JPS63263534A - Adder - Google Patents
AdderInfo
- Publication number
- JPS63263534A JPS63263534A JP9892187A JP9892187A JPS63263534A JP S63263534 A JPS63263534 A JP S63263534A JP 9892187 A JP9892187 A JP 9892187A JP 9892187 A JP9892187 A JP 9892187A JP S63263534 A JPS63263534 A JP S63263534A
- Authority
- JP
- Japan
- Prior art keywords
- groups
- signal processing
- given
- nmos
- processing circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000001052 transient effect Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 8
- 230000000295 complement effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
Abstract
Description
【発明の詳細な説明】 産業上の利用分野 本発明はCMO31ビット加算器に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to a CMO 31-bit adder.
従来の技術
1ビツト加算器では桁上げ信号COおよび和信号Sの論
理式を次式で表すことが一般的である。In a conventional 1-bit adder, the logical expressions of the carry signal CO and the sum signal S are generally expressed by the following equation.
Co=A−B+ (A+B) ・CiS =A−B
−Ci+(A+B+CL)・C。Co=A-B+ (A+B) ・CiS=A-B
-Ci+(A+B+CL)・C.
したがって上記の回路をCMO3で構成する場合は第2
図に示すように、nMOSトランジスタ群と9MO5)
ランジスタ群とは互いに相補的な関係にあるため、桁上
げ信号処理回路3はnMO3側:A−B+ (A+B)
・CipMO3側:(A−B+Ci)・(A+B)と
いう構成になる。Therefore, when the above circuit is configured with CMO3, the second
As shown in the figure, nMOS transistor group and 9MO5)
Since the transistor group has a complementary relationship with each other, the carry signal processing circuit 3 is on the nMO3 side: A-B+ (A+B)
-CipMO3 side: The configuration is (A-B+Ci)/(A+B).
一方和信号処理回路4は
nMO3側: A−B −Ci+(A+B+Ci) ・
でτpMO3側: (A−B−Ci+Co) ・(A+
B+Ci)という構成になる。On the other hand, the sum signal processing circuit 4 is on the nMO3 side: A-B -Ci+(A+B+Ci)
and τpMO3 side: (A-B-Ci+Co) ・(A+
B+Ci).
ただし、1nx12nはnMOSトランジスタ、1p−
12pはpMO3)ランジスタである。However, 1nx12n is an nMOS transistor, 1p-
12p is a pMO3) transistor.
また、各図面で用いた記号は第4図にその対応を示す。Further, the correspondence of the symbols used in each drawing is shown in FIG.
発明が解決しようとする問題点
このような従来の0MO31ビツト加算器では桁上げ信
号処理回路3の出力遅延はロー側がnMOsMOSトラ
ンジスタ群とえば、In。Problems to be Solved by the Invention In such a conventional 0MO31-bit adder, the output delay of the carry signal processing circuit 3 is caused by a group of nMOSMOS transistors on the low side, such as In.
2n)に対し、ハイ側が9MO3)ランジス23段(た
とえば、ip、2p、3p)で決定され、和信号処理回
路4の出力遅延はロー側がnMOsMOSトランジスタ
群とえば、9 n、 10 n。2n), the high side is determined by 23 stages of 9MO3) Rungis (for example, ip, 2p, 3p), and the output delay of the sum signal processing circuit 4 is determined by the nMOS transistor group on the low side, for example, 9n, 10n.
11n)に対し、ハイ側がpMOSトランジスタ4段(
たとえば、8p、9p、10p、1ip)で決定される
ため負荷による信号の立ち上がり時の遅延が大きくなり
、高速動作を必要とする回路への適用が困難であった。11n), the high side has four stages of PMOS transistors (
For example, 8p, 9p, 10p, 1ip), the delay at the rise of the signal due to the load becomes large, making it difficult to apply to circuits that require high-speed operation.
本発明はかかる点に鑑みてなされたもので、加算器の桁
上げ信号処理回路と和信号処理回路の9MO3)ランジ
スタ群の構成をそれぞれn MOSトランジスタ群の構
成と同一にし、信号の立ち上□
かり時の負荷を軽減することで高速動作の可能な加算器
を提供することを目的としている。The present invention has been made in view of this point, and the configurations of the 9MO3) transistor groups in the adder carry signal processing circuit and the sum signal processing circuit are made the same as the configurations of the nMOS transistor groups, and the signal rise □ The objective is to provide an adder that can operate at high speed by reducing the load during calculation.
問題点を解決するための手段 本発明は上記問題点を解決するため、被加数A。Means to solve problems In order to solve the above problems, the present invention uses the summand A.
加数B、上下位らの桁上げCiの入力信号に対し、A−
B+(^十B) −Ci −0がnMOSトランジスタ
群の出力で与えられ、A−B+(^+B)・Ct−1が
9MO3)ランジスタ群の出力で与えられる桁上げ信号
処理回路と、桁上げ信号処理回路の出力でτを入力とし
てA−B−Ci +(A+B +Ct)・C0−0がn
MOsMOSトランジスタ群で与えられ、A−B−Ci
+ (A+B+Ci) ・で]=1が9MO3)ラン
ジスタ群の出力で与えられる和信号処理回路とにより構
成するものである。For the input signal of addend B, carry Ci from upper and lower, A-
A carry signal processing circuit in which B+(^1B) -Ci -0 is given by the output of the nMOS transistor group, and A-B+(^+B)・Ct-1 is given by the output of the 9MO3) transistor group, and the carry With τ as input at the output of the signal processing circuit, A-B-Ci + (A+B +Ct)・C0-0 is n
A-B-Ci is given by a group of MOsMOS transistors.
+(A+B+Ci)]=1 is 9MO3) and a sum signal processing circuit given by the output of a group of transistors.
作用
本発明は、上記したnMOSトランジスタ群と9MO3
)ランジスタ群の対称配置により、同じセル面積で出力
負荷に対する立ち上がり特性の改善が図れるため、信号
のトランジェントfil域をより急峻なものとすること
ができる。Function The present invention combines the above-mentioned nMOS transistor group and 9MO3
) By symmetrically arranging the transistor group, it is possible to improve the rise characteristics with respect to the output load with the same cell area, so that the transient fil region of the signal can be made steeper.
実施例
第1図は本発明の加算器の一実施例を示す回路図である
。第1図において、1は被加数A、加数Bおよび下位桁
からの桁上げ信号Ciを入力とする桁上げ信号処理回路
であり、2は被加数A、加数B、下位桁からの桁上げ信
号Ciおよび桁上げ信号処理回路lの出力でτを入力と
する和信号処理回路である。Embodiment FIG. 1 is a circuit diagram showing an embodiment of the adder of the present invention. In FIG. 1, 1 is a carry signal processing circuit that receives the carry signal Ci from the summand A, the addend B, and the lower digits, and 2 is the carry signal processing circuit that receives the carry signal Ci from the summand A, the addend B, and the lower digits. This is a sum signal processing circuit whose inputs are the carry signal Ci and the output of the carry signal processing circuit l.
第3図は0MO3加算器の桁上げ、和信号処理の入力論
理に対する各トランジスタ群の出力論理を表したもので
ある。FIG. 3 shows the output logic of each transistor group with respect to the input logic of the carry and sum signal processing of the 0MO3 adder.
以下、動作説明を第1図と第3図をもとにして行う。The operation will be explained below based on FIGS. 1 and 3.
まず、桁上げ信号処理回路1は
(i)(A、B、Ci)= (0,O,*)のとき9M
O3)ランジスタtp、2pがON。First, the carry signal processing circuit 1 is 9M when (i) (A, B, Ci) = (0, O, *)
O3) Transistors tp and 2p are ON.
nMOSトランジスタin、3n、4nがOFFにより
Co−”1
(ii)(A、B、Ci)= (0,*、Q)のとき9
MO3)う7ジスタ3p、spがON。When nMOS transistors in, 3n, and 4n are OFF, Co-”1 (ii) (A, B, Ci) = (0, *, Q) 9
MO3) U7 register 3p and sp are ON.
nMOSトランジスタin、5nがOFFによりCo=
1
(iii)(A、B、C3)戴(*、0.0)のとき9
MO3)ランジスタ4p、5pがON。Co= because nMOS transistor in, 5n is OFF
1 (iii) When (A, B, C3) Dai (*, 0.0) 9
MO3) Transistors 4p and 5p are ON.
nMOSトランジスタ2n、5nがOFFによりで1−
1
(iv)(A、B、Ci)= (1,1,*)のときn
MO3I−ランジスタln、2nがON。When nMOS transistors 2n and 5n are turned off, it becomes 1-
1 (iv) When (A, B, Ci) = (1, 1, *), n
MO3I - transistors ln and 2n are ON.
9MO3)ランジスタtp、 3p、tpがOFFに
よりCo諺0
(v)(A、B、CI)” (1,*、1)のときnM
OSトランジスタ3n、5nがON。9MO3) When transistors tp, 3p, and tp are OFF, Coproverb 0 (v) (A, B, CI)'' (1, *, 1) nM
OS transistors 3n and 5n are turned on.
9MO3)ランジスタlp、spがOFFによりでτ−
0
(vi)(A、B、Ci)−(*、1.1)のときnM
OSトランジスタ4n、spがON。9MO3) When transistors lp and sp are OFF, τ-
0 (vi) (A, B, Ci) - (*, 1.1) when nM
OS transistors 4n and sp are ON.
9MO3)ランジスタ2p、5pがOFFによりCo−
0
となり、第3図(a)に示した入出力論理を満たす′。9MO3) When transistors 2p and 5p are OFF, Co-
0, and satisfies the input/output logic shown in FIG. 3(a).
(*=不定)
次に、和信号処理回路2は
(i ) (A、B、Ci、Go) =(0,0,0,
1)のときpMoSトランジスタ9p、10p、lip
がON、nMOSトランジスタロn、?n、8n。(*=undefined) Next, the sum signal processing circuit 2 calculates (i) (A, B, Ci, Go) = (0, 0, 0,
In case 1), pMoS transistors 9p, 10p, lip
is ON, nMOS transistor n,? n, 8n.
9nがOFFによりC0=1
(ii) (A、B、C4,Co) =(0,1,1,
O)のときpMoSトランジスタ6p、12pがON。9n is OFF, so C0=1 (ii) (A, B, C4, Co) = (0, 1, 1,
O), pMoS transistors 6p and 12p are turned on.
nMOSトランジスタ9n、12nがOFFによりGo
=1
(iii) (A、B、Ci、Co)−(1,0,1,
0)のときpMOSトランジスタ7p、12pがON。Go by turning off nMOS transistors 9n and 12n.
=1 (iii) (A, B, Ci, Co) - (1,0,1,
0), pMOS transistors 7p and 12p are turned on.
nMOSトランジスタIon、12nがOFFによりC
o=1
(iv) (A、B+C3Co) =(1+1tO+0
)のとき9MO3)ランジスタ8p、12pがON。When nMOS transistor Ion and 12n are turned off, C
o=1 (iv) (A, B+C3Co) = (1+1tO+0
), 9MO3) transistors 8p and 12p are ON.
nMo5トランジスタ11n、12nがOFFにより−
−1
(v) (A、B、Ci、Co) =(1,1,1,0
)のときnMOsトランジスタ9n、1’On、lln
が、 ON、9MO3)う7ジスタ6
p、7p、8p。When nMo5 transistors 11n and 12n are turned off, -
-1 (v) (A, B, Ci, Co) = (1, 1, 1, 0
) when nMOs transistor 9n, 1'On, lln
But, ON, 9MO3) U7jista6
p, 7p, 8p.
9pがOFFによりC0−0
(vi) (A、B、Ci、Co)’ =(1,0,0
,1)のときnMOSトランジスタロn、12nがON
。Since 9p is OFF, C0-0 (vi) (A, B, Ci, Co)' = (1,0,0
, 1), nMOS transistors n and 12n are ON.
.
9MO3)ランジスク9p、12pがOFFによりでo
=Q
hi)(八、B、Ci、Co) =(0,1,0,1
)のときnMOSトランジスタフn、12nがON。9MO3) Ranjisk 9p and 12p are turned off.
= Q hi) (8, B, Ci, Co) = (0, 1, 0, 1
), nMOS transistors n and 12n are turned on.
9MO3)ランジスタ10p、12pがOFFによりC
O謔0
(viii) (A、B、Ci、Co) = (0,0
,1,1)のときnMOSトランジスタ8n、12nが
ON。9MO3) C due to transistors 10p and 12p being OFF
0 (viii) (A, B, Ci, Co) = (0,0
, 1, 1), the nMOS transistors 8n and 12n are turned on.
9MO3)ランジスタlip、12pがOFFによりC
o=0
となり、第3図中)に示した入出力論理を満たす。9MO3) C due to transistor lip and 12p being OFF
o=0, which satisfies the input/output logic shown in Figure 3).
発明の効果
以上述べてきたように、本発明による加算器のnMOS
トランジスタ群と9MO3)ランジスタ群を対称配置と
することにより、トランジスタの縦続接続の段数が最小
となるため高速動作を必要とする回路に対して非常に効
果的である。Effects of the Invention As described above, the nMOS of the adder according to the present invention
By arranging the transistor group and the 9MO3) transistor group symmetrically, the number of cascade-connected transistors is minimized, which is very effective for circuits that require high-speed operation.
また、対称配置であるためLSIのデザイン設計時のレ
イアウトが容易であり、セル面積も縮小されるためLS
Iを設計するうえで非常に有用である。In addition, the symmetrical arrangement facilitates the layout during LSI design, and the cell area is also reduced, making the LSI
This is very useful when designing I.
第1図は本発明の一実施例の加算器の構成を示した回路
図、第2図は従来の加算器を表した回路図、第3図は加
算器入出力論理を表した論理図、第4図は図面で用いた
記号の説明図である。
1.3・・・・・・桁上げ信号処理回路、2.4・・・
・・・和信号処理回路、1n〜12n・・・・・・nM
OSトランジスタ、1p〜12p・・・・・・9MO3
)ランジスタ。
代理人の氏名 弁理士 中尾敏男 はか1名/−−−オ
イ↑」二1アイ占号メル!IEi路計−和侶号処理回Y
界
第1図
厄
第2図
□
第3図FIG. 1 is a circuit diagram showing the configuration of an adder according to an embodiment of the present invention, FIG. 2 is a circuit diagram showing a conventional adder, and FIG. 3 is a logic diagram showing adder input/output logic. FIG. 4 is an explanatory diagram of symbols used in the drawings. 1.3... Carry signal processing circuit, 2.4...
...sum signal processing circuit, 1n to 12n...nM
OS transistor, 1p~12p...9MO3
) Langista. Agent's name: Patent attorney Toshio Nakao Haka1 person/---Oi↑" 21 Eye fortune-telling name Mel! IEi Route Planner - Kazuo Processing Time Y
Diagram 1 Disaster Diagram 2 □ Diagram 3
Claims (1)
す系で、被加数A、加数B、下位からの桁上げCiの入
力信号に対し、@A・B+(A+B)・Ci@=0がn
MOSトランジスタ群の出力で与えられ、A・B+(A
+B)・Ci=1がpMOSトランジスタ群の出力で与
えられる桁上げ信号処理回路と、桁上げ信号処理回路の
出力@Co@を入力としてA・B・Ci+(A+B+C
i)・@Co@=0がnMOSトランジスタ群の出力で
与えられ、A・B・Ci+(A+B+Ci)・@Co@
=1がpMOSトランジスタ群の出力で与えられる和信
号処理回路とを有することを特徴とする加算器。In this system, logic "0" indicates low level and logic "1" indicates high level, and for the input signals of addend A, addend B, and carry Ci from the lower order, @A・B+(A+B)・Ci @=0 is n
It is given by the output of the MOS transistor group, and A・B+(A
A, B, Ci+(A+B+C
i)・@Co@=0 is given by the output of the nMOS transistor group, A・B・Ci+(A+B+Ci)・@Co@
1. An adder comprising: a sum signal processing circuit in which =1 is given by the output of a group of pMOS transistors.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9892187A JPS63263534A (en) | 1987-04-22 | 1987-04-22 | Adder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9892187A JPS63263534A (en) | 1987-04-22 | 1987-04-22 | Adder |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63263534A true JPS63263534A (en) | 1988-10-31 |
Family
ID=14232589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9892187A Pending JPS63263534A (en) | 1987-04-22 | 1987-04-22 | Adder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63263534A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01228023A (en) * | 1988-03-08 | 1989-09-12 | Nec Corp | Full adder |
-
1987
- 1987-04-22 JP JP9892187A patent/JPS63263534A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01228023A (en) * | 1988-03-08 | 1989-09-12 | Nec Corp | Full adder |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4761760A (en) | Digital adder-subtracter with tentative result correction circuit | |
US3932734A (en) | Binary parallel adder employing high speed gating circuitry | |
US4556948A (en) | Multiplier speed improvement by skipping carry save adders | |
GB1496935A (en) | Adders and multipliers | |
Ahmed et al. | Delay optimization of 4-bit ALU designed in FS-GDI technique | |
US4858168A (en) | Carry look-ahead technique having a reduced number of logic levels | |
US4709346A (en) | CMOS subtractor | |
JPS595349A (en) | Adder | |
US5434810A (en) | Binary operator using block select look ahead system which serves as parallel adder/subtracter able to greatly reduce the number of elements of circuit with out sacrifice to high speed of computation | |
US4860242A (en) | Precharge-type carry chained adder circuit | |
JPH0651953A (en) | Adder | |
US4704701A (en) | Conditional carry adder for a multibit digital computer | |
JPS63263534A (en) | Adder | |
US4675838A (en) | Conditional-carry adder for multibit digital computer | |
US6055557A (en) | Adder circuit and method therefor | |
JPH06195201A (en) | High-speed adder using varied carry scheme and method related to it | |
JPS5957343A (en) | High speed carrying system | |
Sarkar et al. | Low power implementation of multi-bit hybrid adder using modified GDI technique | |
JPH01220528A (en) | Parity generator | |
JP2681968B2 (en) | Arithmetic processing unit | |
JPS6349835A (en) | Arithmetic processor | |
JPS58213341A (en) | Adder | |
JPH087671B2 (en) | Arithmetic / logic circuit | |
JP2553162B2 (en) | Adder circuit | |
JP2508041B2 (en) | Increment circuit |