JPS6326338B2 - - Google Patents

Info

Publication number
JPS6326338B2
JPS6326338B2 JP5981880A JP5981880A JPS6326338B2 JP S6326338 B2 JPS6326338 B2 JP S6326338B2 JP 5981880 A JP5981880 A JP 5981880A JP 5981880 A JP5981880 A JP 5981880A JP S6326338 B2 JPS6326338 B2 JP S6326338B2
Authority
JP
Japan
Prior art keywords
gas
membrane
container
aqueous solution
hydrogen ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5981880A
Other languages
Japanese (ja)
Other versions
JPS56155831A (en
Inventor
Norihiko Minora
Seiichi Aiba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP5981880A priority Critical patent/JPS56155831A/en
Publication of JPS56155831A publication Critical patent/JPS56155831A/en
Publication of JPS6326338B2 publication Critical patent/JPS6326338B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は酸性及び塩基性ガスの膜透過率測定方
法及び装置に関するものである。 従来、プラスチツクフイルムとしては種々のも
のが知られているが、このようなフイルムに関
し、その酸性ガスや塩基性ガスの透過率を測定す
る必要がしばしば生じる。現在、このようなフイ
ルムに関するガス透過率の測定は、測定対象フイ
ルムを隔膜として室を2つに区画し、一方の区画
Aにガスを充填すると共に他方の区画Bを真空に
し、そして隔膜を通つて区画Aから区画Bに移行
するガス量を区画Bにおける圧力上昇値として検
出することによつて行われている。しかしなが
ら、このような測定方法においては、液体中に溶
存するガスに対しては測定不可能である上、装置
が大型なものになり、また測定操作が複雑になる
などの難点があつた。 本発明はこのような従来法とは異なつたもの
で、開口部を有しかつ内部に水素イオン濃度検出
手段を備えた容器内に、酸性ガス又は塩基性ガス
に対応する塩の水溶液を収容させると共に、該開
口部を測定対象とする膜により被覆密閉し、この
膜を酸性ガス又は塩基性ガスを含む液体又は気体
に接触させ、その接触により膜を透過するガスを
容器内に収容された水溶液と反応させ、その際に
起る水素イオン濃度の変化を水素イオン濃度検出
手段により検出し、これを対象ガスの膜透過率に
関係ずけることを特徴とする酸性及び塩基性ガス
の膜透過率測定方法を提供するものである。 本発明においては、気体及び液体中におけるフ
イルムのガス透過率を測定することができ、また
その装置は簡単でかつ測定操作も容易であるとい
う利点がある。 次に本発明を図面により説明すると、1は容器
で、その形状は通常円筒形であり、またその下面
は開口している。3は水素イオン濃度検出手段
(複合水素イオン電極)であり、容器上壁を通し
て容器内部に突出している。4は測定対象とする
膜(フイルム)であり、この膜はo−リング6を
介して容器1の開口部を被覆密閉するもので、容
器1の周壁に螺合(又は嵌合)する膜支持具5に
よつて支持固定されている。2は容器内に収容さ
れた酸性又は塩基性ガスに対応する塩の水溶液で
ある。7は撹拌器(マグネチツクスターラ)であ
り、回転マグネツト15の回転に応じて回転し、
容器1内の水溶液を撹拌する。9は水素イオン濃
度を電圧又はPHとして表示する表示装置に連絡す
る電線である。 10は水槽であり、その内部には液体(水)1
6が収容され、この液中には前記した測定容器1
が設置されている。また、この液中には、先端に
ガス噴出用の多孔ガラスボール13を有するガス
導入管12が導入されている。14は仕切板及び
11は温度計である。8は撹拌器であり、回転マ
グネツト15により回転され、槽10内の液体を
撹拌す。 本発明により膜のガス透過率を測定するには、
容器1を液中に設置しない状態で対象とするガス
をガス導入管12及び多孔ガラスボール13を通
して液体16中に噴出させて一定濃度のガスを溶
解させる。次に、このガスを溶解した液中に膜4
を支持させた測定容器1を設置する。 このようにして測定容器1を液中に設置する
と、液中に溶存するガスは膜4を透過して容器内
に入り、ここで容器内の水溶液2と反応して透過
したガス量に応じた水素イオンを生成する。そし
て、この生成した水素イオン量は、水素イオン濃
度検出手段3により検出され、この検出量は、水
素イオン濃度表示装置(PHメータ又は電圧計、図
示されず)により表示される。測定容器1の水溶
液中におけるこの水素イオン濃度の変化量は対象
ガスの膜透過量に対応するもので、このガスの膜
透過量を、適用した膜の面積、厚さ及び測定時間
と関連させることによつて対象とする膜のガス透
過率を知ることできる。 本発明によるガス透過率の測定原理をさらに詳
しく示すと次の通りである。 今、対象ガスとして炭酸ガス(CO2)を用いた
場合を例にとると、膜を透過して容器内に入つて
きた炭酸ガスは次のように容器内水溶液と反応し
て水素イオンを生じる。 CO2+H2OHCO3 -+H+ (1) この平衡反応は、透過ガス量に応じて右に移行
し、容器内水溶液中の水素イオン濃度が増加す
る。この場合の水素イオン濃度は次の式で表わさ
れる。 〔H+〕=K〔CO2〕/〔HCO3 -〕 (2) 一方、容器内水溶液中に対象ガスに対応する
塩、この場合には炭酸水素ナトリウム
(NaHCO3)が溶解されていて、次に平衡反応を
生じている。 NaHCO3Na++HCO3 - (3) したがつて、炭酸水素イオン(HCO3 -)に関
しては緩衝効果が生じて、容器内水溶液中の炭酸
水素イオン濃度はほぼ一定に保持される。この結
果、前記式(2)は次のように表わすことができる。 〔H+〕=K〔CO2〕/〔HCO3 -〕=K′〔CO2〕 (4) そして、この容器内水溶液中の水素イオン濃度
は水素イオン濃度検出手段により電極電圧として
検出される。 E=E0−klog〔H+〕 =E0−klogK′−klog〔CO2〕 =E0′−klog〔CO2〕 (5) (式中、kはNernst係数=RT/ZF) 次に、ガスの膜透過率(膜透過係数) P(cm2(S.T.P)・cm/cm2.sec・cmHg)は、前記のよ
うな測定条 件下では次の式によつて表わされる。 (式中、E(t1),E(t2),E(0)及びE(∞)
はそれぞれ測定時間がt1,t2,0及び∞における
水素イオン濃度に対応する電極電圧であり、αは
炭酸ガス溶解度係数、Vは容器1内の水溶液の体
積、Lは膜(フイルム)の厚さ及びAは膜(フイ
ルム)の面積であり、t1及びt2は測定時間を各示
す。) この式からわかるように、ガスの膜透過率P
は、
The present invention relates to a method and apparatus for measuring membrane permeability of acidic and basic gases. Various types of plastic films have been known in the past, but it is often necessary to measure the permeability of acidic gases and basic gases with respect to such films. Currently, gas permeability measurements for such films are performed by dividing a chamber into two using the film to be measured as a diaphragm, filling one compartment A with gas and evacuating the other compartment B, and then passing the diaphragm through the chamber. This is done by detecting the amount of gas moving from section A to section B as the pressure increase value in section B. However, such a measurement method has disadvantages such as not being able to measure gas dissolved in the liquid, requiring a large apparatus, and complicating the measurement operation. The present invention is different from such conventional methods in that an aqueous solution of a salt corresponding to an acidic gas or a basic gas is contained in a container having an opening and equipped with hydrogen ion concentration detection means inside. At the same time, the opening is covered and sealed with a membrane to be measured, and this membrane is brought into contact with a liquid or gas containing an acidic gas or a basic gas, and the gas that permeates through the membrane is caused by the contact with an aqueous solution contained in a container. membrane permeability of acidic and basic gases, characterized in that the change in hydrogen ion concentration that occurs at that time is detected by a hydrogen ion concentration detection means, and this is related to the membrane permeability of the target gas. It provides a measurement method. The present invention has the advantage that the gas permeability of a film in gas and liquid can be measured, and that the apparatus is simple and the measurement operation is easy. Next, the present invention will be explained with reference to the drawings. Reference numeral 1 denotes a container, which is usually cylindrical in shape and has an open bottom. Reference numeral 3 denotes a hydrogen ion concentration detection means (composite hydrogen ion electrode), which protrudes into the interior of the container through the upper wall of the container. Reference numeral 4 denotes a membrane to be measured, which covers and seals the opening of the container 1 via an O-ring 6, and a membrane support that is screwed (or fitted) onto the peripheral wall of the container 1. It is supported and fixed by a tool 5. 2 is an aqueous solution of a salt corresponding to the acidic or basic gas contained in the container. 7 is a stirrer (magnetic stirrer), which rotates according to the rotation of the rotating magnet 15;
Stir the aqueous solution in container 1. 9 is an electric wire connected to a display device that displays the hydrogen ion concentration as voltage or PH. 10 is an aquarium, inside which there is liquid (water) 1
6 is contained in the liquid, and the above-mentioned measurement container 1 is contained in this liquid.
is installed. Further, a gas introduction tube 12 having a porous glass ball 13 for ejecting gas at its tip is introduced into this liquid. 14 is a partition plate and 11 is a thermometer. A stirrer 8 is rotated by a rotating magnet 15 to stir the liquid in the tank 10. To measure the gas permeability of a membrane according to the invention,
A target gas is ejected into the liquid 16 through the gas introduction pipe 12 and the porous glass ball 13 without the container 1 being placed in the liquid, thereby dissolving the gas at a certain concentration. Next, a film 4 is added to the liquid in which this gas is dissolved.
A measuring container 1 supported by the measuring container 1 is installed. When the measurement container 1 is placed in the liquid in this way, the gas dissolved in the liquid passes through the membrane 4 and enters the container, where it reacts with the aqueous solution 2 in the container and increases the amount of gas that permeated. Generates hydrogen ions. The amount of generated hydrogen ions is detected by the hydrogen ion concentration detection means 3, and this detected amount is displayed by a hydrogen ion concentration display device (PH meter or voltmeter, not shown). The amount of change in the hydrogen ion concentration in the aqueous solution in the measurement container 1 corresponds to the amount of gas permeated through the membrane, and the amount of gas permeated through the membrane is related to the area, thickness, and measurement time of the applied membrane. The gas permeability of the target membrane can be determined by The principle of gas permeability measurement according to the present invention will be explained in more detail as follows. Now, taking as an example the case where carbon dioxide gas (CO 2 ) is used as the target gas, the carbon dioxide gas that permeates through the membrane and enters the container reacts with the aqueous solution inside the container to generate hydrogen ions. . CO 2 +H 2 OHCO 3 - +H + (1) This equilibrium reaction shifts to the right according to the amount of permeated gas, and the hydrogen ion concentration in the aqueous solution in the container increases. The hydrogen ion concentration in this case is expressed by the following formula. [H + ] = K [CO 2 ] / [HCO 3 - ] (2) On the other hand, a salt corresponding to the target gas, in this case sodium hydrogen carbonate (NaHCO 3 ), is dissolved in the aqueous solution inside the container. Next, an equilibrium reaction occurs. NaHCO 3 Na + +HCO 3 (3) Therefore, a buffering effect occurs regarding hydrogen carbonate ions (HCO 3 ), and the concentration of hydrogen carbonate ions in the aqueous solution in the container is maintained approximately constant. As a result, the above formula (2) can be expressed as follows. [H + ] = K [CO 2 ] / [HCO 3 - ] = K' [CO 2 ] (4) Then, the hydrogen ion concentration in the aqueous solution in the container is detected as the electrode voltage by the hydrogen ion concentration detection means. . E=E 0 −klog[H + ] =E 0 −klogK′−klog[CO 2 ] =E 0 ′−klog[CO 2 ] (5) (In the formula, k is the Nernst coefficient = RT/ZF) Next , gas membrane permeability (membrane permeability coefficient) P (cm 2 (STP)·cm/cm 2 .sec·cmHg) is expressed by the following equation under the above measurement conditions. (where E(t 1 ), E(t 2 ), E(0) and E(∞)
are the electrode voltages corresponding to the hydrogen ion concentrations at measurement times t 1 , t 2 , 0, and ∞, respectively, α is the carbon dioxide solubility coefficient, V is the volume of the aqueous solution in container 1, and L is the volume of the membrane (film). Thickness and A are the area of the film, and t 1 and t 2 each indicate the measurement time. ) As can be seen from this equation, the gas membrane permeability P
teeth,

【式】を測定時間tに対 してプロツトし、その傾きから求めることができ
る。 本発明において適用し得るガスは、酸性又は塩
基性のガスであり、このようなガスの具体例とし
ては、例えば、炭酸ガス、アンモニアガス
(NH3)、亜硫酸ガス(SO2)、二酸化窒素ガス
(NO2)、ジエチルアミンガス(C2H5NHC2H5
などが挙げられる。また、本発明において用いる
酸性ガス又は塩基性ガスに対応する塩としては次
のような組合せが挙げられる。 CO2……NaHCO3,KHCO3 NH3……NH4Cl SO2……NaHSO3 NO2……NaNO2 C2H5NHC2H5……(C2H52NH2Cl また測定対象としての膜の具体例を挙げると、
ポリスチレン、ポリエチレン、ポリプロピレン、
ポリテトラフルオロエチレン、ポリ塩化ビニル、
ナイロン、ポリエチレンテレフタレート、酢酸セ
ルロース、セロハン、エチレン/酢酸ビニルコポ
リマー、アクリル系ポリマーなどが挙げられる。 本発明を実施する場合、測定容器1内の撹拌器
7は必ずしも必要ではなく、その使用を省略する
ことができるが、迅速かつ正確な測定値を得るに
はその使用が有利である。また、水素イオン濃度
検出手段3としては、複合水素イオン電極の他、
通常のPHメータなどに適用されている水素イオン
電極と対象イオン電極とが別個に設置されている
ものを用いることができる。さらに、撹拌器7及
び8としては、マグネチツクスターラに限らず、
通常のモータにより回転する回転軸に支持された
ものを用いることができる。 次に本発明を実施例によりさらに詳細に説明す
る。 実施例 測定装置として図面に示した構造のものを用い
た。この場合、容器1としては、内部における寸
法が、直径1.65cm、高さ2cmの円筒形のもので、
器壁を通して複合水素イオン電極(直径約1cm)
を挿入設置したものを用いた。また、この容器内
部液2としては、0.01モル濃度のNaHCO3水溶液
3.6c.c.及びマグネチツクスターラ7を収容させ、
そしてこの容器開口部は、o−リングを介して膜
体4を用いて被覆密閉し、これを容器1の周壁に
螺合する締付支持具5によつて支持固定した。 この膜体(厚さ0.01mm〜1mm、面積2.14cm2)4
と複合水素イオン電極3を備え、内部に
NaHCO3水溶液とマグネチツクスターラ7を収
容させた測定容器1を、図面に示すように、導管
12及び多孔ガラスボール13を介してあらかじ
め炭酸ガスを水中に噴出溶解させた炭酸ガス水溶
液(CO2濃度100%、温度20℃)中に設置し、回
転マグネツト15によりマグネチツクスターラ7
及び8を回転させながら、複合水素イオン電極3
における起電力を測定した。この測定を種々の膜
について行い、得られた測定値を基にして、式(6)
により炭酸ガスの膜透過率P(cm2(S.T.P)・cm/cm2
.sec・cmHg) を算出すると、次の通りであつた。 膜の種類 炭酸ガス透過率P×1010 ポリスチレン 10 ポリエチレン(低密度) 16 ポリプロピレン 9.5 ポリ塩化ビニル 1.7 ナイロン6 0.83 本発明は、前記測定原理から明らかなように、
酸性又は塩基性ガスの種々の膜に対する透過率の
測定に適用し得るものであり、また、本発明の場
合は、従来法とは異なり、乾式状態にある膜に限
らず、湿式状態にある膜に対するガス透過率を測
定することができるという利点を持つ。
It can be determined from the slope of the equation by plotting it against the measurement time t. Gases that can be applied in the present invention are acidic or basic gases, and specific examples of such gases include carbon dioxide gas, ammonia gas (NH 3 ), sulfur dioxide gas (SO 2 ), and nitrogen dioxide gas. (NO 2 ), diethylamine gas (C 2 H 5 NHC 2 H 5 )
Examples include. Moreover, the following combinations can be mentioned as salts corresponding to acidic gases or basic gases used in the present invention. CO 2 ...NaHCO 3 , KHCO 3 NH 3 ...NH 4 Cl SO 2 ...NaHSO 3 NO 2 ...NaNO 2 C 2 H 5 NHC 2 H 5 ... (C 2 H 5 ) 2 NH 2 Cl Also measured To give a specific example of a membrane as a target,
polystyrene, polyethylene, polypropylene,
polytetrafluoroethylene, polyvinyl chloride,
Examples include nylon, polyethylene terephthalate, cellulose acetate, cellophane, ethylene/vinyl acetate copolymer, and acrylic polymer. When carrying out the present invention, the stirrer 7 in the measurement container 1 is not necessarily required and its use can be omitted, but its use is advantageous in obtaining quick and accurate measurements. In addition, as the hydrogen ion concentration detection means 3, in addition to a composite hydrogen ion electrode,
It is possible to use an ordinary PH meter in which a hydrogen ion electrode and a target ion electrode are installed separately. Furthermore, the stirrers 7 and 8 are not limited to magnetic stirrers.
A device supported by a rotating shaft rotated by a normal motor can be used. Next, the present invention will be explained in more detail with reference to Examples. Example A measuring device having the structure shown in the drawings was used. In this case, the container 1 is cylindrical with internal dimensions of 1.65 cm in diameter and 2 cm in height.
Composite hydrogen ion electrode (approximately 1 cm in diameter) passed through the vessel wall.
The one with the inserted and installed was used. In addition, as the internal liquid 2 of this container, a 0.01 molar NaHCO 3 aqueous solution is used.
Accommodates 3.6cc and magnetic stirrer 7,
The opening of the container was covered and sealed with a membrane 4 via an O-ring, and supported and fixed by a tightening support 5 screwed onto the peripheral wall of the container 1. This membrane body (thickness 0.01 mm to 1 mm, area 2.14 cm 2 ) 4
and a composite hydrogen ion electrode 3, inside the
As shown in the drawing, the measurement container 1 containing the NaHCO 3 aqueous solution and the magnetic stirrer 7 is connected to a carbon dioxide aqueous solution (CO 2 concentration 100%, temperature 20℃), and the magnetic stirrer 7 is
and 8 while rotating the composite hydrogen ion electrode 3.
The electromotive force was measured. This measurement was performed on various films, and based on the measured values obtained, formula (6)
The carbon dioxide membrane permeability P (cm 2 (STP) cm/cm 2
.. sec・cmHg) was calculated as follows. Membrane type Carbon dioxide permeability P×10 10 Polystyrene 10 Polyethylene (low density) 16 Polypropylene 9.5 Polyvinyl chloride 1.7 Nylon 6 0.83 As is clear from the above measurement principle, the present invention
It can be applied to the measurement of the permeability of acidic or basic gases through various membranes, and in the case of the present invention, unlike conventional methods, it is possible to measure not only membranes in a dry state but also membranes in a wet state. It has the advantage of being able to measure gas permeability against

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明を実施するための装置系の説明図
である。 1…測定容器、2…水溶液、3…水素イオン濃
度検出手段、4…膜、5…膜支持具、6…o−リ
ング、7,8…マグネチツクスターラ、9…電
線、10…槽、11…温度計、12…ガス導入
管、13…多孔ガラスボール、14…仕切板、1
5…回転マグネツト、16…水。
The drawing is an explanatory diagram of an apparatus system for carrying out the present invention. DESCRIPTION OF SYMBOLS 1... Measuring container, 2... Aqueous solution, 3... Hydrogen ion concentration detection means, 4... Membrane, 5... Membrane supporter, 6... O-ring, 7, 8... Magnetic stirrer, 9... Electric wire, 10... Tank, 11 ...Thermometer, 12...Gas introduction pipe, 13...Porous glass ball, 14...Partition plate, 1
5...Rotating magnet, 16...Water.

Claims (1)

【特許請求の範囲】 1 開口部を有しかつ内部に水素イオン濃度検出
手段を備えた容器内に、酸性ガス又は塩基性ガス
に対応する塩の水溶液を収容させると共に、該開
口部を測定対象とする膜により被覆密閉し、この
膜を酸性ガス又は塩基性ガスを含む液体又は気体
に接触させ、その接触により膜を透過するガスを
容器内に収容された水溶液と反応させ、その際に
起る水素イオン濃度の変化を水素イオン濃度検出
手段により検出し、これを対象ガスの膜透過率に
関係づけることを特徴とする酸性及び塩基性ガス
の膜透過率測定方法。 2 容器内の水溶液中に攪拌器を設置し、水溶液
の攪拌を行う特許請求の範囲第1項の方法。 3 開口部を有しかつ内部に水素イオン濃度検出
手段を備えた塩基性ガス又は酸性ガスに対応する
塩の水溶液を収容すべき容器と、該容器の開口部
に螺合又は嵌合し、測定対象の膜を該容器の開口
部に被覆支持させる膜支持具とを備えたことを特
徴とする酸性及び塩基性ガスの膜透過率測定装
置。
[Claims] 1. An aqueous solution of a salt corresponding to an acidic gas or a basic gas is contained in a container having an opening and a hydrogen ion concentration detection means therein, and the opening is used as a measurement target. The membrane is covered and sealed with a membrane, and this membrane is brought into contact with a liquid or gas containing an acidic gas or a basic gas, and the gas that permeates through the membrane is caused to react with the aqueous solution contained in the container. A method for measuring membrane permeability of acidic and basic gases, characterized in that a change in hydrogen ion concentration is detected by a hydrogen ion concentration detection means, and this is correlated with membrane permeability of a target gas. 2. The method according to claim 1, wherein a stirrer is installed in the aqueous solution in the container to stir the aqueous solution. 3. A container to contain an aqueous solution of a salt corresponding to a basic gas or an acidic gas, which has an opening and is equipped with a hydrogen ion concentration detection means inside, and is screwed or fitted into the opening of the container, and the measurement is carried out. 1. A membrane permeability measurement device for acidic and basic gases, comprising a membrane supporter for covering and supporting a target membrane in the opening of the container.
JP5981880A 1980-05-06 1980-05-06 Method and device for measuring film permeability of acid and basic gas Granted JPS56155831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5981880A JPS56155831A (en) 1980-05-06 1980-05-06 Method and device for measuring film permeability of acid and basic gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5981880A JPS56155831A (en) 1980-05-06 1980-05-06 Method and device for measuring film permeability of acid and basic gas

Publications (2)

Publication Number Publication Date
JPS56155831A JPS56155831A (en) 1981-12-02
JPS6326338B2 true JPS6326338B2 (en) 1988-05-30

Family

ID=13124179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5981880A Granted JPS56155831A (en) 1980-05-06 1980-05-06 Method and device for measuring film permeability of acid and basic gas

Country Status (1)

Country Link
JP (1) JPS56155831A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59142462A (en) * 1983-02-02 1984-08-15 Fuji Electric Corp Res & Dev Ltd Continuous quantitative analysis of total acid and total amino acid
JPS59144549U (en) * 1983-03-17 1984-09-27 株式会社柳本製作所 Liquid permeability measuring device
US5211055A (en) * 1987-10-27 1993-05-18 Kernforschungsanlage Lulich Gesellschaft mit beschrankter Haftung Apparatus for the selective determination of the concentration of a substance dissolved in a solvent
DE3736230C1 (en) * 1987-10-27 1989-03-30 Kernforschungsanlage Juelich Method and device for the selective determination of the content of a substance dissolved in a solvent
CN110793997A (en) * 2019-10-17 2020-02-14 天津大学 System and method for measuring gas solubility at normal temperature and normal pressure

Also Published As

Publication number Publication date
JPS56155831A (en) 1981-12-02

Similar Documents

Publication Publication Date Title
Severinghaus et al. Electrodes for blood pO2 and pCO2 determination
US3539455A (en) Membrane polarographic electrode system and method with electrochemical compensation
JP2680075B2 (en) Method and device for selectively measuring content of substances dissolved in solution
CA2820072C (en) Single use bioreactor for use with detachable dissolved oxygen sensor
US3869354A (en) Ammonium ion specific electrode and method therewith
Constantine et al. Rate of the reaction of carbon dioxide with human red blood cells
US3830718A (en) Ammonia sensor
US4815316A (en) Diffusion measurement
US6066249A (en) Method for calibrating an instrument for measuring electrolytes and metabolites by analysis of blood gases
JPS6326338B2 (en)
US3380929A (en) Standard gas solution
US3859191A (en) Hydrogen cyanide sensing cell
JPH0547777B2 (en)
US3830709A (en) Method and cell for sensing nitrogen oxides
US20060175208A1 (en) Water-conductivity CO2 sensor
CN114018755A (en) Method for detecting content of free carbon dioxide in water body
McKeown et al. Comparative studies of dissolved oxygen analysis methods
US3950231A (en) Method of determining hydrogen cyanide
JP2757322B2 (en) How to measure gas permeability of film
Northrop et al. THE COMBINATION OF SALTS AND PROTEINS: II. A METHOD FOR THE DETERMINATION OF THE CONCENTRATION OF COMBINED IONS FROM MEMBRANE POTENTIAL MEASUREMENTS.
CN216449381U (en) Detection apparatus for free carbon dioxide content in water
US3573174A (en) Process for the detection or determination of fluorine
Martin et al. A simple method for measuring carbon dioxide in soils
SU741132A1 (en) Primary transducer of electrochemical gas analyzer
JP3175024B2 (en) Method and apparatus for measuring dissolved gas