially.

形状の選択は装置によって適切なものを自由に選定する
ことが出来る。
The shape can be freely selected depending on the device.

AAPO,−11の製造方法、その組成については特開
昭57−77015号に、また結晶構造は、J、Am、
Chem、8oc、+第104巻1146頁〜1147
頁(1982年)に記載されているように有機アミンを
用いて合成され、細孔径は(L61nmでアシ、その結
晶構造は環の員数で10あるいは歪んだ12である特徴
ある細孔を有する。
The manufacturing method of AAPO,-11 and its composition are described in JP-A-57-77015, and the crystal structure is disclosed in J, Am,
Chem, 8oc, + Vol. 104, pp. 1146-1147
(1982), it is synthesized using an organic amine, and has a characteristic pore size (L of 61 nm) and a crystal structure of 10 or distorted 12 ring members.

本発明方法の実施は分離技術としては、公知の固定床方
式によるパッチ方法でもよいし、連続方法であってもよ
いが、小規模の場合にはパッチ方法が、装置が簡単であ
り連帳操作も容易な点から有利である。
The method of the present invention may be carried out by a patch method using a known fixed bed method or by a continuous method as a separation technique, but for small-scale applications, the patch method is preferable because the equipment is simple and continuous feeding is required. It is also advantageous because it is easy.

本発明の分離技術は基本的には吸着剤を充填した1以上
から複数個の吸着室を備えて吸着、洗浄、脱着、吸着剤
の再生工程をサイクルとして実施される。
The separation technology of the present invention is basically carried out using one or more adsorption chambers filled with an adsorbent, and a cycle of adsorption, washing, desorption, and regeneration of the adsorbent.

すなわち分離目的物質の2t6− D CTと少なくと
も1個の2.5− D CTを除く他のDCT異性体と
を含むDCT異性体混合物を吸着室でAtPO,−11
型吸着剤と接触させて目的の21tS −D CTを非
吸着成分として、他の成分は強吸着させて選択的に分離
することができる。
That is, a DCT isomer mixture containing 2t6-DCT, which is the target substance to be separated, and at least one DCT isomer other than 2.5-DCT, is mixed with AtPO, -11 in an adsorption chamber.
By contacting with a type adsorbent, the target 21tS-D CT can be made into a non-adsorbed component, and other components can be strongly adsorbed and selectively separated.

本発明の吸着条件は、室温〜約400℃、好ましくは1
50℃〜250℃の範囲の温度である。
The adsorption conditions of the present invention range from room temperature to about 400°C, preferably at 1
The temperature ranges from 50°C to 250°C.

吸着操作圧力は大気圧から約506/m、好ましくは大
気圧から約30(−の範囲であり、約50(−以上の圧
力ではコスト高となるので好ましくない。
The adsorption operation pressure ranges from atmospheric pressure to about 506/m, preferably from atmospheric pressure to about 30 (-), and pressures higher than about 50 (-) are not preferred because the cost increases.

また吸着時に吸−脱着に悪影響を与えない物質をDCT
異性体混合物に希釈溶媒として添加してもよい。
In addition, DCT contains substances that do not have a negative effect on adsorption and desorption during adsorption.
It may also be added to the isomer mixture as a diluting solvent.

本発明の吸着分離後の強吸着されたDCT異性体の脱着
方法は特に限定されず、(1)温度差脱着、(2)圧力
脱着、(3)不活性ガス脱着、(4)水蒸気脱着、(5
)第3成分による置換脱着方法等、またこれらの組合せ
による方法の採用が考えられる。
The method of desorption of the strongly adsorbed DCT isomer after adsorption separation of the present invention is not particularly limited, and includes (1) temperature difference desorption, (2) pressure desorption, (3) inert gas desorption, (4) water vapor desorption, (5
) A substitution/desorption method using a third component, or a combination of these methods can be considered.

本発明に用いるAtPO4−11型モレキュラーシーブ
のDCT異性体混合物の吸着分離能力は、例えば2.4
−12,5−および2.6− D CTからなる組成の
混合物をAAPO4−11で吸着分離すると、2.4−
DCTと2.5− D CTが吸着され、目的の216
− D CTは吸着されず分離される。
The adsorption separation ability of the DCT isomer mixture of the AtPO4-11 type molecular sieve used in the present invention is, for example, 2.4
When a mixture consisting of -12,5- and 2.6-D CT is adsorbed and separated using AAPO4-11, 2.4-
DCT and 2.5-DCT are adsorbed and the desired 216
- DCT is not adsorbed but separated.

すなわち、2,4−および2,5− D CTの吸着容
鷺が極めて大きいため非吸着液中の2.6− D CT
の濃度は第1図破過曲線のように理想的に変化する。
In other words, since the adsorption capacity of 2,4- and 2,5-D CT is extremely large, 2,6-D CT in the non-adsorbed liquid
The concentration changes ideally as shown in the breakthrough curve in Figure 1.

従って人APO,−11の吸着分離能力は、モレキュラ
ーシープ1f当り破過点までの純度換算2,6−DCT
流出量(重量%)で表わすことができる。
Therefore, the adsorption separation ability of human APO,-11 is 2,6-DCT in terms of purity up to the breakthrough point per 1f of molecular sheep.
It can be expressed in flow rate (% by weight).

分離能力ffl(wtl)   人tPo、−11量(
?)A:破過点までの総流出量 B:流出液の平均2.6−DCT iA度(wtl)(
実施例) 以下、実施例によシ本発明を説明する。
Separation capacity ffl (wtl) person tPo, -11 amount (
? ) A: Total effluent volume up to breakthrough point B: Average 2.6-DCT iA degree (wtl) of effluent (
Examples) The present invention will be explained below with reference to Examples.

参考例1 特開昭57−77015号の実施例32の方法に準じて
酸化物モル比でα19 Pr2NH: 1.00At2
0゜: CL 98 P2O1:α48H,0からなる
組成のAtPO,−11型モレキユラーシーブ粉末を得
た。
Reference Example 1 According to the method of Example 32 of JP-A-57-77015, the oxide molar ratio was α19 Pr2NH: 1.00At2
0°: AtPO, -11 type molecular sieve powder having a composition consisting of CL98P2O1:α48H,0 was obtained.

これを500℃で5時間焼成し、吸着分離に供した。This was calcined at 500° C. for 5 hours and subjected to adsorption separation.

得られ九人tPo4−11型モレキュラーシーブノX−
線分析結果は特開昭筒57−77015号記軟のAtP
O,−11の結果と一致した。
Obtained nine tPo4-11 type molecular sieve X-
The line analysis results are shown in JP-A No. 57-77015, soft AtP.
The results were consistent with those of O, -11.

ついでこのモレキュラーシープ粉末70重量部及びベン
トナイト〔関東ベントナイト鉱業株式会社製 天竜35
0重量部に対してナトリウムカルボキシメチルセルロー
ス〔東京化成工業株式会社式薬 n = 500 ) 
[12重量部と水100重量部とを加えて攪拌機により
約1時間混和を行なった。
Next, 70 parts by weight of this molecular sheep powder and bentonite [Tenryu 35 manufactured by Kanto Bentonite Mining Co., Ltd.
Sodium carboxymethyl cellulose (Tokyo Kasei Kogyo Co., Ltd. formula n = 500) per 0 parts by weight
[12 parts by weight and 100 parts by weight of water were added and mixed for about 1 hour using a stirrer.

混合後、この混和物を押し出し成形機によシ(L5jm
径のペレットに成形し、次いで150℃で5時間乾燥後
、さらに500℃で5時間焼成して吸着剤成形品を得た
After mixing, this mixture was put into an extruder (L5jm
The pellets were molded into pellets with a diameter of 100.degree. C., dried at 150.degree. C. for 5 hours, and then calcined at 500.degree. C. for 5 hours to obtain molded adsorbent products.

実施例1 参考例1の吸着剤成形品La6r(内AtPO,−11
含量は1五Or)を内径12藺、長さ29cmのガラス
カラムに充填し、DCT異性体混合物を流量30 gI
t/mlnのヘリウム気流下200℃にてα05wj/
mi nの速度で導入した。
Example 1 Adsorbent molded product La6r of Reference Example 1 (Including AtPO, -11
A glass column with an inner diameter of 12 mm and a length of 29 cm was packed with DCT isomer mixture at a flow rate of 30 gI.
α05wj/at 200℃ under helium flow of t/mln
It was introduced at a rate of min.

この時の導入したDCT異性体の組成は、2.4− /
 2,5− / 2.6−DC’I’=22/42/3
6wt比であった。
The composition of the DCT isomer introduced at this time was 2.4-/
2,5-/2.6-DC'I'=22/42/3
The ratio was 6wt.

カラム出口から流出して来る非吸着液の組成をガスクロ
マトグラフよシ分析した結果、当初の2.6− D C
T濃度は100%であり徐々に2,6−DCTa度が減
少し、25分後に非吸着液の組成は導入液組成と同一と
なり破過した。
As a result of gas chromatography analysis of the composition of the non-adsorbed liquid flowing out from the column outlet, it was found that the original 2.6-DC
The T concentration was 100%, and the 2,6-DCTa degree gradually decreased, and after 25 minutes, the composition of the non-adsorbed liquid became the same as that of the introduced liquid, and a breakthrough was reached.

破過までの非吸着液の総流出量量は0.8fであった。The total amount of non-adsorbed liquid flowing out until breakthrough was 0.8 f.

この総流出量のDCT平均組成は 2.4−/ 2.5−/ 2.6−DCT=6.6/1
2.6/8α8wt比でちった。
The DCT average composition of this total outflow is 2.4-/2.5-/2.6-DCT=6.6/1
2.6/8α8wt ratio.

従って2+6− D CT分離能力量は5. Owt%
であった。
Therefore, the amount of 2+6-D CT separation capacity is 5. Owt%
Met.

比較例1〜5 実施例1と同様な装置、方法、同一のDCT異性異性体
混合酸組成吸着剤種を変えて吸着装作を行なった。
Comparative Examples 1 to 5 Adsorption operations were performed using the same apparatus and method as in Example 1, using the same DCT isomer mixed acid composition and changing the type of adsorbent.

便用した吸着剤はNa−X型(ユニオン昭和社製モレキ
ュラーシープ13X)、Na−A型(ユニオン昭和社製
モレキュラーシーブ4A)、に−L型(東洋曹達工業株
式会社製TSZ−500KOA)  ゼオライトを参考
例1と同様に成形したものを各212ガラスカラムに充
填した。
The adsorbents used were Na-X type (Molecular Sieve 13X manufactured by Union Showa Co., Ltd.), Na-A type (Molecular Sieve 4A manufactured by Union Showa Co., Ltd.), Ni-L type (TSZ-500KOA manufactured by Toyo Soda Kogyo Co., Ltd.), and zeolite. were molded in the same manner as in Reference Example 1 and filled into each 212 glass column.

破過までに流出した非吸着液のDCT平均組成を下表に
示す。
The DCT average composition of the non-adsorbed liquid that flowed out before breakthrough is shown in the table below.

実施例2 実施例1と同様の装置、方法にて吸着温度を変えて実施
し、2.6−DCT分罷分力能力量定した。
Example 2 The adsorption temperature was changed using the same apparatus and method as in Example 1, and the 2.6-DCT separation force capacity was determined.

その結果を次表に示す。The results are shown in the table below.

実施例3〜4 実施例1と同様の装置、方法にて導入したDCT異性体
混合物比を変えて吸着操作を行なった。
Examples 3 to 4 Adsorption operations were carried out using the same apparatus and method as in Example 1 while changing the ratio of the introduced DCT isomer mixture.

導入液組成および破過までに流出した非吸着液の平均組
成を下表に示す。
The table below shows the composition of the introduced liquid and the average composition of the non-adsorbed liquid that flowed out before breakthrough.

(発明の効果) かくして本発明方法によれば、DCT異性体混合物から
高純度の2.6− D CTが選択的に得られるだけで
なく、強吸着成分として分離された他のDCT異性体類
はそれぞれ有効に利用することが出来る。また、芳香族
化合物の吸着分離において、ゼオライトではなく(すな
わち必須成分としてS i02  四面体を含有せず)
、シかもゼオライトと同等以上の吸着効果が得られるこ
とが注目される。
(Effects of the Invention) Thus, according to the method of the present invention, not only can highly purified 2.6-DCT be selectively obtained from a DCT isomer mixture, but also other DCT isomers separated as strongly adsorbed components can be obtained. Each can be used effectively. In addition, in the adsorption separation of aromatic compounds, zeolite is not used (that is, it does not contain Si02 tetrahedron as an essential component).
It is noteworthy that the adsorption effect is equivalent to or higher than that of zeolite.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はDCT異性体混合物をAtPO,−11モレキ
エラーシーブで吸着分離した時のAtPO,−11型モ
レキユラーシーブが破過するまでの2.6−DCT流出
雇を表わした吸着剤の破過曲線である。
Figure 1 shows the amount of 2.6-DCT effluent until the AtPO, -11 type molecular sieve breaks through when a DCT isomer mixture is adsorbed and separated using an AtPO, -11 type molecular sieve. This is the breakthrough curve.

Claims (1)

【特許請求の範囲】[Claims] ジクロロトルエン異性体混合物を吸着分離する方法にお
いて、吸着剤としてAlPO_4−11型モレキユラー
シーブを使用し、2,6−ジクロロトルエンを選択的に
非吸着成分として分離することを特徴とする2,6−ジ
クロロトルエンの選択的分離法。
A method for adsorbing and separating a mixture of dichlorotoluene isomers, characterized in that an AlPO_4-11 type molecular sieve is used as an adsorbent, and 2,6-dichlorotoluene is selectively separated as a non-adsorbed component. Selective separation method for 6-dichlorotoluene.
JP9623987A 1987-04-21 1987-04-21 Selective separation of 2,6-dichlorotoluene Pending JPS63264537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9623987A JPS63264537A (en) 1987-04-21 1987-04-21 Selective separation of 2,6-dichlorotoluene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9623987A JPS63264537A (en) 1987-04-21 1987-04-21 Selective separation of 2,6-dichlorotoluene

Publications (1)

Publication Number Publication Date
JPS63264537A true JPS63264537A (en) 1988-11-01

Family

ID=14159679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9623987A Pending JPS63264537A (en) 1987-04-21 1987-04-21 Selective separation of 2,6-dichlorotoluene

Country Status (1)

Country Link
JP (1) JPS63264537A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102924225A (en) * 2012-11-20 2013-02-13 江苏超跃化学有限公司 Method for selectively absorbing and separating mixed toluene dichloride
CN102951994A (en) * 2012-11-13 2013-03-06 江苏超跃化学有限公司 Method for producing 2,6-dichlorotoluene and 2,3-dichlorotoluene by utilizing 2-chlorotoluene to directionally chloridize
CN106831318A (en) * 2017-02-09 2017-06-13 江苏大学 Method for catalyzing 2, 5-dichlorotoluene reaction by modified H-type molecular sieve

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102951994A (en) * 2012-11-13 2013-03-06 江苏超跃化学有限公司 Method for producing 2,6-dichlorotoluene and 2,3-dichlorotoluene by utilizing 2-chlorotoluene to directionally chloridize
CN102924225A (en) * 2012-11-20 2013-02-13 江苏超跃化学有限公司 Method for selectively absorbing and separating mixed toluene dichloride
CN106831318A (en) * 2017-02-09 2017-06-13 江苏大学 Method for catalyzing 2, 5-dichlorotoluene reaction by modified H-type molecular sieve
CN106831318B (en) * 2017-02-09 2020-03-31 江苏大学 Method for catalyzing 2, 5-dichlorotoluene reaction by modified H-type molecular sieve

Similar Documents

Publication Publication Date Title
US2958708A (en) Separation of isomeric halogenated aromatic compounds
US4774371A (en) Adsorptive separation process
US4336410A (en) Process for absorptive separation of cyclohexene
JPS63264537A (en) Selective separation of 2,6-dichlorotoluene
KR920005784B1 (en) Process for preparing halogenated benzene derivatives
CA1274253A (en) Method for selective separation of 2,6- dichlorotoluene
JPH0251535B2 (en)
US5143685A (en) Process for purification of ortho-chlorotoluene
EP0249883B1 (en) Method for adsorptive separation of dichlorotoluenes
US4814526A (en) Selective adsorption/separation of diiodonaphthalenes
JPS63196530A (en) Selective separation of m-dichlorobenzene
JPS6115049B2 (en)
JP2516339B2 (en) Dichlorotoluene adsorption separation method
JPS61254535A (en) Method of desorbing dichlorotoluene
JP2678205B2 (en) Method for separating 2,6- and 2,5-dichlorotoluene
JPS62149636A (en) Selective separation of dichlorotoluene
JPH0413639A (en) Separation of 2,4-dichlorofluorobenzene
JPH0112733B2 (en)
JP2000247913A (en) Production of dichlorotoluene isomer
JPH07566B2 (en) Selective separation of dichlorotoluene
JP3816584B2 (en) Separation of paradichlorobenzene
US4922040A (en) Process for extracting 2,5-dichlorotoluene from isomer mixtures with sodium-L zeolite adsorbents
JP3092218B2 (en) Method for producing 1,3,5-trichlorobenzene
JPH0249740A (en) Production of halogenated benzene derivative
JPH0547527B2 (en)