JPS6326339A - High tension steel having superior corrosion fatigue strength and manufacture thereof - Google Patents

High tension steel having superior corrosion fatigue strength and manufacture thereof

Info

Publication number
JPS6326339A
JPS6326339A JP16800886A JP16800886A JPS6326339A JP S6326339 A JPS6326339 A JP S6326339A JP 16800886 A JP16800886 A JP 16800886A JP 16800886 A JP16800886 A JP 16800886A JP S6326339 A JPS6326339 A JP S6326339A
Authority
JP
Japan
Prior art keywords
less
steel
corrosion fatigue
strength
fatigue strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16800886A
Other languages
Japanese (ja)
Inventor
Hirosuke Inagaki
稲垣 裕輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP16800886A priority Critical patent/JPS6326339A/en
Publication of JPS6326339A publication Critical patent/JPS6326339A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain an 80kg class high tension steel having superior corrosion fatigue strength and used for a marine structure by adding prescribed amounts of C, Si, Mn, P, S, Al, Ni and three or more among Cu, Mo, Cr, V, Ti and S. CONSTITUTION:This high tension steel having superior corrosion fatigue strength contains, by weight, <=0.12% C, <=0.5% Si, 0.5-1.4% Mn, <=0.01% P, <=0.003% S, <=0.07% Al, 4-6% Ni and three or more among <=0.5% Cu, <=0.7% Mo, <=0.7% Cr, <=0.1% V, <=0.1% Ti and <=0.005% S. The amount of S in the steel is reduced to reduce corrosion pit forming sources and >=4% Ni is added to form a protective film on the surface of the steel in seawater and to inhibit a pit forming reaction itself. When the steel having the two effects are used, an 80kg class steel sheet for a marine structure hardly causing corrosion cracking is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は海洋エネルギー資源開発を目的とした、各種
リグブラットフ]−ム・パイプライン揚鋼竹なとの海洋
構造物に使用される腐食疲労強度に優れた80ギロ級高
張力鋼に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] This invention is intended to improve the corrosion fatigue strength of marine structures used in various rigs, pipelines, steel lifts, bamboo shoots, etc. for the purpose of marine energy resource development. This relates to 80 Giro class high tensile strength steel with excellent properties.

〔従来の技術〕[Conventional technology]

海洋構造物は、海洋腐食環境下において潮流。 Marine structures are exposed to tidal currents in the marine corrosive environment.

波浪、風などによる綬返し外力を受けるためその使用鋼
材は腐食疲労を起す可能性がある。
The steel materials used may suffer from corrosion fatigue as they are subjected to external forces such as waves and wind.

すノ2わち、大気中の疲労においてはそれ以上のくり返
し応力では疲労破壊しないという疲労限か存在するか海
水中の疲労においては明瞭な疲労限は存在せず、疲労強
度は大気中の場合にくらへ°Cいちじるしく低下する。
In other words, in fatigue in the atmosphere, is there a fatigue limit beyond which repeated stress will not cause fatigue failure?There is no clear fatigue limit in fatigue in seawater, and the fatigue strength is the same as that in the atmosphere. °C drops significantly.

このような腐食疲労ぎれつの発生起点は、海水環境下で
介在物周辺に、介在物と地鉄の間の局部電池作用によっ
て形成する腐食ビットであることか明らかにされており
、くり返し応力下てこの腐食ビットが、ある限界寸法に
まて成長するとピッ1〜底から疲労きれつか発生し、そ
れらか成長合体をくり返すことによって最終破断に至る
ことが知られている。
It has been clarified that the origin of such corrosion fatigue cracks is corrosion bits that form around inclusions in a seawater environment due to local battery action between the inclusions and the steel base, and are caused by repeated stress. It is known that when this corroded bit grows to a certain critical dimension, fatigue cracks occur from the pit 1 to the bottom, and by repeating the growth and coalescence of these cracks, it leads to final breakage.

従来の高張力鋼においては、このため材料面ては介在物
や偏析の低減あるいは耐食性を向上させる合金元素の添
加などの対策か講しられできたか腐食ビットの効果的な
防止は達成することができず鋼材上の対策はないものと
一般に考えられてきた。尚本発明に係る従来技術として
は、次の(1)〜(3)の文献かある。
For conventional high-strength steel, effective prevention of corroded bits has not been achieved, although measures have been taken to reduce inclusions and segregation, or to add alloying elements to improve corrosion resistance. It has been generally thought that there is no countermeasure for steel materials. As prior art related to the present invention, there are the following documents (1) to (3).

(1)J、1Iarrison;  ”Metal 5
election consideationfor 
0ffshore st、ruct、ure”Proc
、Intern、Conf、on 5teel inM
arine  5tructures、1981.P、
148〜193 。
(1) J, 1Iarrison; “Metal 5
election consideration for
0ffshore st, ruct, ure”Proc
, Intern, Conf, on 5teel inM
arine 5structures, 1981. P,
148-193.

(2)島田春夫、「海洋開発の鍵をにぎっている材料」
、化学工業、 32(1981)、 5号P、181 
〜187 (3)駒井謙冶部、喜多禎人、遠藤吉部;「80キロ級
高張力鋼の腐食行動奸裂進展挙 動j 日本1幾械学会論文集vat 4!l、N。
(2) Haruo Shimada, “Materials that hold the key to ocean development”
, Chemical Industry, 32 (1981), No. 5 P, 181
~187 (3) Kenjibe Komai, Sadato Kita, Yoshibe Endo; “Corrosion behavior and spontaneous cracking progression behavior of 80kg class high-strength steel J Journal of Japan Society of Geometrical Mechanics vat 4!l, N.

445(昭58)、11.1029〜1035(発明か
解決しようとする問題点) 以上の従来記述におりる問題点としては次の如きものが
ある。
445 (1982), 11.1029-1035 (Problems to be Solved by the Invention) Problems in the above conventional descriptions are as follows.

1)成分設計や組織制御たL−Jては腐食疲労きれっの
起点となる腐食ピッ)・の形成を完全防止できなかった
1) L-J composition design and structure control could not completely prevent the formation of corrosion pits, which are the starting point of corrosion fatigue cracks.

2)このため、海洋構造物に多数の擬制電極をとりつけ
、徹底した電気防食な番Jから11 iづねはならなか
った。電気防食の設計、取イ]保護管理に要する費用は
棒だいなものとなっており、適性防食を実現することに
はかなりの技術的困難をどもノ、/−)ている。
2) For this reason, it was not necessary to install a large number of pseudo electrodes on offshore structures and carry out thorough cathodic protection. The cost required for the design and management of cathodic protection is prohibitive, and achieving adequate corrosion protection poses considerable technical difficulties.

3)従来鋼では、高強度鋼はど腐食疲労による強度低下
が大きいために低強度鋼を使用せざるをえずこのため構
造物か厚肉大重量化せざるをえなかった。
3) With conventional steels, high-strength steels have a large decrease in strength due to corrosion fatigue, so low-strength steels had to be used, and as a result, structures had to be thicker and heavier.

本発明は上記の問題点を解決した腐食疲労強度の優れた
高張力鋼及び製造方法を提供することを1−1的と−も
−る。
An object of the present invention is to provide a high tensile strength steel with excellent corrosion fatigue strength and a manufacturing method that solve the above-mentioned problems.

(問題点を解決するための手段) 本発明−1鋼中のsftを低減することによって腐食ビ
ットの発生核を減少させることおよびNi蚤を4*以」
二添加することによって海水中において鋼表面に保護皮
膜を形成させビット発生反応そのものを抑制すること、
以上2つの効果を通して腐食ぎれつの発生しにくい80
キロ級海洋構造物用鋼板及びその製造方法を提供するも
のである。
(Means for solving the problems) The present invention-1 Reducing the number of corroded bit formation nuclei by reducing sft in steel and reducing Ni fleas to 4* or more.
By adding 2, a protective film is formed on the steel surface in seawater and the bit generation reaction itself is suppressed.
Through the above two effects, corrosion cracking is less likely to occur80
The present invention provides a steel plate for kilo-class offshore structures and a method for manufacturing the same.

本発明の腐食疲労強度の優れた高張力鋼及び製造方法は
以下の通りである。
The high tensile strength steel with excellent corrosion fatigue strength and the manufacturing method of the present invention are as follows.

先す本発明の腐食疲労強度の優れた高張力鋼の第1鋼は
The first steel of the present invention is a high tensile strength steel with excellent corrosion fatigue strength.

重量基準にて。Based on weight.

c :o、12*以下;     Si:0.5%C以
下:Mn:0.5〜1.4!l; ;      P 
 +0.01!If以下;S :0.003零以下; 
   Al:0.0i以下;Ni4〜6%; を含み、更に Cu:0.5宅以下:     Mo : 0 、19
t、以下。
c: o, 12* or less; Si: 0.5% C or less: Mn: 0.5 to 1.4! l; ;P
+0.01! If or less; S: 0.003 or less;
Al: 0.0i or less; Ni 4-6%; Cu: 0.5% or less: Mo: 0, 19
t, below.

Cr:0.796以下、     V :0.1%i以
下。
Cr: 0.796 or less, V: 0.1%i or less.

Ti・0.1*以下、    ロ:0.005零以下:
のうも3種以上を含み。
Ti・0.1* or less, B: 0.005 or less:
Contains 3 or more types of carp.

残部かFe及び不可避不純物からなる腐食疲労強度に優
れた高張力鋼でありその第2鋼は。
The second steel is a high tensile strength steel with excellent corrosion fatigue strength, the balance being Fe and unavoidable impurities.

重量基準にて、      ′ C:0.1296以下;     Si+0.5%i以
下;Mロ:05〜14亀;     P ・0.01¥
以下;S :0.003’l;以下、    711:
0.07!kjJ下。
Based on weight, 'C: 0.1296 or less; Si+0.5%i or less; Mro: 05-14; P ・0.01 yen
Below; S: 0.003'l; Below, 711:
0.07! kjj bottom.

N1・4〜6零。N1.4-6 zero.

を含み、更に Cu:0繋以下:     Mo : 01以下、Cr
:0.7%以下、     V :0.]% l;J下
1T+・0.1’<り丁:     11 :0.0O
F!l;以下。
Including Cu: 0 or less: Mo: 01 or less, Cr
: 0.7% or less, V: 0. ]% l;J lower 1T+・0.1'<Right: 11:0.0O
F! l: Below.

のうち3挿具」−を含み、更に Zr:0.006%f以下;    Ca:0.0O1
l以下。
Including 3 inserts, Zr: 0.006%f or less; Ca: 0.0O1
Less than l.

のうち1種または2種を含み2 残部がFe及び不可避不純物からなる腐食疲労強度にイ
憂れた高弓長力鋼である。
It is a high-bow, long-strength steel that contains one or two of these, with the remainder being Fe and unavoidable impurities, and has poor corrosion fatigue strength.

更にこれら第1及び第2発明鋼の製造方法としての、発
明第3及び第4発明の方法は、夫々の組成からなる第1
発明及び第2発明鋼を、800〜1100℃の温度範囲
でオーステナイト化後水)3′乙人れし、引き続き65
0〜700℃の温度範囲で焼戻しする腐食疲労強度に優
れた高張力鋼の製造方法てあり、発明第5及び第6発明
方法は、夫々の組成から成る、第1発明及び第2発明鋼
を800℃す」二の温度て仕上圧延し、その後、直ぢに
水焼人れし、引き続き650〜700℃の温度範囲で焼
戻しする腐食疲労強度に優れた高張力鋼の製造方法であ
る。
Furthermore, the methods of the third and fourth inventions, which are the methods for producing the first and second invention steels, are the first and second invention steels having the respective compositions.
After austenitizing the invention and second invention steels at a temperature range of 800 to 1100°C, the invention and second invention steels were heated to 65
There is a method for producing high tensile strength steel with excellent corrosion fatigue strength, which is tempered in a temperature range of 0 to 700°C, and the fifth and sixth invention methods involve manufacturing the first and second invention steels having respective compositions. This is a method for producing high tensile strength steel with excellent corrosion fatigue strength, in which finish rolling is carried out at a temperature of 800°C, followed by direct water quenching and subsequent tempering at a temperature range of 650 to 700°C.

〔作用〕[Effect]

本発明における鋼成分の限定理由について説明すると次
の通りである。
The reasons for limiting the steel components in the present invention are as follows.

Cは強度を増大させる元素であるか同時に靭性、溶接性
をいちじるしく損なう。
C is an element that increases strength, but at the same time it significantly impairs toughness and weldability.

これらを考慮し、本発明鋼の抗張力を80kg/mm2
前後とするためにはC量を[1,12%;以下にする必
要かある。
Considering these, the tensile strength of the steel of the present invention was set to 80 kg/mm2.
In order to keep it around, it is necessary to reduce the amount of C to [1.12%] or less.

Siは強度の上昇と脱酸のために添加するが0.50零
を超えて添加すると靭性、溶接性が劣化するので0.5
*を上限とする。
Si is added to increase strength and deoxidize, but if added in excess of 0.50, toughness and weldability will deteriorate.
* is the upper limit.

Mnは靭性の向上、強度上昇に効果のある元素である。Mn is an element that is effective in improving toughness and strength.

0.5*未満ては十分な靭性かえられないので、これを
下限とするが一方1.4先をこえると本発明鋼では抗張
力か90kg/mm2以上になるためこれを上限とした
If it is less than 0.5*, sufficient toughness cannot be obtained, so this is set as the lower limit. On the other hand, if it exceeds 1.4*, the tensile strength of the steel of the present invention becomes 90 kg/mm2 or more, so this is set as the upper limit.

Pは靭性な害するので001を以下とした。Since P impairs toughness, 001 was set as below.

Sは非金属介在物MnSを形成し、上述したことく腐食
ピット形成の核となるため、できる限り低減することか
望ましい。
Since S forms nonmetallic inclusions MnS and becomes the core of corrosion pit formation as described above, it is desirable to reduce S as much as possible.

工業的にはo、ooo4*まて低下しうる一方0.00
03*をこえると腐食速度が増大し、ピット形成が顕著
になり腐食疲労強度か劣化するため、上限を0.003
にとした。
Industrially, o, ooo4* may decrease, but 0.00
If the value exceeds 0.03*, the corrosion rate increases, pit formation becomes noticeable, and the corrosion fatigue strength deteriorates, so the upper limit is set to 0.003.
I did it.

Atは脱酸のために必要であるが007%を超えて添加
すると靭性が劣化し非金属介在物が増大するために0.
07%;を上限とした。
At is necessary for deoxidation, but if it is added in an amount exceeding 0.07%, the toughness will deteriorate and non-metallic inclusions will increase.
The upper limit was set at 0.07%.

N1は靭性をいちじるしく向上させ、腐食疲労籾れつの
伝播を抑制する効果をもっと同時に後述する実施例にも
示すごとく4%以上添加すると海水環境中で、耐食性の
すぐれた被膜を形成し腐食ピットの形成を防止する効果
をもつ。
N1 has the effect of significantly improving toughness and suppressing the propagation of corrosion fatigue pits.As shown in the examples described later, when added in an amount of 4% or more, it forms a coating with excellent corrosion resistance in a seawater environment and prevents corrosion pits. It has the effect of preventing formation.

一方6%を超えて添加すると、焼入れ後の焼戻し処理に
おいて焼戻し温度をへc、点直下まで高めても抗張力を
90kg/mm2以下に下げることはできない。
On the other hand, if it is added in an amount exceeding 6%, the tensile strength cannot be lowered to 90 kg/mm2 or less even if the tempering temperature is raised to just below the temperature point in the tempering treatment after quenching.

このためNi量の範囲を4〜6*と限定する。Therefore, the range of the Ni amount is limited to 4 to 6*.

Cu、Mo、Cr、V、Ti 、Bは強度靭性の向上に
寄与する元素てあって3種以上添加する必要かある。こ
れらについて説明すると以下の通りである。
Cu, Mo, Cr, V, Ti, and B are elements that contribute to improving strength and toughness, and it is necessary to add three or more of them. An explanation of these is as follows.

Cuは強度上昇に効果のある元素であるか0.5零を超
えて添加すると溶接性か劣化し熱間圧延時にいわゆるC
uキズを発生するため、添加量はo5*以下とする。
Cu is an element that is effective in increasing strength.If added in excess of 0.5%, weldability deteriorates and the so-called C
Since it causes scratches, the amount added should be less than o5*.

Mo、Crは強度上昇の効果をもつ元素であるが07*
を超えると効果は飽和し、経済的にも不利となるため0
7°6を上限とした。
Mo and Cr are elements that have the effect of increasing strength, but 07*
If it exceeds 0, the effect will be saturated and it will be economically disadvantageous.
The upper limit was 7°6.

V、Ti、Bは必要な強度レベルをつるために添加して
よいが、V、Ti、は0.1!l;、口は0.001を
超えて添加してもその結果は飽和状態となり経済的にも
不利となる。従ってO1*及び0.005%を夫々上限
とした。
V, Ti, and B may be added to achieve the required strength level, but V, Ti, and 0.1! Even if the amount exceeds 0.001, the result will be saturation, which is economically disadvantageous. Therefore, the upper limits were set to O1* and 0.005%, respectively.

更に第2発明鋼において添加される Zr、Caは鋼中
の硫化物系非金属介在物の形態、組織を効果的に制御す
るために添加するが夫々o、ooe96を超えて添加さ
せても、その結果は飽和し経済的にも不利となる。従っ
てo、ooe96を」二限とした。
Furthermore, Zr and Ca added in the second invention steel are added in order to effectively control the morphology and structure of sulfide-based nonmetallic inclusions in the steel, but even if they are added in excess of o and ooe96, respectively, The result is saturation and is economically disadvantageous. Therefore, o, ooe96 was set as two limits.

次にかかる成分の本発明鋼の製造方法において、抗張力
を80kg/mm2前後に調整するために、所定の厚さ
にまで熱間圧延後800〜1100℃の温度範囲てオー
ステナイト化し、水焼入れをおこない引き続き650〜
700℃の温度範囲で焼戻し処理をおこなう。あるいは
熱間圧延においてへr3800℃以上の温度で仕上圧延
をおこない圧延完了後直ちに水焼入れをおこない引き続
き650〜700℃の温度範囲で焼戻し処理をおこなう
Next, in the method for manufacturing the steel of the present invention having the above components, in order to adjust the tensile strength to around 80 kg/mm2, the steel is hot rolled to a predetermined thickness, then austenitized in a temperature range of 800 to 1100°C, and water quenched. Continue from 650
Tempering treatment is performed in a temperature range of 700°C. Alternatively, in hot rolling, finish rolling is performed at a temperature of 3800°C or higher, water quenching is performed immediately after rolling is completed, and subsequently tempering treatment is performed at a temperature range of 650 to 700°C.

これら熱処理条件、圧延条件の限定理由について述べる
The reasons for limiting these heat treatment conditions and rolling conditions will be described.

先ず、オーステナイト化温度に関しては、オーステナイ
ト化温度が1100℃を超えるとオーステナイト結晶粒
か異常粒成長を起し粗大化してしまう。
First, regarding the austenitizing temperature, if the austenitizing temperature exceeds 1100°C, austenite crystal grains will undergo abnormal grain growth and become coarse.

このため引き続き焼戻し処理をおこなっても良好な靭性
はえられず焼戻し脆性に対する感受性も高まると同時に
、海水環境下での腐食疲労においてもきれつ伝播に対す
る材料の抵抗も激減してしまう。
For this reason, even if the material is subsequently tempered, good toughness cannot be obtained, and the susceptibility to temper brittleness increases, and at the same time, the resistance of the material to propagation of cracks due to corrosion fatigue in a seawater environment is also drastically reduced.

このためオーステナイ]・化の上限温度は1100℃以
下でなりればならない。
Therefore, the upper limit temperature for austenite formation must be 1100° C. or lower.

オーステナイト化温度は低いほどオーステナイト化後が
細粒化し、焼戻し処理後の靭性値、腐食疲労きれつに対
する抵抗が向上するため、できるたけ低くすることが望
ましいか、下限はAr3変態点て限定される。
The lower the austenitizing temperature, the finer the grains after austenitizing, which improves the toughness after tempering and resistance to corrosion fatigue cracking, so it is desirable to keep it as low as possible, or the lower limit is limited by the Ar3 transformation point. .

本発明鋼のNi量の範囲(4〜6豹ではAr3変態点は
800℃となる。以上の理由がらオーステナイト化温度
の範囲を110θ〜800℃と限定した。
The Ar3 transformation point is 800°C in the Ni content range of the steel of the present invention (4 to 6).For the above reasons, the austenitizing temperature range was limited to 110θ to 800°C.

次に、焼戻し処理の温度範囲に関しては、焼戻し温度が
650℃未満の場合には長時間焼戻し処理をおこなって
も抗張力を80キロ鋼の強度レベルまで下げることがで
きない。
Next, regarding the temperature range of the tempering treatment, if the tempering temperature is less than 650°C, the tensile strength cannot be lowered to the strength level of 80 kg steel even if the tempering treatment is performed for a long time.

またオーステナイト化後の焼入れによって生成したマル
テンサイトから焼戻しセメンタイトが十分に析出ししな
いために、靭性値かいちしるしく劣ると同時に腐食疲労
きれつに対する抵抗値も低い。
Furthermore, since tempered cementite is not sufficiently precipitated from the martensite produced by quenching after austenitization, the toughness value is significantly inferior and the resistance to corrosion fatigue cracking is also low.

一方、焼戻し温度の」二限値はAc、変態点て限定され
る。
On the other hand, the two limiting values of the tempering temperature are determined by Ac and the transformation point.

これらのJ1山から焼戻し処J里の温度範囲は650℃
〜700℃と限定した。
The temperature range from these J1 mountains to the tempering plant Juri is 650℃.
The temperature was limited to ~700°C.

第4及び第6発明方法の熱間圧延後直しに水焼入れし、
引き続き焼戻し処理をおこなす場合に関しては、圧延前
のオーステナイト化温度か高ずきると初期オーステナイ
ト粒径が粗大化し以後の圧延によっても完全に細粒化す
ることはむずかしく混粒組織となり靭性を劣化させるた
めオーステナイト化温度はやはり1100℃以下とする
ことか望ましい。
Water quenching after hot rolling of the fourth and sixth invention methods,
If the austenitizing temperature before rolling is too high, the initial austenite grain size will become coarse and it will be difficult to completely refine the grains by subsequent rolling, resulting in a mixed grain structure and deterioration of toughness. It is desirable that the austenitizing temperature be 1100°C or less.

圧延に関しては、圧延仕上り温度かAr3未渦になると
圧延中にフェライトが生成してしまい、引き続き直ちに
水焼入れしても均一なマルテンサイト!11織はえられ
は、焼戻し処理をおこなっても良好な靭性値はえられな
い。
Regarding rolling, if the finishing temperature of the rolling reaches the Ar3 vortex, ferrite will be generated during rolling, and even if water quenching is subsequently performed, uniform martensite will be produced! No. 11 weave cannot obtain a good toughness value even if it is tempered.

このため圧延仕」二す温度は、Ar3?M度以上とせね
ばならない。焼戻し処理温度に関しては、この場合にも
前述の限定理由がそのまま該当する。
For this reason, the rolling temperature is Ar3? Must be at least M degree. Regarding the tempering treatment temperature, the above-mentioned reason for limitation also applies in this case.

以下に本発明の実施例について述べる。Examples of the present invention will be described below.

〔実施例〕〔Example〕

実施例1 表1に供試鋼A〜1の成分を示す。 Example 1 Table 1 shows the components of test steels A-1.

鋼へから鋼Iに移るにしたかいNi量か増加しており、
鋼Eから鋼11が未発明鋼である。
There is a slight increase in the amount of Ni when moving from steel to steel I,
Steel E to Steel 11 are uninvented steels.

これらの8鋼に表2に示す熱処理を行った。These eight steels were subjected to the heat treatments shown in Table 2.

抗張力を80〜90kg/mm2の範囲におさめるため
に、Niiが高いものほど焼戻し温度を高くした。
In order to keep the tensile strength within the range of 80 to 90 kg/mm2, the higher the Nii, the higher the tempering temperature.

熱処理後の機械的性質も表2に示す。The mechanical properties after heat treatment are also shown in Table 2.

Ni量が本発明の範囲を超える鋼■においては、焼戻し
温度を700℃まで高めても抗張力を907mm2以下
まで下げることはできなかった。
In steel (2) in which the Ni content exceeds the range of the present invention, even if the tempering temperature was increased to 700°C, the tensile strength could not be lowered to 907 mm2 or less.

こねらの試料のl/2 tから第1図に示す腐食疲労試
験片を長手方向と圧延方向が一致するように採取した。
Corrosion fatigue test pieces shown in FIG. 1 were taken from 1/2 t of the Konera sample so that the longitudinal direction and rolling direction coincided.

これらについて油圧サーホ試験機を用い、20℃の曝気
した人工海水中において、くり返し速度10cpm応力
比O1の腐食疲労試験をおこなった。
These were subjected to a corrosion fatigue test using a hydraulic surf testing machine in aerated artificial seawater at 20° C. at a repetition rate of 10 cpm and a stress ratio of O1.

負荷応力振巾20J/nun’の場合の破断までのくり
返し面数とNi量の関係グラフを第2図に示す。比軟鋼
と比較すると、本発明のNi量の範囲、10〜6.0*
の範囲で疲労寿命は2〜3倍向上することかわかる。
FIG. 2 shows a graph of the relationship between the number of repeated surfaces until fracture and the amount of Ni when the applied stress amplitude is 20 J/nun'. Compared to specific mild steel, the Ni amount range of the present invention is 10 to 6.0*
It can be seen that the fatigue life is improved by 2 to 3 times within this range.

特開”、’763−26339(6) 表2イj1試鋼の熱処理条件とwt械的性貿本発明鋼か
比較鋼よりも海水中の腐食4、Il刊か侵ねている理由
として、金属顕微鏡写真等から次の如ぎ点が上げられる
Unexamined Japanese Patent Application, '763-26339 (6) Table 2 Heat treatment conditions and mechanical properties of test steel Ij1 The reason why the corrosion in seawater is greater than that of the inventive steel or comparative steel is as follows: The following points can be raised from metallographic micrographs.

第3図は、比較鋼への表面に生成した腐食ピッ1〜と腐
食生成物(応力くり返し数、5X]05す゛イクル)を
示す金属組織顕微鏡写真(x45)。
FIG. 3 is a metallographic micrograph (x45) showing corrosion pits and corrosion products (stress repetition rate, 5X]05 cycles) formed on the surface of comparative steel.

第4図は、腐食生成物を除去後、ビット底に観察された
剖れつ(比較鋼へ、応力くり返し数。
Figure 4 shows the cracks observed on the bottom of the bit after removing corrosion products (comparison steel, number of stress cycles).

5X105サイクル)の金属組織顕微鏡写真(X300
)。
5X105 cycles) metallographic micrograph (X300
).

第5図(a)、 (b)は、夫々比較鋼へ及び本発明i
Gの試験片平行部の腐食状況の比較を示す金属組織写真
である。
FIGS. 5(a) and 5(b) show the comparison steel and the invention i, respectively.
It is a metal structure photograph showing a comparison of the corrosion state of the parallel part of the test piece G.

先ず、比較鋼では腐食疲労試験中に第3図に示すような
腐食ピッ[・が多数形成し、こねらビット底からは第4
図に示すようなきねつか発生し、これらが相互連結する
ことによって最終破断に至る。これに対しNiを4零以
上ふくむ本発明鋼においては第5図(b)に示すように
海水環境下てiJ銀灰色の保護被膜か形成する。
First, in the comparative steel, many corrosion pits as shown in Figure 3 were formed during the corrosion fatigue test, and a fourth pit was formed from the bottom of the bit.
Bonds as shown in the figure are generated, and these interconnections lead to final breakage. On the other hand, in the steel of the present invention containing 4 or more Ni, an iJ silver-gray protective coating is formed in a seawater environment, as shown in FIG. 5(b).

これらの保護被膜は疲労試験でイ」加される外部応力に
対しても破れることなく力学的に安定である。
These protective coatings are mechanically stable without breaking even under the external stress applied in fatigue tests.

このため第5図(a)に示すごとく比較鋼においては腐
食にもとず〈著しい肌荒れや多数のピッ1ル発生がみと
められるか、本発明鋼にいてはこぐわずかなビットしか
形成されない。
For this reason, as shown in FIG. 5(a), in the comparison steel, significant surface roughness and numerous pits were observed due to corrosion, whereas in the steel of the present invention, only a few pits were formed.

第6図は腐食疲労試験片の表面に生じたビットの数と腐
食疲労試験のくり返し数の関係を比較鋼へと本発明鋼G
について示す。
Figure 6 shows the relationship between the number of bits formed on the surface of the corrosion fatigue test piece and the number of repetitions of the corrosion fatigue test for comparison steel and invention steel G.
Show about.

耐食性保護皮膜の形成される本発明鋼においてはビット
形成がいちじるしく抑制されることが同図においても明
瞭に示されている。
The same figure also clearly shows that bit formation is significantly suppressed in the steel of the present invention in which a corrosion-resistant protective film is formed.

なお、鋼■においても良好な腐食疲労強度はえられたが
700℃で焼戻し処理をおこなっても抗張力を100k
g/mm2以下に下げることか出来ないのて本発明の範
囲から除外した。
In addition, good corrosion fatigue strength was also obtained for steel (2), but even after tempering at 700°C, the tensile strength remained at 100k.
It was excluded from the scope of the present invention because it could not be lowered to below g/mm2.

実施例2 表3に試験鋼1〜20の成分を示す。Example 2 Table 3 shows the components of test steels 1 to 20.

鋼1〜11の成分は本発明鋼の成分を属するものである
The components of Steels 1 to 11 belong to the components of the steel of the present invention.

一方鋼12から鋼20は、Ni量は本発明の1llFi
囲内にあるが、その他の元素の一種また(11−fΦ以
才か請求範囲をこえるものである。
On the other hand, in steels 12 to 20, the Ni amount was 1llFi according to the present invention.
However, other elements (beyond 11-fΦ) are beyond the scope of the claims.

表4にこれらの鋼の熱処理条仁1を示す。Table 4 shows the heat treatment strips 1 of these steels.

′j!iIl から3.鋼6かつ8.鋼12から鋼11
i 1r:J涌′1・iプ1(1)焼入れ焼戻し処理に
」:り製造しl、・ものてル)る。・−の他は圧延後の
直接焼入れ焼戻しiZより製品しノ、・ものであり、こ
れらについては圧延什十温度かフJくしである。
'j! iIl to 3. Steel 6 and 8. steel 12 to steel 11
i 1r: J-1'1・i-pu1 (1) For quenching and tempering treatment. The others are products made from direct quenching and tempering IZ after rolling, and these are rolled at a temperature of 100 degrees or 100 degrees FJ.

表4には、これらの鋼の降伏応力、抗張力おJ、び負荷
応力振巾20kg/mm’の場合の破断まてのくり返し
面数を示す。
Table 4 shows the yield stress, tensile strength and J of these steels, and the number of repetitions until failure when the applied stress amplitude is 20 kg/mm'.

いずれの鋼もN1■が40〜60*の範囲Gごあるノコ
め破断寿命はいちじるしく傾れているか、その他1種ま
たは2種以上の元素な過動にふくむために、焼戻し温度
をB′[容量高温度700℃まで高めても抗張力は10
0kg/mm2をこえてしまい80キロ級高張力鋼の規
格範囲をGJるかにこえてしまうことがわかる。
For all steels, the sawtooth rupture life is significantly tilted when N1■ is in the range G of 40 to 60*, or the tempering temperature is set to B' [capacity Even if the temperature is raised to 700℃, the tensile strength is 10
It can be seen that GJ exceeds 0 kg/mm2 and far exceeds the standard range of 80 kg class high tensile strength steel.

特開■rjG3−26339(8) 〔発明の効果〕 本発明の腐食疲労強度の優れた高張力鋼及び製造方法は
、Ni添加に基く力学的にも強固な保護被膜の形成によ
って、腐食疲労強度を著しく向上しうるものであって、
工業的価値は大きい。
JP-A ■rjG3-26339 (8) [Effects of the Invention] The high tensile strength steel with excellent corrosion fatigue strength and the manufacturing method of the present invention improve corrosion fatigue strength by forming a mechanically strong protective film based on the addition of Ni. It can significantly improve
It has great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例における、腐食疲労試験片形状説明図
、第2図は、負荷応力振巾20kg/mm2の場合の破
断までのくり返し回数とNl量との関係グラフ、第3図
〜第5図(a)(b)は実施例における金属組織写真説
明図、第6図は、試料表面に発生した腐食ビットの個数
と応力くり返し数との関係グラフである。 代理人 弁理士 佐 藤 正 年 (、uuり/lr)*TJJIV(It’、l * ’
It手続補正書0.え、
Fig. 1 is an explanatory diagram of the shape of a corrosion fatigue test piece in the example, Fig. 2 is a graph of the relationship between the number of repetitions until fracture and the amount of Nl when the applied stress amplitude is 20 kg/mm2, and Figs. 5(a) and 5(b) are explanatory photographs of metallographic structures in Examples, and FIG. 6 is a graph showing the relationship between the number of corroded bits generated on the sample surface and the number of stress repetitions. Agent Patent Attorney Masatoshi Sato (,uuri/lr) *TJJIV(It', l *'
It procedural amendment 0. picture,

Claims (6)

【特許請求の範囲】[Claims] (1)重量基準にて、 C:0.12%以下;Si:0.5%以下;Mn:0.
5〜1.4%;P:0.01%以下;S:0.003%
以下;Al:0.07%以下;Ni:4〜6%; を含み更に Cu:0.5%以下;Mo:0.7%以下;Cr:0.
7%以下;V:0.1%以下; Ti:0.1%以下;B:0.005%以下;のうち3
種以上を含み、 残部がFe及び不可避不純物からなることを特徴とする
腐食疲労強度に優れた高張力鋼。
(1) Based on weight, C: 0.12% or less; Si: 0.5% or less; Mn: 0.
5-1.4%; P: 0.01% or less; S: 0.003%
Al: 0.07% or less; Ni: 4-6%; Cu: 0.5% or less; Mo: 0.7% or less; Cr: 0.
7% or less; V: 0.1% or less; Ti: 0.1% or less; B: 0.005% or less; 3 of these
A high tensile strength steel with excellent corrosion fatigue strength, characterized by containing at least 100% of Fe and the remainder consisting of Fe and unavoidable impurities.
(2)重量基準にて、 C:0.12%以下;Si:0.59%以下;Mn:0
.5〜1.4%;P:0.01%以下;S:0.003
%以下;Al:0.07%以下;Ni:4〜6%; を含み更に Cu:0.5%以下;Mo:0.7%以下;Cr:0.
7%以下;V:0.1%以下; Ti:0.1%以下;B:0.005%以下;のうち3
種以上を含み、更に Zr:0.006%以下;Ca:0.006%以下;の
うち1種または2種を含み 残部がFe及び不可避不純物からなることを特徴とする
腐食疲労強度に優れた高張力鋼。
(2) On a weight basis, C: 0.12% or less; Si: 0.59% or less; Mn: 0
.. 5-1.4%; P: 0.01% or less; S: 0.003
% or less; Al: 0.07% or less; Ni: 4 to 6%; Cu: 0.5% or less; Mo: 0.7% or less; Cr: 0.
7% or less; V: 0.1% or less; Ti: 0.1% or less; B: 0.005% or less; 3 of these
and further contains one or two of the following: Zr: 0.006% or less; Ca: 0.006% or less; the remainder being Fe and unavoidable impurities. Excellent corrosion fatigue strength. High tensile steel.
(3)重量基準にて、 C:0.12%以下;Si:0.5%以下;Mn:0.
5〜1.4%;P0.01%以下;S:0.003%以
下;Al:0.07%以下;Ni:4〜6%; を含み、更に Cu:0.5以下;Mo:0.7%以下; Cr:0.7%以下;V:0.1%以下; Ti:0.1%以下;B:0.005%以下;のうち3
種以上を含み、残部がFe及び不可避不純物からなる鋼
を800〜1100℃の温度範囲でオステナイト化後水
焼入れし、引続き650〜700℃の温度範囲で焼戻し
することを特徴とする腐食疲労強度に優れた高張力鋼の
製造方法。
(3) Based on weight, C: 0.12% or less; Si: 0.5% or less; Mn: 0.
5 to 1.4%; P 0.01% or less; S: 0.003% or less; Al: 0.07% or less; Ni: 4 to 6%; further Cu: 0.5 or less; Mo: 0 .7% or less; Cr: 0.7% or less; V: 0.1% or less; Ti: 0.1% or less; B: 0.005% or less; 3 of these
A method for improving corrosion fatigue strength, which is characterized by water quenching after austenitizing a steel containing at least 100% of Fe and the remainder consisting of Fe and unavoidable impurities in a temperature range of 800 to 1100°C, and subsequently tempering in a temperature range of 650 to 700°C. A superior method of manufacturing high-strength steel.
(4)重量基準にて、 C:0.12%以下;Si:0.5%以下;Mn:0.
5〜1.4%;P:0.01%以下;S:0.003%
以下;Al:0.07%以下;Ni:4〜6%; を含み、更に Cu:0.5%以下;Mo:0.7%以下;Cr:0.
7%以下;V:0.1%以下; Ti:0.1%以下;B:0.006%以下;のうち3
種以上を含み、更に Zr:0.006%以下;Ca:0.006%以下;の
うち1種または2種を含み残部がFe及び不可避不純物
からなる鋼を800〜1100℃の温度範囲でオーステ
ナイト化後水焼れし、引続き650〜700℃の温度範
囲で焼戻しすることを特徴とする腐食疲労強度に優れた
高張力鋼の製造方法。
(4) Based on weight, C: 0.12% or less; Si: 0.5% or less; Mn: 0.
5-1.4%; P: 0.01% or less; S: 0.003%
Al: 0.07% or less; Ni: 4-6%; Cu: 0.5% or less; Mo: 0.7% or less; Cr: 0.
7% or less; V: 0.1% or less; Ti: 0.1% or less; B: 0.006% or less; 3 of these
A steel containing at least one of Zr: 0.006% or less; Ca: 0.006% or less, and the remainder consisting of Fe and unavoidable impurities is austenitized in a temperature range of 800 to 1100°C. A method for producing high-strength steel with excellent corrosion fatigue strength, which comprises water-scorching the steel and subsequently tempering it at a temperature range of 650 to 700°C.
(5)重量基準にて、 C:0.12%以下;Si:0.5%以下;Mn:0.
5〜1.4%;P:0.01%以下;S:0.003%
以下;Al:0.07%以下;Ni:4〜6%; を含み、更に Cu:0.5%以下;Mo:0.7%以下;Cr:0.
7%以下;V:0.1%以下; Ti:0.1%以下;B:0.005%以下;のうち3
種以上を含み、 残部がFe及び不可避不純物からなる鋼を800℃以上
の温度で仕上圧延し、その後、直ちに水焼入れし、引き
続き650〜700℃の温度範囲で焼戻しすることを特
徴とする腐食疲労強度に優れた高張力鋼の製造方法。
(5) Based on weight, C: 0.12% or less; Si: 0.5% or less; Mn: 0.
5-1.4%; P: 0.01% or less; S: 0.003%
Al: 0.07% or less; Ni: 4-6%; Cu: 0.5% or less; Mo: 0.7% or less; Cr: 0.
7% or less; V: 0.1% or less; Ti: 0.1% or less; B: 0.005% or less; 3 of these
Corrosion fatigue characterized by finish-rolling a steel containing at least 100% Fe and the remainder consisting of Fe and unavoidable impurities at a temperature of 800°C or higher, then immediately water quenching, and subsequently tempering at a temperature range of 650 to 700°C. A method of manufacturing high-strength steel with excellent strength.
(6)重量基準にて、 C:0.12%以下;Si:0.5%以下;Mn:0.
5〜1.4%;P:0.01%以下;S:0.003%
以下;Al:0.07%以下;Ni:4〜6%; を含み、更に Cu:0.5%以下;Mo:0.7%以下;Cr:0.
7%以下;V:0.1%以下; Ti:0.1%以下;B:0.005%以下;のうち3
種以上を含み、更に Zr:0.006%以下;Ca:0.006%以下;の
うち1種または2種を含み残部がFe及び不可避不純物
からなる鋼を800℃以上の温度で仕上圧延し、その後
直ちに水焼入れし、引き焼き650〜700℃の温度範
囲で焼戻しすることを特徴とする腐食疲労強度に優れた
高張力鋼の製造方法。
(6) Based on weight, C: 0.12% or less; Si: 0.5% or less; Mn: 0.
5-1.4%; P: 0.01% or less; S: 0.003%
Al: 0.07% or less; Ni: 4-6%; Cu: 0.5% or less; Mo: 0.7% or less; Cr: 0.
7% or less; V: 0.1% or less; Ti: 0.1% or less; B: 0.005% or less; 3 of these
A steel containing at least one of Zr: 0.006% or less; Ca: 0.006% or less; and the remainder consisting of Fe and unavoidable impurities is finish rolled at a temperature of 800°C or higher. A method for producing high tensile strength steel with excellent corrosion fatigue strength, which comprises immediately water quenching and tempering at a temperature range of 650 to 700°C.
JP16800886A 1986-07-18 1986-07-18 High tension steel having superior corrosion fatigue strength and manufacture thereof Pending JPS6326339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16800886A JPS6326339A (en) 1986-07-18 1986-07-18 High tension steel having superior corrosion fatigue strength and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16800886A JPS6326339A (en) 1986-07-18 1986-07-18 High tension steel having superior corrosion fatigue strength and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6326339A true JPS6326339A (en) 1988-02-03

Family

ID=15860091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16800886A Pending JPS6326339A (en) 1986-07-18 1986-07-18 High tension steel having superior corrosion fatigue strength and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6326339A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024001078A1 (en) * 2022-06-29 2024-01-04 山东钢铁股份有限公司 80 mm thick 690 mpa-grade ultra-high strength and toughness marine steel plate and preparation method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024001078A1 (en) * 2022-06-29 2024-01-04 山东钢铁股份有限公司 80 mm thick 690 mpa-grade ultra-high strength and toughness marine steel plate and preparation method therefor

Similar Documents

Publication Publication Date Title
CN109161791B (en) 690 MPa-grade ship and ocean engineering steel with excellent low-temperature toughness and manufacturing method thereof
US4946516A (en) Process for producing high toughness, high strength steel having excellent resistance to stress corrosion cracking
CN110629102B (en) 580 MPa-level low-stress corrosion sensitivity steel for ocean engineering and production method thereof
CN114959460A (en) Low-yield-ratio easy-to-weld weather-resistant bridge steel and manufacturing method thereof
CN110230007A (en) Ocean ultralow temperature is on active service with antiacid high tensile pipeline steel and preparation method
CN106756614B (en) The thick easily welding F690 steel plates of 210mm that resistance to marine atmosphere, seawater splash corrode
CN114277314A (en) Corrosion-resistant high-strength steel plate for high heat input welding ocean engineering and preparation method thereof
JPH0453929B2 (en)
JP2001240936A (en) Steel having coarse-grained ferritic layer on surface layer and its production method
CN110331334B (en) Corrosion-resistant ocean engineering steel with yield strength of more than or equal to 890MPa and production method thereof
JPH04285119A (en) Production of thick-walled high tensile strength steel plate excellent in toughness at low temperature
JP3499705B2 (en) 950N / mm2 class tempered high-strength steel sheet having excellent homogeneity in thickness direction and low anisotropy of toughness, and method for producing the same
JPH06271975A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
CN113897553B (en) 600 MPa-grade high-plasticity-deformation precipitation-strengthened pipeline steel plate and production method thereof
JPS58210125A (en) Production of strong and tough high tensile steel plate by direct hardening method
JP2537118B2 (en) Method of manufacturing stress corrosion corrosion resistant ultra high strength steel
JPS6326339A (en) High tension steel having superior corrosion fatigue strength and manufacture thereof
JPH09137253A (en) High tensile strength steel excellent in stress corrosion cracking resistance and low temperature toughness and its production
JPH0718387A (en) Precipitation hardening type stainless steel excellent in wear resistance and production of precipitation hardening type stainless steel
JP5136174B2 (en) High strength steel for bolts with excellent weather resistance and delayed fracture resistance
JP4074385B2 (en) Mechanical structural steel with excellent corrosion resistance and delayed fracture resistance in high sea salt particle environment
JP3367388B2 (en) High ductility and high toughness steel sheet and manufacturing method thereof
JPS6156268A (en) High toughness and high tensile steel and its manufacture
JPS59123716A (en) Production of steel pipe for oil well having excellent resistance to sulfide cracking
JPS5916950A (en) Soft-nitriding steel