JPS63263742A - Dicing scribe line - Google Patents

Dicing scribe line

Info

Publication number
JPS63263742A
JPS63263742A JP62099102A JP9910287A JPS63263742A JP S63263742 A JPS63263742 A JP S63263742A JP 62099102 A JP62099102 A JP 62099102A JP 9910287 A JP9910287 A JP 9910287A JP S63263742 A JPS63263742 A JP S63263742A
Authority
JP
Japan
Prior art keywords
line
dicing
organic material
substrate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62099102A
Other languages
Japanese (ja)
Inventor
Tetsuyoshi Takeshita
竹下 哲義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP62099102A priority Critical patent/JPS63263742A/en
Publication of JPS63263742A publication Critical patent/JPS63263742A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the chipping as well as the photodetecting pitch difference at the connection part to be minimized by a method wherein the relative positions of a line of dicing blade passing target and protective films are restricted to decide the structure as dicing scribe line. CONSTITUTION:A line 101 as a passing target of dicing blade is made of an element forming material such as aluminium on a substrate 102 whereon a semiconductor element 103 etc., is provided and then exceeding respectively one layer of non-organic material and organic material as protective films are provided. At least one layer of protective films 104, 106 made of non-organic material is provided on the position exceeding 1 mum and not exceeding 20 mum from line on the side layer wherein no dicing blade passes through while at least one layer of protective film 105 made of organic material is not provided on the position exceeding 1mum and not exceeding 20 mum on the oppositive side of line as a passing target from the boundary line of non-organic material nearest to the substrate. Thus, the chipping size can be notably lowered to provide an element close to the dicing line. Through these procedures, the shift of photodetector pitch can be minimized at the connection part.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体素子等を作製した基板のダイシング目標
とするスクライブラインの構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of a scribe line that is used as a dicing target for a substrate on which semiconductor elements and the like are fabricated.

〔従来の技術〕[Conventional technology]

半導体の製造工桿において、素子の高集積化とともに安
定したダイシングが重要な一層となってきている。また
切断面に近接して素子を設ける必要性がある場合にも基
板のダイシング技術が重要となってくる。特に基板とし
て石英などガラス材料を用いて素子を作製する場合、ダ
イシング時におこる素子表面の1カケ”、いわゆる第2
図の201に示すようなチッピングは単結晶硅素基板よ
りはるかに大きくそして多量に生ずる。近年、石英基板
等に集積度の高い素子が製作されるようになり、チッピ
ングは、切断面に近接しての素子配置の大きなさまたげ
となる。
In the semiconductor manufacturing process, stable dicing has become increasingly important as devices become more highly integrated. Furthermore, substrate dicing technology becomes important when it is necessary to provide elements close to the cut surface. Particularly when manufacturing devices using a glass material such as quartz as a substrate, there is a so-called "second chip" on the surface of the device that occurs during dicing.
Chipping as shown at 201 in the figure is much larger and occurs in a larger amount than on a single crystal silicon substrate. In recent years, highly integrated devices have been manufactured on quartz substrates and the like, and chipping has become a major hindrance to device placement near the cut surface.

従来、基板の切断、いわゆるダイシングのときに生じる
チッピングの大きさを小さくしたり数を減らしたりする
方法としては、一般的にはダイヤモンド粒子で構成され
る刃(いわゆるダイヤ七ンドプレード、以下ブレードと
略す、)のダイヤモンド粒度な細かくしたり、ブレード
の移動速度を遅くしたり、ブレード幅を狭くしたりする
方法が考えられる。しかし、粒度な細かくすることには
限度があり、細かくすることでおこる強度の低下や目づ
まりなどによりブレードの使用寿命が著しく短かくなっ
てしまい、素子の高価格化につなかる。また、ブレード
の移動速度を遅くする方法ではブレードの回転速度にも
よるが、チッピングの大きさの低下には限度があり、今
回問題にしている範囲での本質的な解決策とはなりえな
い。ざらに移動速度をさげることはta性という点で太
きな問題となる。グレード幅は狭いほどよい結果を与え
るが、幅は基板板厚の/10程度が強度限界である。
Conventionally, as a method to reduce the size and number of chips that occur when cutting a substrate, so-called dicing, a blade made of diamond particles (so-called diamond blade, hereinafter abbreviated as blade) is generally used. Possible methods include making the diamond grain size finer, slowing down the moving speed of the blade, and narrowing the blade width. However, there is a limit to how fine the particles can be, and the reduction in strength and clogging that occurs when the blades are made finer will significantly shorten the service life of the blades, leading to higher prices for the devices. Additionally, depending on the rotational speed of the blade, there is a limit to how much the size of chipping can be reduced by slowing down the blade's movement speed, so it cannot be an essential solution for the scope of this problem. . Roughly reducing the movement speed poses a serious problem in terms of ta-ability. The narrower the grade width, the better the results, but the strength limit for the width is about /10 of the substrate thickness.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のように従来技術ではチッピングの大きさの低下に
は限度があり、最も効果があると考えられるブレードの
粒度を細かくする方法ではブレードの強度が著しく低下
してしまい、基板切断中に幾度もブレードの交換が必安
どなってしまう。
As mentioned above, there is a limit to the reduction in the size of chipping with the conventional technology, and the method of reducing the grain size of the blade, which is considered to be the most effective, results in a significant decrease in the strength of the blade, resulting in repeated failures during cutting of the substrate. Replacing the blade becomes expensive.

そこで本発明はこのような問題点を解決するもので、ダ
イシング用のダイヤモンドブレードに手を加えずに基板
にくふうをこらすことでチッピングの大きさは著しく小
さいものとなり、ダイシングラインに近接して素子が設
けられる。ひいては光電変換素子などで、基板への実装
時にマルチチップ化して接続などを行う場合、受光素子
ピッチのズレな接続部で最小にできる手段を提供するも
のである。
Therefore, the present invention solves these problems, and by cutting the substrate without modifying the diamond blade for dicing, the size of chipping can be significantly reduced, and chipping can be made in the vicinity of the dicing line. An element is provided. Furthermore, when a photoelectric conversion element or the like is connected as a multi-chip device when mounted on a board, it provides a means for minimizing the difference in the pitch of the light-receiving element at the connection part.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のスクライブラインは、半導体素子等を設けて、
かつ保護膜として無機材料と有機材料を各一層以上設け
た基板において、ダイシングブレードの通過目標となる
ラインはアルミニウムなどの素子形成材料で設け、ダイ
シングブレードが通過しない側に該ラインより1μm以
上20μ風以下の位置には無機材料による保護膜を少な
くとも一層は設けず、かつ該無機材料のなかでもつとも
基板に近いものの境界線から通過目標となるラインの反
対側に1μm以上20μm以下の位置には有機材料によ
る保副膜を少なくとも一層は設けないことを特徴とする
The scribe line of the present invention is provided with semiconductor elements, etc.
In addition, in a substrate provided with one or more layers each of an inorganic material and an organic material as a protective film, the line through which the dicing blade passes is made of an element forming material such as aluminum, and the side where the dicing blade does not pass is 1 μm or more from the line with an air flow of 20 μm or more. At least one layer of protective film made of an inorganic material is not provided at the following locations, and at least 1 μm or more and less than 20 μm from the boundary line of the inorganic material that is closest to the substrate to the opposite side of the target line. It is characterized in that at least one layer of sublayer made of material is not provided.

〔実施例〕〔Example〕

本発明のダイシング用スクライブラインの一実施例の断
面図を第1図に示す、基板としては半導体製膜に用いる
なら、いかなる材料でもよいが、ここでは#!切削物で
ある石英基板(202)を代表とする1石英基板の上に
ダイシング用ブレードの通過目標となるラインを101
のアルミニウムで作製する。もちろん、目印さえなれば
アルミニウム以外でも素子(105)材料などであれば
ポリシリコンなどを用いてもよいが、ここではアルミニ
ウムで代表する。ブレードは基準のフィンを境にアルミ
ニウム側を紙面に垂直に通過するため基準より素子(1
03)側が残る。無機膜1(103)や無i[2(10
6)は素子上などに設け、酸化シリコンや窒化シリコン
などを用いればよい、無機膜1とブレード通過目標のア
ルミニウム間圧yBhは1μ扉から20μm、無機膜2
と該アルミニウム間距離BはAが1μmから20μ扉で
あれば、いかなる値でもよいがAが満足されぬときはB
が1μmから20μ扉でなくてはならない、105のポ
リイミドは有機材料の代表として用いているが、基準か
らポリイミド端までの距離Cは1μWL<0−A≦20
μmを満足している心安がある。いずれにしても、これ
らの各課は製膜後にフォトエツチングなどで形成すれば
よい、また、この例では有機材料による保護膜な一層、
無機材料による保護膜を二層もちいた例を挙げたが、各
一層以上で何層でもよい。
A cross-sectional view of an embodiment of the dicing scribe line of the present invention is shown in FIG. 1. The substrate may be made of any material as long as it is used for semiconductor film formation, but here #! A line 101 is marked on a quartz substrate (typically a quartz substrate (202) as a cutting object) as a target for the dicing blade to pass through.
Made of aluminum. Of course, polysilicon or the like may be used as a material for the element (105) other than aluminum as long as it is a landmark, but aluminum is used here. The blade passes through the aluminum side perpendicular to the plane of the paper with the reference fin as a boundary, so the element (1
03) The side remains. Inorganic film 1 (103) and inorganic film [2 (10
6) may be provided on the element, etc., using silicon oxide, silicon nitride, etc. The pressure between the inorganic film 1 and the target aluminum yBh passing through the blade is 1 μm, 20 μm from the door, and the inorganic film 2
The distance B between the aluminum and the aluminum can be any value as long as A is 1 μm to 20 μm, but if A is not satisfied, B
must be between 1μm and 20μm. Polyimide 105 is used as a representative organic material, but the distance C from the reference to the edge of the polyimide is 1μWL<0-A≦20
There is peace of mind that it satisfies μm. In any case, each of these sections may be formed by photoetching after film formation, and in this example, a protective film made of organic material may be formed.
Although an example is given in which two layers of protective films made of inorganic materials are used, any number of layers may be used, each having one or more layers.

ダイシングに用いるブレードや切断スピードなどは基板
材料に対して最適であるという前提で、ダイシング時に
基板や素子ダメージが最も大きい石英基板でA、(1!
、Dの関係を第1表に示す、もちろんDが小さいほど、
基板の端まで利用でき、素子チップをいくつか並べると
きに素子間隔を小さくできるなどの利点がある。
Assuming that the blade and cutting speed used for dicing are optimal for the substrate material, A, (1!
, D is shown in Table 1. Of course, the smaller D is, the more
It has the advantage that it can be used up to the edge of the substrate, and the spacing between elements can be reduced when several element chips are lined up.

第1表 第1表に示したものは、第1図の例で無機膜に酸化シリ
コンを用いたもので、Dは素子ダメージのない最小値で
ある。この表かられかるよ−うに、AやO−Aが20p
rnを越えるとD−0が15μmを越えた値となり無意
味な領域が増えてしまいD自身も大きくなる。保護膜構
造が異なる場合やない場合は、9275μmである。A
、(:!−Aともに1μm〜20μmのものはD−Cは
1011rrL以下で十分無視できDは20μm前後と
なる。もちろん人もしくはC−Aが大きいほどD−Cは
小さいがDでみればほとんど等しくなる。この例だけで
なく、いかなる基板や低材料を用いてもダイシング条件
さえ適性ならば、この値(1μm〜20μm)はあては
まる。
Table 1 The example shown in Table 1 is the example shown in FIG. 1 in which silicon oxide is used as the inorganic film, and D is the minimum value that does not cause damage to the element. As you can see from this table, A and O-A are 20p.
If rn is exceeded, D-0 becomes a value exceeding 15 μm, meaningless areas increase and D itself becomes larger. When the protective film structure is different or absent, the thickness is 9275 μm. A
, (:!-If both A and A are 1 μm to 20 μm, D-C is less than 1011rrL and can be ignored, and D is around 20 μm.Of course, the larger the person or C-A is, the smaller D-C is, but if you look at D, it is almost This value (1 μm to 20 μm) applies not only to this example but also to any substrate or low material used, provided the dicing conditions are appropriate.

〔発明の効果〕〔Effect of the invention〕

本発明では、ダイシング用ブレード通過目標のラインと
保虐膜の位置関係を制限して、ダイシング用スクライブ
ラインとしての構造を決めることで、ダイシング時にお
きる素子ダメージ(チッピングなど)を最小にできる。
In the present invention, element damage (chipping, etc.) that occurs during dicing can be minimized by restricting the positional relationship between the dicing blade passage target line and the abrasive film and determining the structure as the dicing scribe line.

したがって、マルチチップ実装構造をとる受光装置に特
に有用で、接続部の受光ピッチ差を最小にできる。
Therefore, it is particularly useful for a light receiving device having a multi-chip mounting structure, and the difference in light receiving pitch at the connecting portion can be minimized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す断面図である第2図は
基板におこるダメージの何回であり、201はチッピン
グを示す。 以  上 出願人 セイコーエプソン株式会社 代理人 弁理士最上務(他1名) 、、r  ゛。 第1 因
FIG. 1 is a cross-sectional view showing one embodiment of the present invention. FIG. 2 shows the number of times damage occurs to the substrate, and 201 shows chipping. Applicant Seiko Epson Co., Ltd. Agent Mogami Patent Attorney (and 1 other person),, r゛. First cause

Claims (2)

【特許請求の範囲】[Claims] (1)半導体素子等の保護膜として無機材料と有機材料
を各一層以上設けた基板において、ダイシング用ブレー
ドの通過目標となるラインをアルミニウムやポリシリコ
ンなどの素子形成材料で設け、該ブレードが通過しない
側で該ラインの端より1μm以上20μm以下には無機
材料による保護膜を少なくとも一層は設けず、かつ該無
機材料のなかでもっとも基板に近い膜の境界線から該ラ
インが存在しない側に1μm以上20μm以下には有機
材料による保護膜を少なくとも一層は設けないことを特
徴とするダイシング用スクライブライン。
(1) In a substrate on which at least one layer each of inorganic material and organic material is provided as a protective film for semiconductor elements, a line through which the dicing blade passes is provided using an element forming material such as aluminum or polysilicon, and the line through which the blade passes. At least one protective film made of an inorganic material is not provided 1 μm or more and 20 μm or less from the edge of the line on the side where the line is not present, and 1 μm from the boundary line of the film closest to the substrate among the inorganic materials on the side where the line is not present. A scribing line for dicing, characterized in that at least one layer of a protective film made of an organic material is not provided in a region of 20 μm or less.
(2)基板として石英基板、有機材料としてポリイミド
を用いたことを特徴とする特許請求の範囲第1項記載の
ダイシング用スクライブライン。
(2) The scribing line for dicing according to claim 1, characterized in that a quartz substrate is used as the substrate and polyimide is used as the organic material.
JP62099102A 1987-04-22 1987-04-22 Dicing scribe line Pending JPS63263742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62099102A JPS63263742A (en) 1987-04-22 1987-04-22 Dicing scribe line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62099102A JPS63263742A (en) 1987-04-22 1987-04-22 Dicing scribe line

Publications (1)

Publication Number Publication Date
JPS63263742A true JPS63263742A (en) 1988-10-31

Family

ID=14238482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62099102A Pending JPS63263742A (en) 1987-04-22 1987-04-22 Dicing scribe line

Country Status (1)

Country Link
JP (1) JPS63263742A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03184360A (en) * 1989-12-13 1991-08-12 Canon Inc Manufacture of semiconductor device
US5096855A (en) * 1988-05-23 1992-03-17 U.S. Philips Corporation Method of dicing semiconductor wafers which produces shards less than 10 microns in size

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5096855A (en) * 1988-05-23 1992-03-17 U.S. Philips Corporation Method of dicing semiconductor wafers which produces shards less than 10 microns in size
JPH03184360A (en) * 1989-12-13 1991-08-12 Canon Inc Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
US7411220B2 (en) Semiconductor light emitting device and manufacturing method thereof
US5665655A (en) Process for producing crackstops on semiconductor devices and devices containing the crackstops
CN1819159B (en) Semiconductor wafer, semiconductor device manufacturing method, and semiconductor device
US7638858B2 (en) Semiconductor device and manufacturing method thereof
US6887771B2 (en) Semiconductor device and method for fabricating the same
JP4704792B2 (en) GLASS SUBSTRATE WITH THIN FILM, ITS MANUFACTURING METHOD, AND SEMICONDUCTOR DEVICE USING THE SAME
CN101789392A (en) Semiconductor device and manufacturing method of the same
JPH03204954A (en) Semiconductor device and manufacture thereof
US6933606B2 (en) Semiconductor device whose semiconductor chip has chamfered backside surface edges and method of manufacturing the same
US20010035567A1 (en) Semiconductor wafer having a bank on a scribe line
JPH0145978B2 (en)
JP6455166B2 (en) Manufacturing method of semiconductor wafer and semiconductor chip
US6368943B1 (en) Semiconductor method of manufacture
US6465872B2 (en) Semiconductor device
JPS63263742A (en) Dicing scribe line
US11942563B1 (en) Manufacturing method of chip package and chip package
US20070284749A1 (en) Semiconductor device having no cracks in one or more layers underlying a metal line layer and method of manufacturing the same
JPH065701A (en) Manufacture of semiconductor device
JPS61194740A (en) Semiconductor device
JPS6189012A (en) Method of cutting substrate
JPH053249A (en) Semiconductor device and its manufacture
US5519246A (en) Nonvolatile memory apparatus using an ultraviolet impermeable resin film
JP3066609B2 (en) Semiconductor wafer
JPS6189013A (en) Method of cutting substrate
JPH05267257A (en) Semiconductor device having scribed line