JPS63262531A - Temperature sensor - Google Patents

Temperature sensor

Info

Publication number
JPS63262531A
JPS63262531A JP9720287A JP9720287A JPS63262531A JP S63262531 A JPS63262531 A JP S63262531A JP 9720287 A JP9720287 A JP 9720287A JP 9720287 A JP9720287 A JP 9720287A JP S63262531 A JPS63262531 A JP S63262531A
Authority
JP
Japan
Prior art keywords
impact
temperature
piezoelectric element
light
coil spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9720287A
Other languages
Japanese (ja)
Inventor
Toshio Taguchi
田口 俊夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yashima Denki Co Ltd
Original Assignee
Yashima Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yashima Denki Co Ltd filed Critical Yashima Denki Co Ltd
Priority to JP9720287A priority Critical patent/JPS63262531A/en
Publication of JPS63262531A publication Critical patent/JPS63262531A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To inform a time point of arrival at a prescribed temperature without using any power source, by disposing an impact adding means correspondingly to a piezoelectric element provided with a light-emitting element and a light- transmitting means and by driving this impact adding means on detection of a set temperature. CONSTITUTION:An impact adding means 2 giving an impact is disposed correspondingly to a piezoelectric element 1 provided with a light-emitting element 12 and a light-transmitting means 13. When the external atmosphere of an impact driving means 3 reaches a prescribed temperature, the impact driving means 3 makes the impact adding means 2 operate to give an impact to the piezoelectric element 1. Thereby the light-emitting element 12 of the piezoelectric element 1 emits a light, and this light is transmitted to a temperature monitoring room by the light-transmitting means 13. The impact driving means 3 comprises a shape memory coil spring 31.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、圧電素子を使用した無電源の温度センサで
あって、例えば温度変化信号を遠隔地に対し簡易に伝送
し1■る温度センサに関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention is an unpowered temperature sensor using a piezoelectric element, which can easily transmit temperature change signals to a remote location, for example, to measure temperature. Regarding sensors.

(ロ)従来の技術 従来の温度センサには、サーミスタ、熱電対或いは測温
抵抗体等の種々構成のものが存在する。
(B) Prior Art Conventional temperature sensors include those of various configurations, such as a thermistor, thermocouple, or resistance temperature detector.

いずれの感温素子も温度を電気量に変換し、電気信号と
して取出すように構成された固体素子である。例えば、
サーミスタは半導体の電気伝導度の温度依存性を利用す
るもので、温度上昇に伴って半導体中の導電キャリアが
増大し、電気抵抗が減少する性質を利用したガラスサー
ミスタ、或いは結晶転移に伴い電気抵抗が大きく変化す
る性質を利用した正特性サーミスタ等が使用されている
Each temperature sensing element is a solid state element configured to convert temperature into an electrical quantity and extract it as an electrical signal. for example,
Thermistors utilize the temperature dependence of the electrical conductivity of semiconductors, such as glass thermistors that utilize the property that conductive carriers in the semiconductor increase and electrical resistance decreases as the temperature rises, or electrical resistance that increases due to crystal transition. Positive temperature coefficient thermistors and the like are used, which take advantage of the property that .

いずれも、感温材料の物質状態の変化を直接的、或いは
間接的に電気量に変換し、温度に対応した電気信号を得
る方式である。
All of these methods directly or indirectly convert changes in the physical state of a temperature-sensitive material into electrical quantities to obtain electrical signals corresponding to temperature.

(ハ)発明が解決しようとする問題点 従来の温度センサは、いずれも電気回路系であり電源が
必要であった。このため、商用電源や電池電源に対しリ
ード線を介して感温素子を接続しなければならず、回路
構成が複雑となり製品原価高騰の一因をなしていた。ま
た、電源を必要とする関係上、防爆を要する環境下では
使用し得す、用途が限定される等の不利があった。
(c) Problems to be Solved by the Invention All conventional temperature sensors are based on electric circuits and require a power source. For this reason, the temperature sensing element must be connected to a commercial power source or a battery power source via a lead wire, which complicates the circuit configuration and contributes to a rise in product costs. In addition, because it requires a power source, it cannot be used in environments that require explosion protection, and its applications are limited.

この発明は、以上のような問題点を解消させ、無電源で
構成簡易、且つ多用途目的に使用し得る安全で安価な温
度センサを提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and provide a safe and inexpensive temperature sensor that requires no power supply, has a simple configuration, and can be used for multiple purposes.

(ニ)問題点を解決するための手段及び作用この目的を
達成させるために、この発明の温度センサは、次のよう
な構成としている。
(d) Means and operation for solving the problem In order to achieve this object, the temperature sensor of the present invention has the following configuration.

温度センサは、発光素子を備えた圧電素子と、この発光
素子に連?配備され発光を伝送する光伝送手段と、前記
圧電素子に衝撃を加える衝撃付加手段と、設定温度の検
出により上記衝撃付加手段を作動させる衝撃駆動手段と
から構成されている。
The temperature sensor consists of a piezoelectric element equipped with a light emitting element, and a piezoelectric element connected to this light emitting element. It is comprised of a light transmitting means that is provided and transmits light emission, an impact applying means that applies an impact to the piezoelectric element, and an impact driving means that operates the impact applying means by detecting a set temperature.

このような構成を有する温度センサでは、衝撃駆動手段
として、例えば形状記憶合金(Marmem合金)にて
形成したコイルハネが使用される。この形状記憶コイル
バネは、例えば予め高温和で形状(長さ形状)を記憶さ
せておき、常態において記憶形状(長さ形状)よりも長
い長さをもったコイルバネに弾性変形させである。そし
て、この常態長さのコイルハネの基部1をハウジングに
止着し、先端を圧電素子に対応して配置された衝撃付加
手段(圧電素子方向へハネ付勢され、先端部にハンマー
を備えた仮バネ)に連繋させる。つまり、コイルバネの
先端で板バネを復帰バネに抗して逆方向へ付勢させバネ
力を蓄積させる。この常態において、ハンマーと圧電素
子とは一定の間隔を開いて対向している。これにより、
コイルバネの外的雰囲気が所定温度(変態温度)に上昇
した時、コイルバネが瞬間的に長さの短い原状形状に復
帰し、板バネに対する付勢力を解除する。ここにおいて
、板バネの復帰バネ力でハンマーが圧電素子に衝突する
。この衝撃力で圧電素子の電極に電圧が発生し、電極に
接続している発光素子(発光ダイオード)が発光する。
In a temperature sensor having such a configuration, a coil spring made of, for example, a shape memory alloy (Marmem alloy) is used as the impact driving means. This shape memory coil spring has its shape (length shape) memorized in advance by high temperature heating, for example, and is elastically deformed into a coil spring having a length longer than the memorized shape (length shape) under normal conditions. The base 1 of this normal length coil spring is fixed to the housing, and the tip is placed in correspondence with the piezoelectric element with an impact applying means (the spring is biased toward the piezoelectric element, and the tip is equipped with a hammer). spring). That is, the tip of the coil spring urges the leaf spring in the opposite direction against the return spring to accumulate spring force. In this normal state, the hammer and the piezoelectric element face each other with a certain distance between them. This results in
When the external atmosphere of the coil spring rises to a predetermined temperature (transformation temperature), the coil spring instantaneously returns to its original shape with a shorter length, releasing the biasing force against the leaf spring. Here, the hammer collides with the piezoelectric element due to the return spring force of the leaf spring. This impact force generates a voltage across the electrodes of the piezoelectric element, and the light emitting element (light emitting diode) connected to the electrode emits light.

そして、この発光が光伝送手段(光ファイバ)により遠
隔地へ伝送され、温度変化した時点が報知される。
This light emission is then transmitted to a remote location by an optical transmission means (optical fiber), and the time point at which the temperature has changed is notified.

(ホ)実施例 第1図は、実施例温度センサの具体的な一実施例を示す
要部拡大正面図である。
(E) Embodiment FIG. 1 is an enlarged front view of main parts showing a specific embodiment of the embodiment temperature sensor.

温度センサは、発光素子12を備えた圧電素子1と、こ
の圧電素子1に対し衝撃力を与える衝撃付加手段2と、
この衝撃付加手段2を所定温度の検出により作動させる
衝撃駆動手段3とから構成される。
The temperature sensor includes a piezoelectric element 1 having a light emitting element 12, an impact applying means 2 that applies an impact force to the piezoelectric element 1,
The shock applying means 2 is comprised of an impact driving means 3 which is actuated by detecting a predetermined temperature.

温度センサは、熱応答性の良好な資材で形成さ′ れた
ハウジングケース(図示せず)に収納されている。
The temperature sensor is housed in a housing case (not shown) made of a material with good thermal responsiveness.

圧電素子1は、例えばBaTiO3,PbTiO3,P
b(Zr、Ti)03等の強誘電体が使用され、応力に
よって発生する電荷を利用するピエゾ電気素子を使用し
ている。
The piezoelectric element 1 is made of, for example, BaTiO3, PbTiO3, P
A ferroelectric material such as b(Zr, Ti)03 is used, and a piezoelectric element that utilizes electric charge generated by stress is used.

この圧電素子1は、ハウジングケースの壁面適所に貼着
されている。そして、この圧電素子1の電極にはリード
線11を介して発光素子(発光ダイオード)12が接続
してあり、この発光ダイオード12に光ファイバ13が
連繋配備しである。この光ファイバ13の先端部は、例
えば遠隔地の温度監視室に導入配備されている。
This piezoelectric element 1 is affixed to an appropriate location on the wall of the housing case. A light emitting element (light emitting diode) 12 is connected to the electrode of the piezoelectric element 1 via a lead wire 11, and an optical fiber 13 is connected to the light emitting diode 12. The tip of the optical fiber 13 is installed, for example, in a temperature monitoring room at a remote location.

前記衝撃付加手段2は、一定長さを有する金属製の板バ
ネ21と、この板バネ21の先端部上面に固着されたハ
ンマ一部22と、このハンマ一部22に対応する下面に
固着された復帰バネ23とから構成されている。板バネ
21は、基端部をハウジングケースの側壁適所に固着さ
れ、先端部(ハンマ一部22)が前記圧電素子1に対応
配置しである。そして、板バネ21は復帰ハネ23によ
り圧電素子1方向へ付勢されており、復帰バネ23の下
端部には′止めネジ24を止着しく第2図参照)、この
止めネジ24をハウジングケースに螺入させ、板バネ2
1の復帰バネ力を調整可能としている。
The impact applying means 2 includes a metal plate spring 21 having a certain length, a hammer part 22 fixed to the top surface of the tip of the plate spring 21, and a hammer part 22 fixed to the lower surface corresponding to the hammer part 22. and a return spring 23. The leaf spring 21 has its base end fixed to a proper position on the side wall of the housing case, and its tip end (hammer part 22) arranged to correspond to the piezoelectric element 1. The leaf spring 21 is urged toward the piezoelectric element 1 by a return spring 23, and a set screw 24 is fixed to the lower end of the return spring 23 (see Fig. 2). screw it into the plate spring 2
The return spring force of No. 1 is adjustable.

上記衝撃駆動手段3は、例えばTi−Ni、 CU−Z
n、I n −T I等の形状記憶合金(Marmem
合金)にて形成したコイルバネ31が使用されている。
The impact driving means 3 is made of, for example, Ti-Ni, CU-Z.
Shape memory alloys (Marmem
A coil spring 31 made of alloy) is used.

この形状記憶コイルバネ31は、例えば予め高温和で形
状(長さ形状)を記憶させておき、常態において記憶形
状(長さ形状)よりも長い長さをもったコイルバネに弾
性変形させて形成しである。そして、この常態長さのコ
イルバネ31の基端をハウジングに止着し、先端部に備
えた平板状押付は部材32を、衝撃手段2の板バネ21
先端部に当接させて配置している。つまり、コイルバネ
31の常態長さにおいて、板バネ21先端部を下方へ(
復帰バネ23方向へ)撓ませ、ハンマー22と圧電素子
1との間に一定間隔が開くように設定し、板バネ21に
復帰ハネ力を蓄積させている。
The shape memory coil spring 31 can be formed by, for example, memorizing the shape (length shape) in advance by high temperature heating, and elastically deforming the coil spring to have a length longer than the memorized shape (length shape) under normal conditions. be. Then, the base end of the coil spring 31 having the normal length is fixed to the housing, and the plate-like pressing member 32 provided at the tip end is connected to the plate spring 21 of the impact means 2.
It is placed in contact with the tip. In other words, at the normal length of the coil spring 31, the tip of the leaf spring 21 is moved downward (
The hammer 22 is bent (in the direction of the return spring 23), and a certain distance is set between the hammer 22 and the piezoelectric element 1, and a return spring force is accumulated in the leaf spring 21.

実施例の形状記憶コイルハネ31は、一方向記憶のもの
(高温相における形状ののを記憶し、変態温度で記憶形
状に復帰するもの)であるが、実施に際しては、二方向
記憶のもの(高温相における形状のみならず、例えば室
温で変形させられた形状の一部も記憶し、変態温度で高
温相の形状に完全に戻り、且つ冷却によって室温におけ
る形状に復帰する、所謂部分的可逆形状記憶のもの)を
採用しても良い。また、一方向記憶のコイルバネ31を
二つ使用し、−・方(第1のコイルバネ)が温度上昇で
短尺に復帰し、他方(第2のコイルバネ)が室温で長尺
に復帰するように設定したものを採用しても良い。
The shape memory coil spring 31 of the embodiment has one-way memory (memorizes the shape in the high temperature phase and returns to the memorized shape at the transformation temperature), but in practice, it has two-way memory (memorizes the shape in the high temperature phase) So-called partial reversible shape memory, which remembers not only the shape in the phase, but also a part of the shape deformed at room temperature, and completely returns to the shape of the high temperature phase at the transformation temperature, and returns to the shape at room temperature upon cooling. ) may be adopted. In addition, two coil springs 31 with one-way memory are used, and the one (first coil spring) is set to return to a short length when the temperature rises, and the other (second coil spring) is set to return to a long length at room temperature. You may adopt the one that was created.

更に、衝撃駆動手段3は、形状記憶コイルバネに限らず
、例えば二つの熱膨張率が異なる異種金属片を接合した
バイメタル板を使用し、温度の変化でこの合板を湾曲さ
せ、衝撃付加手段2を圧電素子1に対し衝突させる構造
としても良い。
Furthermore, the impact driving means 3 is not limited to a shape memory coil spring; for example, a bimetal plate made by bonding two pieces of different metals with different coefficients of thermal expansion is used, and the impact applying means 2 is bent by bending this plywood due to a change in temperature. It is also possible to have a structure in which it collides with the piezoelectric element 1.

このような構成を有する温度センサては、常態において
、第1図で示すように圧電素子1とハンマー22とは、
一定間隔を開いて対向しており、板バネ21は形状記憶
コイルバネ31の押圧力で、復帰バネ力が蓄積されてい
る。今、形状記憶コイルバネ3Iの外的雰囲気が変態温
度(所定温度)にまで上昇したとすると、コイルバネ3
1が瞬間的に縮小し、長さの短い原状形状に復帰する。
In a temperature sensor having such a configuration, under normal conditions, the piezoelectric element 1 and the hammer 22 are arranged as shown in FIG.
They face each other at a constant interval, and the leaf spring 21 has accumulated return spring force due to the pressing force of the shape memory coil spring 31. Now, if the external atmosphere of the shape memory coil spring 3I rises to the transformation temperature (predetermined temperature), the coil spring 3I
1 momentarily shrinks and returns to its original shape with a shorter length.

この時、板バネ21に対する付勢力が解除され、板バネ
21の復帰バネ力でハンマー22が圧電素子1に衝突す
る(第2図参照)。この衝撃力で圧電素子1の電極に電
圧が発生し、発光ダイオード12が点灯する。そして、
この発光が光ファイバ13によって温度監視室に伝送さ
れ、温度変化時点が報知される。
At this time, the urging force on the leaf spring 21 is released, and the hammer 22 collides with the piezoelectric element 1 by the return spring force of the leaf spring 21 (see FIG. 2). This impact force generates a voltage across the electrodes of the piezoelectric element 1, and the light emitting diode 12 lights up. and,
This light emission is transmitted to the temperature monitoring room through the optical fiber 13, and the time point of temperature change is notified.

第3図は、温度センサの他の実施例を示す断面図である
FIG. 3 is a sectional view showing another embodiment of the temperature sensor.

先の実施例では、変態温度(所定温度)になった時点で
、形状記憶コイルバネ31が縮小し、衝撃付加手段2を
駆動させる例を示したが、この実施例では変態温度にな
った時点でコイルハネ31が伸張し、衝撃付加手段2を
作動させるように設定しである。
In the previous embodiment, when the transformation temperature (predetermined temperature) is reached, the shape memory coil spring 31 is contracted to drive the impact applying means 2, but in this embodiment, when the transformation temperature is reached, The coil spring 31 is set to expand and the impact applying means 2 is activated.

温度センサは、一端部を開口した有底筒状の外ケース4
1の底部に、セラミック圧電素子1を貼着し、この外ケ
ース41の筒内部にハンマケース42が摺動自在に挿入
されている。そして、このハンマーケース42は復帰バ
ネ43により、簡閲口側(後述する形状記憶コイルバネ
31を備えた外ケースキャンプ33方向)へ付勢されて
いる。
The temperature sensor has a bottomed cylindrical outer case 4 with an open end.
The ceramic piezoelectric element 1 is adhered to the bottom of the outer case 41, and a hammer case 42 is slidably inserted into the cylinder of the outer case 41. This hammer case 42 is urged by a return spring 43 toward the access port side (towards an outer case camp 33 equipped with a shape memory coil spring 31, which will be described later).

また、ハンマーケース42には棒状ハンマー44が進退
自在に支持されている。つまり、ハンマケース42の底
部に基端を止着した圧縮バネ45の先端をハンマ−42
0基端部に止着し、ハンマー44をハンマケース42に
対し開口側(圧電素子1方向)へ付勢させである。更に
、このハンマー44の基端部(キャップ33方向の端部
)にはビン46が突設してあり、このビン46はハンマ
ケース42のガイド窓47及び外ケース41のガイド窓
48にガイドされるように設定しである。
Further, a bar-shaped hammer 44 is supported by the hammer case 42 so as to be movable forward and backward. That is, the tip of the compression spring 45 whose base end is fixed to the bottom of the hammer case 42 is attached to the hammer 42.
The hammer 44 is fixed to the zero base end portion, and the hammer 44 is biased toward the opening side (toward the piezoelectric element 1) with respect to the hammer case 42. Furthermore, a bottle 46 is provided protruding from the base end (end in the direction of the cap 33) of the hammer 44, and the bottle 46 is guided by a guide window 47 of the hammer case 42 and a guide window 48 of the outer case 41. It is set so that

前記キャップ33は、熱応答性の高い資材で形成された
筒体で、上記ハンマケース42の基端部(底部側)を嵌
着した状態で、外ケース41の開口端部に当接配備しで
ある。このキャップ33の底面には、変態温度(所定温
度)で伸張する形状記憶コイルバネ31が止着してあり
、コイルバネ31の先端押付は部材32が上記ハンマケ
ース42の底面に連繋(当接)させである。
The cap 33 is a cylindrical body made of a material with high thermal responsiveness, and is disposed in contact with the open end of the outer case 41 with the proximal end (bottom side) of the hammer case 42 fitted. It is. A shape memory coil spring 31 that expands at a transformation temperature (predetermined temperature) is fixed to the bottom surface of the cap 33, and the tip of the coil spring 31 is pressed by a member 32 connected to (abutting) the bottom surface of the hammer case 42. It is.

このような構成を有する温度センサでは、仮に今、形状
記憶コイルバネ31の外的雰囲気が変態温度(所定温度
)に到達したとすると、瞬間的にコイルバネ31が伸張
する。これにより、ハンマケース42が押され圧電素子
1方向へ移動する。
In the temperature sensor having such a configuration, if the external atmosphere of the shape memory coil spring 31 reaches the transformation temperature (predetermined temperature), the coil spring 31 will instantaneously expand. As a result, the hammer case 42 is pushed and moved in the direction of the piezoelectric element 1.

しかし、ハンマー44はビン4Bがガイド窓48の段部
48aに係止しているため移動せず、圧縮バネ45及び
復帰バネ43が圧縮される。この状態で更に、ハンマケ
ース42が押動されるとビン4Gがガイド窓47の傾斜
部47aにガイドされ、下方へ動く。ここにおいて、ガ
イド窓段部48aとビン46の係合が外れ、圧縮バネ4
5の付勢力によりハンマー44が突出し、圧電素子1を
打つ(第4図参照)。この打撃衝撃により、圧電素子1
の電極に電圧が発生し、発光ダイオード12が発光し、
光ファイバ13により温度変化時点が伝送される。
However, the hammer 44 does not move because the bottle 4B is locked to the stepped portion 48a of the guide window 48, and the compression spring 45 and return spring 43 are compressed. In this state, when the hammer case 42 is further pushed, the bottle 4G is guided by the inclined portion 47a of the guide window 47 and moves downward. At this point, the guide window step portion 48a and the pin 46 are disengaged, and the compression spring 4
5, the hammer 44 protrudes and strikes the piezoelectric element 1 (see FIG. 4). Due to this impact, the piezoelectric element 1
A voltage is generated at the electrode, the light emitting diode 12 emits light,
An optical fiber 13 transmits the temperature change instants.

なお、第3図の実施例では、発光素子12及び光ファイ
バ13を外付けしているが、これら発光素子12、光フ
ァイバ13を外ケース41内に一体収納してもよい。
In the embodiment shown in FIG. 3, the light emitting element 12 and the optical fiber 13 are attached externally, but the light emitting element 12 and the optical fiber 13 may be housed integrally within the outer case 41.

また、上記実施例において設定温度を検出するのに形状
記憶合金を用いているか、他の手段例えばサーモスク7
ト等を使用してもよい。
In addition, in the above embodiments, it is also possible to use a shape memory alloy to detect the set temperature or to use other means such as a thermosk 7.
You may also use

(へ)発明の効果 この発明では、以上のように、発光素子及び光伝送手段
を備えた圧電素子に対し、4ii撃を与える衝撃付加手
段を対応配置し、この衝撃付加手段を設定温度の検出に
より駆動さ・ヒる衝撃駆動手段を配備することとしたか
ら、衝撃駆動手段の外的雰囲気が所定温度に到達した時
、この温度変化を検知し、衝撃付加手段を作動させ、圧
電素子に衝撃を加える。これにより、圧電素子の発光素
子が発光し、この発光が光伝送手段により温度監視室に
伝送される。
(f) Effects of the Invention In this invention, as described above, the piezoelectric element equipped with the light emitting element and the light transmission means is provided with an impact applying means that applies a 4II shock, and this impact applying means is used to detect the set temperature. Since we have decided to provide an impact driving means that is driven by the impact driving means, when the external atmosphere of the impact driving means reaches a predetermined temperature, this temperature change is detected, the impact applying means is activated, and an impact is applied to the piezoelectric element. Add. As a result, the light emitting element of the piezoelectric element emits light, and this light emission is transmitted to the temperature monitoring room by the light transmission means.

従って、無電源により所定温度に到達時点が報知され、
従来のように電源を必要とする電気回路系の温度センサ
に比較して、構成が簡易であり安価な温度センサを提供
し得る。また、無電源であるため、怒電の虞れがなく防
爆を必要とする場所にも使用できる許かりでなく、遠隔
地の温度変化監視にも好適である等、発明日柄を達成し
た優れた効果を有する。
Therefore, the time when the predetermined temperature is reached is notified without power supply,
It is possible to provide a temperature sensor that has a simpler configuration and is cheaper than a conventional temperature sensor based on an electric circuit that requires a power source. In addition, since it does not require a power source, it can be used in locations where there is no risk of electrical shock and requires explosion protection, and it is also suitable for monitoring temperature changes in remote locations. It has a good effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例温度センサの要部拡大正面図、第2図
は、実施例温度センサにより温度変化が検出された状態
を示す要部拡大正面図、第3図は、温度センサの他の実
施例を示す断面図、第4図は温度センサの他の実施例に
より温度変化が検出された状態を示す断面図である。 1:圧電素子、   2:衝撃付加手段、3:衝撃駆動
手段、 12:発光素子、13:光伝送手段、  31
:形状記憶コイルバネ。 第1図 1:圧電素子 2:別菅邦1イす#ロ弓−名L 31:介戸仄慇す意コづルへ子 第2図
Fig. 1 is an enlarged front view of the main parts of the temperature sensor of the embodiment, Fig. 2 is an enlarged front view of the main parts showing a state in which a temperature change is detected by the temperature sensor of the embodiment, and Fig. 3 is an enlarged front view of the main parts of the temperature sensor of the embodiment. FIG. 4 is a cross-sectional view showing a state in which a temperature change is detected by another example of the temperature sensor. 1: piezoelectric element, 2: impact applying means, 3: impact driving means, 12: light emitting element, 13: light transmission means, 31
: Shape memory coil spring. Fig. 1 1: Piezoelectric element 2: Bessuga Kuni 1 Isu#Royu-name L 31: I would like to express my gratitude to Kaedo Kozuru Heko Fig. 2

Claims (1)

【特許請求の範囲】[Claims] (1)発光素子を備えた圧電素子と、この発光素子に連
繋配備され発光を伝送する光伝送手段と、前記圧電素子
に衝撃を加える衝撃付加手段と、設定温度の検出により
上記衝撃付加手段を作動させる衝撃駆動手段とから成る
温度センサ。
(1) A piezoelectric element including a light emitting element, a light transmission means that is connected to the light emitting element and transmits light emission, an impact applying means that applies an impact to the piezoelectric element, and an impact applying means that applies an impact to the piezoelectric element by detecting a set temperature. and a shock driving means for actuating the temperature sensor.
JP9720287A 1987-04-20 1987-04-20 Temperature sensor Pending JPS63262531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9720287A JPS63262531A (en) 1987-04-20 1987-04-20 Temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9720287A JPS63262531A (en) 1987-04-20 1987-04-20 Temperature sensor

Publications (1)

Publication Number Publication Date
JPS63262531A true JPS63262531A (en) 1988-10-28

Family

ID=14186023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9720287A Pending JPS63262531A (en) 1987-04-20 1987-04-20 Temperature sensor

Country Status (1)

Country Link
JP (1) JPS63262531A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08334416A (en) * 1995-06-08 1996-12-17 Nissin Electric Co Ltd Device for displaying abnormal temperature of switch gear
JPH08334415A (en) * 1995-06-08 1996-12-17 Nissin Electric Co Ltd Method and device for monitoring abnormal temperature of switch gear
CN105181159A (en) * 2015-10-23 2015-12-23 苏州国嘉记忆合金有限公司 Heating indicator for electrical equipment, driving element and preparation method thereof
CN106066214A (en) * 2015-04-22 2016-11-02 通用汽车环球科技运作有限责任公司 Resettable sensor cluster and system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08334416A (en) * 1995-06-08 1996-12-17 Nissin Electric Co Ltd Device for displaying abnormal temperature of switch gear
JPH08334415A (en) * 1995-06-08 1996-12-17 Nissin Electric Co Ltd Method and device for monitoring abnormal temperature of switch gear
CN106066214A (en) * 2015-04-22 2016-11-02 通用汽车环球科技运作有限责任公司 Resettable sensor cluster and system
US10260958B2 (en) 2015-04-22 2019-04-16 GM Global Technology Operations LLC Resettable sensor assembly and system
CN105181159A (en) * 2015-10-23 2015-12-23 苏州国嘉记忆合金有限公司 Heating indicator for electrical equipment, driving element and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4291845B2 (en) Electronic thermometer with flexible circuit arrangement
US3594675A (en) Temperature-sensing probe
US10921194B2 (en) Electrical contact thermal sensing system
JPS63262531A (en) Temperature sensor
JP2007194502A (en) Optical communication module
US4616939A (en) Apparatus for testing diamonds
CN106370268B (en) Temperature sensing type liquid level switch utilizing self-heating effect of thermal resistor
US3702589A (en) Bimetallic temperature sensing device
US5844465A (en) Temperature compensated time-delay switch
US3255331A (en) Immersion thermostatic switch
JPS6029688Y2 (en) Detector
GB2114292A (en) Thermally operated apparatus
GB2080992A (en) Combination type fire detector
JP2873655B2 (en) Temperature sensor
US2697735A (en) Temperature-controlled thermocouple cold junction
US4011536A (en) Liquid sensor
US3250126A (en) Clinical thermometer
RU27860U1 (en) TEMPERATURE SENSOR
JPH0125299Y2 (en)
SU150675A1 (en) Electrothermal pulse pressure sensor
RU2210129C2 (en) Heat-sensitive switch
US3903495A (en) Liquid level indicating system
RU2087881C1 (en) Temperature-sensitive element
RU2190279C2 (en) Thermoelectric device
JPH0392735A (en) Temperature detecting sensor