JPS63262545A - Method for measuring bulk density of coal - Google Patents

Method for measuring bulk density of coal

Info

Publication number
JPS63262545A
JPS63262545A JP9805087A JP9805087A JPS63262545A JP S63262545 A JPS63262545 A JP S63262545A JP 9805087 A JP9805087 A JP 9805087A JP 9805087 A JP9805087 A JP 9805087A JP S63262545 A JPS63262545 A JP S63262545A
Authority
JP
Japan
Prior art keywords
coal
bulk density
chamber
radioactive rays
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9805087A
Other languages
Japanese (ja)
Inventor
Takuji Miyake
三宅 拓二
Terumi Uchino
内野 照実
Hiroshi Matsuo
博 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIHAKAI KENSA KK
Kansai Coke and Chemicals Co Ltd
Original Assignee
HIHAKAI KENSA KK
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIHAKAI KENSA KK, Kansai Coke and Chemicals Co Ltd filed Critical HIHAKAI KENSA KK
Priority to JP9805087A priority Critical patent/JPS63262545A/en
Publication of JPS63262545A publication Critical patent/JPS63262545A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To rapidly and accurately calculate the bulk density of the coal being filled in chamber and the distribution thereof, by irradiating a coal bed with the radioactive rays from the radiation source arranged to the outer wall of the chamber and detecting the radioactive rays transmitted through the coal bed. CONSTITUTION:The radioactive rays emitted from the radiation source 3 arranged in the vicinity of one outer wall of a chamber 1 are allowed to irradiate a coal bed 2 while the transmitted radioactive rays are caught by a detector 4. The scintillator in the detector 4 emits light in a visible region when a ionizing radiation passes therethrough and an electric pulse is inputted to a measuring device 5 through a photomultiplier tube. The intensity I of the radioactive rays after the transmission through the coal bed 2 becomes weak as the bulk density of coal becomes larger and becomes strong as the bulk density of coal becomes smaller. Therefore, when a calibration curve showing the relation between the index showing the intensity or attenuation ratio of the transmitted radioactive rays and the bulk density of coal is preliminarily prepared, the bulk density of coal can be easily calculated on the basis of the measures value by the measuring device 5.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、室内に充填されている石炭の嵩密度およびそ
の分布を、放射線を利用して非接触的に求める方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for non-contactly determining the bulk density and distribution of coal packed in a room using radiation.

従来の技術 ]−クス炉内のコークスの品質は、原料炭配合条件、乾
留条件の影響を受けるほか、コークス炉の炭化室に装入
された石炭の嵩密度の影響を受けることが指摘されてお
り、炭化室あるいは貯蔵室に充填されている石炭の嵩密
度を知ることはコークスの品質管理上重要である。
[Prior art] - It has been pointed out that the quality of coke in a coke oven is affected not only by the coking coal blending conditions and carbonization conditions, but also by the bulk density of the coal charged into the carbonization chamber of the coke oven. Therefore, knowing the bulk density of the coal packed in the carbonization chamber or storage chamber is important for quality control of coke.

石炭嵩密度(およびその分布)の測定方法については、
「東社豊丞1、第45巻第472号、551〜552頁
(1966年)」に報告がある。
For information on how to measure coal bulk density (and its distribution),
There is a report in "Tosha Toyojo 1, Vol. 45, No. 472, pp. 551-552 (1966)".

この文献に記載の石炭嵩密度の測定方法は、側面に多数
のサンプリング孔を設けた室に石炭を装入し、そのサン
プリング孔からサンプラーにより石炭をサンプリングす
る方法に関するものである。
The method for measuring the bulk density of coal described in this document relates to a method in which coal is charged into a chamber provided with a large number of sampling holes on the side, and the coal is sampled from the sampling holes using a sampler.

すなわち、まずサンプリング孔の一方の蓋にサンプラー
としてのシリンダーを密着し、蓋を開いてシリンダーを
室内部に挿入して反対側の壁にぶつかるまで前進させ、
ついでサンプリング孔の反対側の蓋を開き、シリンダー
に詰まっている石炭試料をピストンにより押し出す。押
し出した試料を秤量し、その重量とサンプラー容積とか
ら石炭嵩密度を求める。
That is, first, a cylinder as a sampler is tightly attached to one lid of the sampling hole, the lid is opened, the cylinder is inserted into the chamber, and the cylinder is advanced until it hits the wall on the opposite side.
Next, the lid on the opposite side of the sampling hole is opened, and the piston pushes out the coal sample stuck in the cylinder. The extruded sample is weighed, and the coal bulk density is determined from its weight and sampler volume.

この操作を各サンプリング孔について行えば、室内各部
の嵩密度の位置的変化、つまり室内の石炭嵩密度分布を
求めることができる。
By performing this operation for each sampling hole, it is possible to determine the positional change in bulk density in each part of the room, that is, the coal bulk density distribution in the room.

発明が解決しようとする問題点 しかしながら、上記の文献に記載の石炭嵩密度の測定方
法は、次に述べるような問題点を有していた。
Problems to be Solved by the Invention However, the method for measuring coal bulk density described in the above-mentioned document had the following problems.

■ 水分含有率が5%以下の低水分度には適用できない
■ Not applicable to low moisture content below 5%.

低水分度は流動しやすいため、サンプリング孔の蓋にシ
リンダーを密着後その蓋を取り外すと、そこに隙間がで
きて石炭試料が外に流れ出ることがある。また、シリン
ダーの中の試料をピストンで押し出す際、シリンダー内
壁とピストンとの間隙に試料籾が入り込み、ピストン運
動が不可能になることがある。
Low moisture content tends to flow easily, so if the cylinder is tightly attached to the lid of the sampling hole and the lid is removed, a gap may be created and the coal sample may flow out. Furthermore, when pushing out the sample in the cylinder with the piston, the sample rice may get into the gap between the inner wall of the cylinder and the piston, making piston movement impossible.

■ 粉炭が圧縮された状態でサンプリングされる。■ Powdered coal is sampled in a compressed state.

室に充填されている石炭層にシリンダーを押し込んでい
くものであるため、シリンダーの先端により石炭を圧縮
するおそれがある。石炭の圧縮は、嵩密度の測定誤差に
つながる。
Since the cylinder is pushed into the coal seam filling the chamber, there is a risk that the tip of the cylinder may compress the coal. Compression of coal leads to bulk density measurement errors.

■ 粉炭に成型炭を混入した場合には適用できない。■ Cannot be applied when molten coal is mixed with powdered coal.

石炭が成型炭を含む場合は、シリンダーの前進が粒径の
大きい成型炭に阻まれたり、あるいは成型炭が■の場合
と同様に粉炭を圧縮したりすることがある。
If the coal contains briquettes, the advance of the cylinder may be blocked by the briquettes with large particle sizes, or the briquettes may compress the powdered coal as in case (2).

■ 多点測定に制限がある。■ There are restrictions on multi-point measurements.

この方法によっては、当然ながら、サンプリング孔のあ
る個所しか嵩密度が測定できない。嵩密度分布測定の信
頼性を高めるにはできるだけサンプリング孔を多くしな
ければならないが、サンプリング孔を多くすることは、
室の強度の点でも、サンプリングの手間の点でもおのず
と限度があるので、測定の信頼性に限界がある。
Naturally, with this method, the bulk density can only be measured at locations where there are sampling holes. In order to increase the reliability of bulk density distribution measurement, it is necessary to increase the number of sampling holes as much as possible.
There are limits to the reliability of measurements, both in terms of the strength of the chamber and the amount of time required for sampling.

■ 測定に多大の工数と時間を要する。■ Measurement requires a lot of man-hours and time.

多数のサンプリング孔の一つずつにシリンダーを挿入し
てサンプリングを行い、試料の重量を測定するものであ
るため、測定に多大の工数と時間を要する。また測定の
自動化が困難である。
Since a cylinder is inserted into each of a large number of sampling holes to perform sampling and measure the weight of the sample, the measurement requires a large amount of man-hours and time. Furthermore, it is difficult to automate the measurement.

■ 設備費が高い。■ Equipment costs are high.

室にサンプリング孔を設けたり、特殊なサンプリング装
置を要するため、嵩密度測定のための設備費が高くなる
Since a sampling hole is provided in the chamber and a special sampling device is required, the equipment cost for bulk density measurement increases.

本発明は、上述のような種々の不利を有するサンプリン
グ法によることなく、室に充填されている石炭の嵩密度
およびその分布を迅速かつ正確に求めることのできる有
利な方法を提供しようとするものである。
The present invention aims to provide an advantageous method capable of quickly and accurately determining the bulk density of coal packed in a chamber and its distribution without using the sampling method which has various disadvantages as described above. It is.

問題点を解決するための手段 本発明の石炭嵩密度の測定方法は、石炭が充填されてい
る室の外壁に放射線照射のための線源を配置すると共に
、これとは反対側の外壁の対応する部位に検出器を配置
し、線源から放射され、石炭層を透過した放射線を検出
器で捉えたときの情報に基いて1石炭高密度を求めるこ
とを特徴とするものである。
Means for Solving the Problems The coal bulk density measuring method of the present invention involves arranging a radiation source for radiation irradiation on the outer wall of a chamber filled with coal, and arranging a radiation source on the outer wall on the opposite side. The method is characterized in that a detector is placed at a location where the coal is exposed, and the one-coal density is determined based on the information obtained when the detector captures the radiation emitted from the radiation source and transmitted through the coal seam.

放射線を利用した測定方法は、板厚、内部欠陥、内部応
力、材料成分・組織などの検査または測定の目的に応用
されているが、放射線を利用して石炭の嵩密度を求める
ことは未だ知られていない技術であると信する。
Measurement methods using radiation are applied to inspect or measure plate thickness, internal defects, internal stress, material composition and structure, etc., but it is still unknown to use radiation to determine the bulk density of coal. I believe that this is a technology that has not been developed yet.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明においては、石炭は室に充填した形態で測定に供
せられる。室としては、炭化室、モデル炭化室、貯蔵庫
、ホッパー、容器など任意の大きさの室があげられる。
In the present invention, coal is filled in a chamber and subjected to measurement. Examples of the chamber include a carbonization chamber, a model carbonization chamber, a storage room, a hopper, a container, and other rooms of arbitrary size.

室の材質は、金属(鉄など)、木材、耐火物など放射線
を透過するものであれば特に限定されない。
The material of the chamber is not particularly limited as long as it transmits radiation, such as metal (such as iron), wood, or refractory material.

放射線源としては、放射性同位体を用いるものと電気的
発生装置があげられる。殊に1、γ線を放射するもの、
たとえば、”’Ra 、 Co 、  l37Csなど
を線源として用いることが好ましい。
Radiation sources include those using radioactive isotopes and electrical generators. In particular, 1. Those that emit gamma rays,
For example, it is preferable to use Ra, Co, 137Cs, etc. as a radiation source.

線源は、たとえば鉛製の線源貯蔵容器に入れた状態で取
り扱われる。
The source is handled in a source storage container made of lead, for example.

線源は石炭が充填されている室の外壁に配置され、一方
これとは反対側の外壁の対応する部位に検出器を配置す
る。
The radiation source is placed on the outer wall of the chamber filled with coal, while the detector is placed at a corresponding location on the opposite outer wall.

線源から放射され、石炭層を透過した放射線は、検出器
で捉えられるが、この際の情報、たとえば透過後の放射
線の強さまたは減衰比を測定することにより、目的とす
る石炭嵩密度が求められる。
The radiation emitted from the radiation source and transmitted through the coal seam is captured by a detector, and by measuring the information at this time, such as the intensity or attenuation ratio of the radiation after passing through, the target coal bulk density can be determined. Desired.

線源と検出器とを適当な手段により室の外壁の沿って順
次移動して測定を行えば、室内の石炭嵩密度分布を容易
に求めることができる。
By sequentially moving the radiation source and detector along the outer wall of the chamber and making measurements using appropriate means, the coal bulk density distribution within the chamber can be easily determined.

第1図は、本発明の方法に使用する測定装置の一例を模
式的に示した説明図である。
FIG. 1 is an explanatory diagram schematically showing an example of a measuring device used in the method of the present invention.

(1)は室であり、石炭(2)が充填されている。(1
a)は該室(1)の一方の外壁、(1b)は他方の外壁
である。
(1) is a chamber filled with coal (2). (1
a) is one outer wall of the chamber (1), and (1b) is the other outer wall.

(3)は室(1)の一方の外壁近くに配置した線源であ
り、(4)は室(1)の他方の外壁(lb)に配置した
検出器である。
(3) is a radiation source placed near one outer wall of the chamber (1), and (4) is a detector placed on the other outer wall (lb) of the chamber (1).

(5)は計測器、(6)はマイクロコンピュータ−であ
る。
(5) is a measuring instrument, and (6) is a microcomputer.

線源(3)および検出器(4)の移動機構は図示を省略
しである。
The moving mechanisms for the radiation source (3) and the detector (4) are not shown.

測定精度、測定時間は、線源の強さを選択することによ
り、適宜に設定しうる。
The measurement accuracy and measurement time can be appropriately set by selecting the intensity of the radiation source.

作   用 放射線は、物質を透過する際に、放射線のエネルギーと
物質の原子番号および密度により定まった一定の割合で
減衰する。この一定の割合を質量吸収係数に工で表わす
と、一般に次式が成立する。
When acting radiation passes through a substance, it is attenuated at a fixed rate determined by the energy of the radiation and the atomic number and density of the substance. When this constant ratio is expressed in terms of mass absorption coefficient, the following formula generally holds true.

I=Io  B*exp  (−p−psy  ・ p
  ・ t)■ =物質透過後の放射線の強さ IO:物質透過前の放射線の強さ B :再生係数 ルよ :質量吸収係数(cm /g) ρ :物質の密度(g/Cm’) t :放射線の透過距離(cm) tは測定位置が決まれば一定となる。JL、およびBは
、既知密度および測定時のカウントにより検量線を作成
して求められる。
I=Io B*exp (-p-psy ・p
・ t) ■ = Intensity of radiation after passing through the material IO: Intensity of radiation before passing through the material B: Reproduction coefficient R: Mass absorption coefficient (cm/g) ρ: Density of the material (g/Cm') t : Radiation transmission distance (cm) t becomes constant once the measurement position is determined. JL and B are determined by creating a calibration curve using known densities and counts during measurement.

従って、透過後の放射線の強さまたはその減衰比(Io
−I)/IOを測定すれば、物質の密度ρを知ることが
できる。
Therefore, the intensity of the radiation after transmission or its attenuation ratio (Io
By measuring -I)/IO, the density ρ of the substance can be determined.

第1図の測定装置においては、線源(3)より放射され
る放射線の透過後の放射線を検出器(4)で捉えるよう
にしである。検出器(3)内部のシンチレータ−は、電
離放射線が通過すると、電離や励起により与えられたエ
ネルギーの一部が熱運動のエネルギーとならず、可視領
域の光の放出に変換される。その光は微弱なので、光電
面を備えた光電子増倍管で光を光電子に変換し、さらに
それを電極間で何段にも増幅して、大きな電気パルスに
変え、計測器(5)で測定される。
In the measuring device shown in FIG. 1, the radiation emitted from the radiation source (3) is detected by the detector (4) after the radiation passes through the radiation source. When ionizing radiation passes through the scintillator inside the detector (3), a part of the energy given by ionization or excitation is not turned into energy of thermal motion, but is converted into emission of light in the visible region. Since the light is weak, a photomultiplier tube equipped with a photocathode converts the light into photoelectrons, which is then amplified in multiple stages between electrodes to turn it into a large electrical pulse, which is then measured by a measuring instrument (5). be done.

石炭(2)層通過後の放射線の強さ工は、石炭嵩密度が
大きいほど弱く、石炭嵩密度が小さいほど強い。減衰比
(Io−I)/Ioは、石炭嵩密度が大きいほど大きく
、石炭嵩密度が小さいほど小さい、。
The intensity of radiation after passing through the coal (2) layer is weaker as the bulk density of the coal increases, and stronger as the bulk density of the coal is lower. The damping ratio (Io-I)/Io increases as the coal bulk density increases, and decreases as the coal bulk density decreases.

従って、透過放射線の強さまたは減衰比を示す指標(た
とえば透過カウント値)と石炭嵩密度との関係を示す検
量線を予め作成しておけば、計測器(5)による測定値
に基いて容易に石炭嵩密度を求めることができる。
Therefore, if a calibration curve showing the relationship between the intensity or attenuation ratio of the transmitted radiation (for example, the transmission count value) and the coal bulk density is created in advance, it is easy to calculate the The bulk density of the coal can be determined.

また、線源(3)の位置と検出器(4)の位置を変化さ
せれば、その位置における室内の石炭嵩密度が判明する
ので、室全体の石炭嵩密度の分布を容易に把握すること
ができる。
Furthermore, by changing the position of the radiation source (3) and the position of the detector (4), the bulk density of coal in the room at that position can be determined, making it easy to understand the distribution of bulk density of coal in the entire room. Can be done.

実  施  例 次に実施例をあげて本発明をさらに説明する。Example Next, the present invention will be further explained with reference to Examples.

実施例1 壁間の山中400mmの鉄製のモデル炭化室に、ホッパ
ーから、水分率8.4%、平均粒径1.8mmの石炭を
約4000mmの高さまで装入し、ついで装入炭上面を
均した。
Example 1 Coal with a moisture content of 8.4% and an average particle size of 1.8 mm was charged from a hopper to a height of about 4000 mm into a model carbonization chamber made of iron with a height of 400 mm in the mountains between the walls, and then the top surface of the charged coal was Evened out.

第1図に示した装置を用いて、下記の条件で石炭嵩密度
の測定を行った。
Using the apparatus shown in FIG. 1, coal bulk density was measured under the following conditions.

線源   :′37C3、loogCi測定時間 :3
m1n 嵩密度精度:  5X 10  g/cm3このときの
γ線透過カウント値と予めサンプリング法により求めた
石炭嵩密度とをプロットすることにより、検量線を作成
した。第2図にこの検量線(曲線A)を示す。
Radiation source: '37C3, loogCi measurement time: 3
m1n Bulk density accuracy: 5X 10 g/cm3 A calibration curve was created by plotting the γ-ray transmission count value at this time and the coal bulk density determined in advance by the sampling method. FIG. 2 shows this calibration curve (curve A).

第2図から、γ線透過カウント値を測定すれば、直ちに
嵩密度が求められることあくわかる。
From FIG. 2, it is clear that the bulk density can be determined immediately by measuring the gamma ray transmission count value.

実施例2 水分率3.8%、平均粒径1.8mmの石炭を用いたほ
かは実施例1と同様の実験を行って検量線を作成した。
Example 2 A calibration curve was created by carrying out the same experiment as in Example 1, except that coal with a moisture content of 3.8% and an average particle size of 1.8 mm was used.

第2図にこの検量線(曲1NIB)を示す。FIG. 2 shows this calibration curve (curve 1NIB).

$2図から、γ線透過カウント値を測定すれば、直ちに
嵩密度が求められることがわかる。
From the $2 diagram, it can be seen that the bulk density can be immediately determined by measuring the γ-ray transmission count value.

実施例3 モデル炭化室内の水分率8.4%、平均粒径1.8mm
の石炭のγ線透過線上に嵩密度が既知の成型炭(径35
mm)を1個→2個→3個と順次増していき、γ線透過
カウント値を測定した。
Example 3 Moisture content in the model carbonization chamber: 8.4%, average particle size: 1.8 mm
Molded coal (diameter 35
mm) was increased sequentially from 1 piece → 2 pieces → 3 pieces, and the gamma ray transmission count value was measured.

そのγ線透過カウント値より求めた嵩密度(白丸で表示
)と計算によるそれ(黒丸で表示)とは、第3図に示し
たように良く一致した。
As shown in FIG. 3, the bulk density determined from the γ-ray transmission count value (indicated by white circles) and the calculated value (indicated by black circles) were in good agreement.

第3図の結果は、成型炭が混在している場合でも、本発
明による測定が可能であることを示している。
The results shown in FIG. 3 show that measurement according to the present invention is possible even when briquette coal is present.

実施例4 水分率8.4%、平均粒径1.8mmの石炭にそれぞれ
10%、15%、30%の成型炭を配合したものを用い
たほかは実施例1と同様の実験を行ったところ、成型炭
は均一に分布しないので、成型炭が測定γ線上にあるか
ないかで測定値は異なった。測定点を増すことにより、
成型炭の分布状況が判明した。
Example 4 The same experiment as in Example 1 was conducted except that coal with a moisture content of 8.4% and an average particle size of 1.8 mm was blended with 10%, 15%, and 30% briquette coal, respectively. However, since the briquettes are not uniformly distributed, the measured values differed depending on whether or not the briquettes were on the measurement gamma ray. By increasing the number of measurement points,
The distribution of briquette coal was clarified.

発明の効果 本発明によれば、次に列挙するようなすぐれた効果が奏
される。
Effects of the Invention According to the present invention, the following excellent effects can be achieved.

工2 石炭の嵩密度およびその分布を正確かつ迅速に知ること
ができる。測定値の信頼性も高い。従って、コークス品
質の管理が容易となり、コークス品質の向上に貢献する
Technique 2 The bulk density of coal and its distribution can be known accurately and quickly. The reliability of the measured values is also high. Therefore, coke quality management becomes easy and contributes to improvement of coke quality.

非接触的な測定法であるので、従来のサンプリング法に
おける機械的サンプリングに伴なうトラブルが完全に解
消する。
Since it is a non-contact measurement method, the troubles associated with mechanical sampling in conventional sampling methods are completely eliminated.

水分含有率が5%以下の低水分度であっても、何らの支
障なく嵩密度の測定ができる。
Even if the water content is as low as 5% or less, the bulk density can be measured without any problems.

成型炭を混入した場合、その分布状況が判明する。If briquette coal is mixed in, its distribution will be known.

室に充填された石炭の任意の位置における嵩密度が測定
できる。
The bulk density of the coal filled in the chamber can be measured at any location.

線源と検出器の移動を自動化し、計測値をマイクロコン
ピュータ−で処理すれば、室内の石炭嵩密度分布を自動
的に出力できる。
By automating the movement of the radiation source and detector and processing the measured values with a microcomputer, the indoor coal bulk density distribution can be automatically output.

測定に要する工数および費用が低減し、省力化、測定コ
ストの点で有利となる。
The number of man-hours and costs required for measurement are reduced, which is advantageous in terms of labor savings and measurement costs.

装置費用も、従来のサンプリング法のように特別の室を
設ける必要がなく、またサンプリング手段を要しないた
め、むしろ低度となる。
The cost of the equipment is also rather low because there is no need to provide a special chamber or sampling means unlike in conventional sampling methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の方法に使用する測定装置の一例を模
式的に示した説明図である。 第2図は、γ線透過カウント値と予めサンプリング法に
より求めた石炭嵩密度とをプロットすることにより作成
した検量線である。 第3図は、成型炭が混在している場合の成型炭の数と嵩
密度との関係を示したグラフである。 (1) ・・・室、(la)−・外壁、(lb)・・・
外壁、(2)・・・石炭、(3)・・・線源、(4)・
・・検出器、(5)・・・計測器、(6)・・・マイク
ロコンピュータ−特許出願人  関西熱化学株式会社 特許出願人  非破壊検査株式会社 第1図 第2図
FIG. 1 is an explanatory diagram schematically showing an example of a measuring device used in the method of the present invention. FIG. 2 is a calibration curve created by plotting the γ-ray transmission count value and the coal bulk density determined in advance by a sampling method. FIG. 3 is a graph showing the relationship between the number of briquettes and bulk density when briquettes are mixed. (1) ...room, (la)--outer wall, (lb)...
Outer wall, (2)...coal, (3)...ray source, (4)...
...Detector, (5)...Measuring instrument, (6)...Microcomputer - Patent applicant Kansai Thermal Chemical Co., Ltd. Patent applicant Nondestructive Testing Co., Ltd. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1、石炭が充填されている室の外壁に放射線照射のため
の線源を配置すると共に、これとは反対側の外壁の対応
する部位に検出器を配置し、線源から放射され、石炭層
を透過した放射線を検出器で捉えたときの情報に基いて
、石炭嵩密度を求めることを特徴とする石炭嵩密度の測
定方法。 2、情報が、透過後の放射線の強さまたは減衰比である
特許請求の範囲第1項記載の測定方法。 3、線源と検出器とを順次移動して種々の位置における
嵩密度を求め、もって室内の石炭嵩密度分布を求めるこ
とを特徴とする特許請求の範囲第1項記載の測定方法。
[Claims] 1. A radiation source for radiation irradiation is placed on the outer wall of the chamber filled with coal, and a detector is placed on the corresponding part of the outer wall on the opposite side. A coal bulk density measuring method characterized by determining the coal bulk density based on information obtained when radiation emitted from the coal seam and transmitted through the coal seam is captured by a detector. 2. The measuring method according to claim 1, wherein the information is the intensity or attenuation ratio of the radiation after passing through it. 3. The measuring method according to claim 1, characterized in that the bulk density at various positions is determined by sequentially moving the radiation source and the detector, thereby determining the coal bulk density distribution in the room.
JP9805087A 1987-04-21 1987-04-21 Method for measuring bulk density of coal Pending JPS63262545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9805087A JPS63262545A (en) 1987-04-21 1987-04-21 Method for measuring bulk density of coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9805087A JPS63262545A (en) 1987-04-21 1987-04-21 Method for measuring bulk density of coal

Publications (1)

Publication Number Publication Date
JPS63262545A true JPS63262545A (en) 1988-10-28

Family

ID=14209376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9805087A Pending JPS63262545A (en) 1987-04-21 1987-04-21 Method for measuring bulk density of coal

Country Status (1)

Country Link
JP (1) JPS63262545A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019060691A (en) * 2017-09-26 2019-04-18 株式会社神戸製鋼所 Intra-silo temperature measurement system and intra-silo temperature measurement method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243545A (en) * 1985-08-21 1987-02-25 Nippon Steel Corp Bulk density measurement for coal, coke or the like

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243545A (en) * 1985-08-21 1987-02-25 Nippon Steel Corp Bulk density measurement for coal, coke or the like

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019060691A (en) * 2017-09-26 2019-04-18 株式会社神戸製鋼所 Intra-silo temperature measurement system and intra-silo temperature measurement method

Similar Documents

Publication Publication Date Title
Gardner Water content
US3124679A (en) Nuclear determination of
US5258622A (en) Apparatus and method for measuring physical characteristics of materials
US7151267B2 (en) Methods and devices for measuring the activity of a radioisotope
JPS5853732B2 (en) Coal analysis method
US4415804A (en) Annihilation radiation analysis
Nargolwalla et al. Technique for the evaluation of systematic errors in the activation analysis for oxygen with 14-Mev. neutrons
JP2002503342A (en) Method and apparatus for measuring the relative ratio of plutonium to uranium in an object
EP3811066B1 (en) System and method for moisture measurement
JPS63262545A (en) Method for measuring bulk density of coal
US3626183A (en) Radioisotope analytical instrument for cement analysis of concrete
US4283625A (en) X-Ray fluorescence analysis
CN114740520A (en) Radioactive inert gas activity measuring device and method
US3911271A (en) Radioisotope gauge for determining cement content of concrete
CN108693551B (en) Probe and device for monitoring grade of uranium ore
Hoag et al. Polychromatic X-ray attenuation characteristics and wood densitometry applications
JPH04194772A (en) Radiation measuring device
Perrier et al. Distribution of thermal neutrons in a soil-water system
US5049351A (en) Method and apparatus for determining enrichment of uranium dioxide powder
US20050195932A1 (en) Method and device for promptly conducting non-destructive chemical analysis of test objects
JPS5977346A (en) Analyzing apparatus for element composition of substance
RU2629371C1 (en) Device for continuous controlling enrichment and content of gadolinium oxide in nuclear fuel moulding powder when filling it in fuel tablet pressing device
Curzio Particle size determination by beta-ray absorption
SU1658028A1 (en) Method for measuring ground sample density by using pipe sampler
CA1063258A (en) Determining the concentration of sulphur in coal