JPS6326245Y2 - - Google Patents

Info

Publication number
JPS6326245Y2
JPS6326245Y2 JP1983048337U JP4833783U JPS6326245Y2 JP S6326245 Y2 JPS6326245 Y2 JP S6326245Y2 JP 1983048337 U JP1983048337 U JP 1983048337U JP 4833783 U JP4833783 U JP 4833783U JP S6326245 Y2 JPS6326245 Y2 JP S6326245Y2
Authority
JP
Japan
Prior art keywords
vehicle
differential
rear wheel
wheels
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983048337U
Other languages
Japanese (ja)
Other versions
JPS59154427U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1983048337U priority Critical patent/JPS59154427U/en
Priority to US06/589,774 priority patent/US4538700A/en
Publication of JPS59154427U publication Critical patent/JPS59154427U/en
Application granted granted Critical
Publication of JPS6326245Y2 publication Critical patent/JPS6326245Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • B60K23/0808Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/40Coefficient of friction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S303/00Fluid-pressure and analogous brake systems
    • Y10S303/06Axle differential control

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Description

【考案の詳細な説明】 この考案は、前後輪差動制御手段が差動機能阻
止方向に作動していないときに、車両の減速度が
所定値以上になるとその前後輪差動制御手段が自
動的に差動機能阻止方向に作動して、車両制動時
の制動性能を高めた4輪駆動車に関する。
[Detailed description of the invention] This invention is based on the invention that when the front and rear wheel differential control means is not operating in the direction of blocking the differential function, when the deceleration of the vehicle exceeds a predetermined value, the front and rear wheel differential control means automatically activates the front and rear wheel differential control means. The present invention relates to a four-wheel drive vehicle that operates in the direction of inhibiting the differential function to improve braking performance when braking the vehicle.

一般に、2輪駆動車は駆動摩擦力を発生させる
車輪が2輪だけなので坂道を登る力が弱く、2つ
の駆動輪のうち1つでもオフロード(道路外)の
ぬかるみ等に入り込むと左右輪の差動装置により
全く駆動力を発生できなくなり、さらに、車輪の
半径より高い障害物を乗り越えることができない
等の欠点を有している。このような2輪駆動車の
欠点を解決するためには4輪駆動車が従来用いら
れている。ところが、4輪駆動車は以上の欠点を
解決することはできるが、第1図に示すように、
操行車輪の操舵角θが大きくなつて前車輪と後車
輪との回転半径差(R−r)が大きくなると前車
輪の回転数(正確には左右輪で異なるため平均回
転数)と後車輪の回転数との間にも大きな差が生
じる。この場合、無理に車両を操舵しようとする
と、前車輪や後車輪に回転を伝達するプロペラシ
ヤフトやアクスルシヤフトの両端部に非常に大き
なトルクが発生してステアリングホイールの手応
えがかたくなつたり、あるいは、前車輪および後
車輪に互いに反対方向のスリツプを生じて車両の
操舵にアンダステア(操舵角により本来得られる
べき旋回半径よりもその旋回半径が大きくなる現
象)傾向を生じるとともに、その走行を制動、停
止、またはエンストを生じるような摩際力(タイ
トコーナブレーキと称されている)がタイヤに発
生する。このような事態を解決するために、前車
輪と後車輪との間に前後輪差動機構を設けた4輪
駆動車がある。ところが今度は、前後4車輪のう
ち1つでも車輪がぬかるみ等に入り込むと、左右
輪の間の差動機構と前後輪差動機構とが連動する
結果、ぬかるみに入つた車輪に全てまたはほとん
どの駆動力が供給されて空転してしまい、他の3
車輪全部が駆動力を失つて、車両が進行困難にな
るという欠点がある。このような事態を解決する
ために、前後輪差動機構を備えた4輪駆動車に
は、前後輪差動機構の差動機能を阻止する方向に
制御できる前後輪差動制御手段(ロツクアツプ機
構やノン・スリツプ・デフ機構)を設ける必要が
ある。すなわち、このような前後輪差動制御手段
によれば、前後輪差動機構の差動機能を阻止する
方向に制御することにより、前車輪および後車輪
の一方がぬかるみ等に入り込んでも、ぬかるみ外
にある高い摩際力を有する他方の車輪に駆動トル
クを伝達することが可能となる。また、このよう
な前後輪差動制御手段を備えた4輪駆動車におい
ては、その手段が差動機能阻止方向に作動してい
るときは、前車輪と後車輪とが駆動系統を介して
一体的に回転する。このため、車両の急制動時に
おいて、前車輪および後車輪のいずれか一方が先
に制動停止することはなく、前後4車輪が同時に
制動停止できるようになつており、車両の制動性
能が非常に優れているという特性を持つている。
このような前後輪差動機構および前後輪差動制御
手段を設けた4輪駆動車としては、例えば特開昭
57−114727号に係るものがある。
In general, two-wheel drive vehicles have only two wheels that generate drive friction, so they have weak ability to climb hills, and if one of the two drive wheels gets into a muddy off-road (outside the road), the left and right wheels will be damaged. The differential device makes it impossible to generate any driving force, and furthermore, it has drawbacks such as the inability to overcome obstacles higher than the radius of the wheels. Four-wheel drive vehicles have been conventionally used to overcome the drawbacks of two-wheel drive vehicles. However, although four-wheel drive vehicles can solve the above drawbacks, as shown in Figure 1,
As the steering angle θ of the steering wheels increases and the difference in turning radius (R-r) between the front wheels and the rear wheels increases, the rotation speed of the front wheels (more precisely, the average rotation speed since the left and right wheels differ) and the rotation speed of the rear wheels increase. There is also a big difference in rotation speed. In this case, if you try to forcefully steer the vehicle, a very large torque will be generated at both ends of the propeller shaft and axle shaft that transmit rotation to the front and rear wheels, causing the steering wheel to become hard to respond to. This causes the front wheels and rear wheels to slip in opposite directions, causing a tendency for the vehicle to understeer (a phenomenon in which the turning radius is larger than the one that should be obtained due to the steering angle), and the vehicle's running is braked or stopped. , or a friction force (referred to as tight corner braking) is generated on the tires that causes the engine to stall. In order to solve this situation, there are four-wheel drive vehicles that are equipped with a front-rear wheel differential mechanism between the front wheels and the rear wheels. However, this time, if even one of the four front and rear wheels gets into the mud, the differential mechanism between the left and right wheels and the front and rear wheel differential mechanism work together, causing all or most of the wheels to get stuck in the mud. Driving force was supplied and the machine idled, causing the other 3
The drawback is that all wheels lose their driving force, making it difficult for the vehicle to move. To solve this situation, four-wheel drive vehicles equipped with front and rear differential mechanisms are equipped with front and rear differential control means (lock-up mechanism) that can control the differential function of the front and rear differential mechanisms. It is necessary to provide a non-slip differential mechanism). In other words, according to such a front and rear wheel differential control means, even if one of the front wheels and the rear wheels gets into mud, etc., it is possible to prevent the front wheel or the rear wheel from moving out of the mud by controlling the front and rear wheels in a direction that blocks the differential function of the front and rear wheel differential mechanism. It becomes possible to transmit the driving torque to the other wheel which has a high friction force. In addition, in a four-wheel drive vehicle equipped with such front and rear wheel differential control means, when the means is operating in the direction of blocking the differential function, the front wheels and rear wheels are integrated via the drive system. rotate. For this reason, when the vehicle suddenly brakes, either the front or rear wheels do not brake to a stop first, but the front and rear wheels can brake to a stop at the same time, which greatly improves the vehicle's braking performance. It has excellent characteristics.
As a four-wheel drive vehicle equipped with such a front and rear wheel differential mechanism and a front and rear wheel differential control means, for example,
There is something related to No. 57-114727.

しかしながら、このような4輪駆動車にあつて
は、車両制動時の減速度の変動と前後輪差動制御
手段の作動とは無関係となつていたため、この手
段を差動機能阻止方向に作動させないで車両を急
制動させる場合があり、その場合には、上記のよ
うな優れた車両の制動特性を生かすことができな
いという問題点があつた。また、乗員にとつて
は、車両の急制動時にいちいち前後輪差動制御手
段を差動機能阻止方向に作動させることは困難で
あり、その操作性の点で問題があつた。
However, in such four-wheel drive vehicles, the variation in deceleration during vehicle braking is unrelated to the operation of the front and rear wheel differential control means, so this means is not operated in the direction of inhibiting the differential function. There are cases where the vehicle is suddenly braked, and in that case, there is a problem in that the above-mentioned excellent braking characteristics of the vehicle cannot be utilized. Furthermore, it is difficult for the occupant to operate the front and rear wheel differential control means in the direction of inhibiting the differential function each time the vehicle is suddenly braked, resulting in a problem in terms of operability.

この考案は、このような従来の問題点に着目し
てなされたもので、前後輪差動機構と前後輪差動
制御手段とを有する4輪駆動車において、車両の
減速度を検出する減速度検出手段と、減速度検出
手段より信号を入力して車両の減速度が所定値以
上のときは前後輪差動制御手段を差動機能阻止方
向に作動させるよう前後輪差動制御手段を制御す
る差動阻止手段と、を備えることにより、上記問
題点を解決することを目的としている。
This invention was made by focusing on these conventional problems, and is a deceleration method for detecting vehicle deceleration in a four-wheel drive vehicle having a front and rear wheel differential mechanism and a front and rear wheel differential control means. A signal is input from the detection means and the deceleration detection means to control the front and rear wheel differential control means so as to operate the front and rear wheel differential control means in a direction to inhibit the differential function when the deceleration of the vehicle is greater than a predetermined value. It is an object of the present invention to solve the above problems by providing differential blocking means.

以下、この考案を図面に基づいて説明する。 This invention will be explained below based on the drawings.

第2図は、この考案の一実施例を示す図であ
る。まず構成を説明すると、第2図において、1
は車体であり、2はこの車体1に支持されたエン
ジンである。このエンジン2には変速機3および
副変速機4が連結されている。変速機3には副変
速機4の一部を構成するハイ・ロー(2段変速)
切換装置5が連結されており、ハイ・ロー切換装
置5には、その出力軸5aを介して、やはり副変
速機4の一部を構成する前後輪差動機構7が連結
されている。前後輪差動機構7は、デイフアレン
シヤルケース7aと、デイフアレンシヤルケース
7aに固定されたピニオンシヤフト7bと、ピニ
オンシヤフト7bに回転自在に支持された2個の
デイフアレンシヤルピニオン7cと、2個のデイ
フアレンシヤルピニオン7cと常に噛合する2個
のサイドギヤ7dとを有している。一方のサイド
ギヤ7dには後車輪用プロペラシヤフト13の一
端が連結され、後車輪用プロペラシヤフト13の
他端には後左右輪差動機構14が連結されてい
る。後左右輪差動機構14の両側には、後車輪用
アクスルシヤフト15a,15bを介して左右の
後車輪16a,16bが連結しており、後左右輪
差動機構14により左右の後車輪16a,16b
の回転数差を吸収できるようになつている。他方
のサイドギヤ7dには同一軸線上に第1チエーン
ホイール18が連結されており、第1チエーンホ
イール18はチエーンベルト19を介して第2チ
エーンホイール20と連結している。第2チエー
ンホイール20の車軸には前車輪用プロペラシヤ
フト21の一端が連結しており、前車輪用プロペ
ラシヤフト21の他端には前左右輪差動機構22
が連結されている。前左右輪差動機構22の両側
には前車輪用アクスル24a,24bを介して左
右の前車輪25a,25bが連結しており、前左
右輪差動機構22により左右の前車輪25a,2
5bの回転数差を吸収できるようになつている。
前後輪差動機構7のデイフアレンシヤルケース7
aと第1チエーンホイール18との間には前後輪
差動制御手段26とが介装されている。この前後
輪差動制御手段26は、第3図に示すように、車
両の変速機3等を含む油圧系統に連結された前後
輪差動制御バルブ27と、このバルブ27のスプ
ール27aに当接してこのスプール27aを移動
可能な鉄心23aを軸線部に収納したソレノイド
23と、それを作動させる油圧がかかる油室29
aが前後輪差動制御バルブ27のポート(出入
口)と連結された油圧多板クラツチ29とを有し
ている。油圧多板クラツチ29は一対のクラツ
チ・プレート29b,29cを備えており、それ
らの一方がデイフアレンシヤルケース7dに、他
方が第1チエーンホイール18に連結されてい
る。ソレノイド23に流れる電流の大きさを調整
することにより鉄心23aを移動させ、この鉄心
23aが移動することによりそれが当接するスプ
ール27aを移動させて前後輪差動制御バルプ2
7の油の流れを調整する。油室29aに油圧を高
くかければ油圧多板クラツチ29が摩擦係合し、
油室29aの油圧を低くすれば油圧多板クラツチ
29がスリツプし、油室29aをドレンさせると
油圧多板クラツチ29の摩擦係合が外れるように
なつている。28はその両端部が操向車輪として
の前車輪25a,25bに連結され、図外のステ
アリングホイールにより駆動される操舵手段であ
る。31は、油圧多板クラツチ29の油室29a
の油圧を測定して前後輪差動制御手段26の作
動、すなわち油圧多板クラツチ29の摩擦係合の
有無を検出する、前後輪差動制御検出手段であ
る。35は車体1の一部に載置され、車両の減速
度を検出する減速度検出手段(Gセンサと一般に
呼ばれる)である。32は減速度検出手段35お
よび前後輪差動制御検出手段31より信号を入力
し、その信号結果によりソレノイド23に信号を
出力することができる電子制御回路である。この
電子制御回路32は、前後輪差動制御手段26を
差動機能阻止方向に差動させるよう制御する差動
阻止手段の一部を構成する。
FIG. 2 is a diagram showing an embodiment of this invention. First, to explain the configuration, in Figure 2, 1
is a vehicle body, and 2 is an engine supported by this vehicle body 1. A transmission 3 and an auxiliary transmission 4 are connected to the engine 2. The transmission 3 has a high/low (two-speed) transmission that forms part of the sub-transmission 4.
A switching device 5 is connected to the high/low switching device 5, and a front and rear wheel differential mechanism 7, which also constitutes a part of the sub-transmission 4, is connected to the high/low switching device 5 via its output shaft 5a. The front and rear wheel differential mechanism 7 includes a differential case 7a, a pinion shaft 7b fixed to the differential case 7a, and two differential pinions 7c rotatably supported by the pinion shaft 7b. and two side gears 7d that are always in mesh with two differential pinions 7c. One end of a rear wheel propeller shaft 13 is connected to one side gear 7d, and a rear left and right wheel differential mechanism 14 is connected to the other end of the rear wheel propeller shaft 13. Left and right rear wheels 16a and 16b are connected to both sides of the rear left and right wheel differential mechanism 14 via rear wheel axle shafts 15a and 15b. 16b
It is designed to be able to absorb the difference in rotational speed. A first chain wheel 18 is connected to the other side gear 7d on the same axis, and the first chain wheel 18 is connected to a second chain wheel 20 via a chain belt 19. One end of a front wheel propeller shaft 21 is connected to the axle of the second chain wheel 20, and a front left and right wheel differential mechanism 22 is connected to the other end of the front wheel propeller shaft 21.
are connected. Left and right front wheels 25a, 25b are connected to both sides of the front left and right wheel differential mechanism 22 via front wheel axles 24a, 24b.
5b is designed to absorb the difference in rotational speed.
Differential case 7 of front and rear wheel differential mechanism 7
Front and rear wheel differential control means 26 is interposed between a and the first chain wheel 18. The front and rear wheel differential control means 26, as shown in FIG. A solenoid 23 that houses an iron core 23a on its axis that can move a lever spool 27a, and an oil chamber 29 that receives hydraulic pressure to operate the solenoid 23.
a has a hydraulic multi-plate clutch 29 connected to a port (inlet/outlet) of a front/rear wheel differential control valve 27; The hydraulic multi-plate clutch 29 includes a pair of clutch plates 29b and 29c, one of which is connected to the differential case 7d and the other to the first chain wheel 18. By adjusting the magnitude of the current flowing through the solenoid 23, the iron core 23a is moved, and as this iron core 23a moves, the spool 27a that it comes into contact with is moved, and the front and rear wheel differential control valves 2 are moved.
Adjust the oil flow in step 7. When a high hydraulic pressure is applied to the oil chamber 29a, the hydraulic multi-disc clutch 29 is frictionally engaged.
When the oil pressure in the oil chamber 29a is lowered, the hydraulic multi-plate clutch 29 slips, and when the oil chamber 29a is drained, the hydraulic multi-plate clutch 29 is disengaged from the frictional engagement. Reference numeral 28 denotes a steering means whose both ends are connected to front wheels 25a and 25b serving as steering wheels, and which is driven by a steering wheel (not shown). 31 is an oil chamber 29a of the hydraulic multi-plate clutch 29;
This is a front and rear wheel differential control detection means that measures the oil pressure of the front and rear wheel differential control means 26 to detect the operation of the front and rear wheel differential control means 26, that is, the presence or absence of frictional engagement of the hydraulic multi-plate clutch 29. 35 is a deceleration detection means (generally called a G sensor) that is placed on a part of the vehicle body 1 and detects the deceleration of the vehicle. 32 is an electronic control circuit that can input signals from the deceleration detection means 35 and the front and rear wheel differential control detection means 31 and output a signal to the solenoid 23 based on the signal results. This electronic control circuit 32 constitutes a part of differential blocking means that controls the front and rear wheel differential control means 26 to differentially move in the differential function blocking direction.

次に作用を説明する。今、前後輪差動制御手段
26を差動阻止方向に作動させずに運転してお
り、第1図に示すように、操向車輪としての前車
輪25a,25bを操舵してその操舵角θが大き
くなると、前車輪25a,25bと後車輪16
a,16bとの路面上の旋回半径(R、r)に大
きな差(R−r)が生じ、そのために前車輪25
a,25bと後車輪16a,16bとのそれぞれ
の平均回転数の間にも大きな差が生じる。この平
均回転数の差は前後輪差動機構7が作動すること
により吸収され、車両は大きな操舵角θで操舵さ
れながら円滑に旋回することができる。このよう
に前後輪差動制御手段26を差動阻止方向に作動
させない状態で車両が走行を続け、何かの都合で
車両が急制動されると、車両の減速度は所定値以
上になる。このとき、減速度検出手段35は車両
の減速度が所定値以上になつたことを検出する。
また同時に、前後輪差動制御検出手段31は、前
後輪差動制御手段26が差動機能阻止方向に作動
していないことを検出している。したがつて、こ
れら減速度検出手段35および前後輪差動制御検
出手段31が出力した検出信号が電子制御回路3
2に入力されると、第4図に示すように、電子制
御回路32は前後輪差動制御手段26を差動機能
阻止方向に作動させるようソレノイド23に信号
を出力する。電子制御回路32からの信号により
ソレノイド23への電流供給が次第に増大し、前
後輪差動制御バルブ27のスプール27aの図中
下方移動により油室29aの油圧が高くなると油
圧多板クラツチ29が摩擦係合し、前後輪差動制
御手段26が差動阻止方向に作動して前後輪差動
機構7の差動機能が阻止される。この結果、前車
輪25a,25bと後車輪16a,16bとが駆
動係統を介して一体的に回転するため、車両の急
制動時において、前車輪25a,25bおよび後
車輪16a,16bのいずれか一方が先に制動停
止することなく車輪25a,25b,16a,1
6bのすべてが同時に制動停止し、非常に優れた
制動性能を発揮させることができる。また、乗員
にとつては、車両の急制動時にいちいち前後輪差
動制御手段26を差動阻止方向に作動させる必要
がないため、4輪駆動車の操作性の改善を図るこ
とができる。また、上記制動は車両の減速度を検
出して行われており、例えば、特開昭57−66022
号公報に記載の装置のようにブレーキを踏むと常
に行われるものではない。かかる公報に記載の装
置によると、ブレーキペダルを踏み込むと常に4
輪駆動による制動を行つてしまい、4輪駆動切換
え頻度が著しく高くなつて、切換え時に発生する
高頻度の衝撃が駆動係に大きな負担を与え、耐久
性低下や運転フイーリングの低下を招いている。
Next, the action will be explained. Currently, the vehicle is being operated without operating the front and rear wheel differential control means 26 in the differential prevention direction, and as shown in FIG. becomes larger, the front wheels 25a, 25b and the rear wheel 16
There is a large difference (R-r) in the turning radius (R, r) on the road surface between the front wheels 25 and 16b.
A large difference also occurs between the respective average rotational speeds of the rear wheels 16a, 16b and the rear wheels 16a, 16b. This difference in average rotational speed is absorbed by the operation of the front and rear wheel differential mechanism 7, and the vehicle can turn smoothly while being steered at a large steering angle θ. If the vehicle continues to run without the front and rear wheel differential control means 26 being operated in the differential prevention direction and the vehicle is suddenly braked for some reason, the deceleration of the vehicle will exceed a predetermined value. At this time, the deceleration detection means 35 detects that the deceleration of the vehicle has exceeded a predetermined value.
At the same time, the front and rear wheel differential control detection means 31 detects that the front and rear wheel differential control means 26 is not operating in the differential function inhibiting direction. Therefore, the detection signals outputted by the deceleration detection means 35 and the front and rear wheel differential control detection means 31 are transmitted to the electronic control circuit 3.
2, as shown in FIG. 4, the electronic control circuit 32 outputs a signal to the solenoid 23 to operate the front and rear wheel differential control means 26 in the direction of inhibiting the differential function. The current supply to the solenoid 23 gradually increases in response to a signal from the electronic control circuit 32, and as the spool 27a of the front and rear wheel differential control valve 27 moves downward in the figure, the oil pressure in the oil chamber 29a increases, causing the hydraulic multi-disc clutch 29 to generate friction. When engaged, the front and rear wheel differential control means 26 operates in the differential blocking direction, and the differential function of the front and rear wheel differential mechanism 7 is blocked. As a result, since the front wheels 25a, 25b and the rear wheels 16a, 16b rotate integrally via the drive system, when the vehicle suddenly brakes, one of the front wheels 25a, 25b and the rear wheels 16a, 16b rotates. wheels 25a, 25b, 16a, 1 without braking and stopping first.
6b all brake and stop at the same time, making it possible to exhibit extremely excellent braking performance. Furthermore, for the occupants, there is no need to operate the front and rear wheel differential control means 26 in the differential prevention direction every time the vehicle is suddenly braked, so the operability of the four-wheel drive vehicle can be improved. Furthermore, the above-mentioned braking is performed by detecting the deceleration of the vehicle.
Unlike the device described in the publication, this is not always done when the brake is stepped on. According to the device described in this publication, when the brake pedal is depressed, the
Braking is performed by wheel drive, and the frequency of four-wheel drive switching becomes extremely high.The frequent shocks generated during switching place a large burden on the driving staff, leading to decreased durability and driving feeling.

これに対して、本実施例では4輪駆動としての
制動力が真に必要な急制動時にのみ4輪駆動によ
る制動を行つているので、上記不具合を解消する
ことができる。さらに、車両旋回時であつても制
動力が真に必要なときのみ4輪駆動による制動力
を付与できるため、タイトコーナーブレーキ現象
を適切に回避することができる。
In contrast, in this embodiment, braking by four-wheel drive is performed only during sudden braking when the braking force of four-wheel drive is truly required, so the above-mentioned problem can be solved. Furthermore, even when the vehicle is turning, braking force can be applied by four-wheel drive only when braking force is truly needed, so tight corner braking can be appropriately avoided.

第5図には、他の実施例を示す。 FIG. 5 shows another embodiment.

この実施例は、前記実施例において備えられて
いた減速度検出手段35および前後輪差動制御検
出手段31の他に、車輪のタイヤと路面との間の
摩擦係数を検出する摩擦係数検出手段を追加して
備えたものである。タイヤと路面との間の摩擦係
数が低くなると当然車両の制動摩擦力も小さくな
つて制動効率が悪化する。したがつて、摩擦係数
が低くなつたときは車両の減速度もそれに応じて
より低い所定値を設定し、それを越えたときに前
後輪差動制御手段26を差動機能阻止方向に作動
させてやる必要がある。このようにして車両の制
動効率を向上させようとするものである。第5図
において、30は、操舵手段28の近傍の車体1
に設けられ、操舵手段28が移動する状態を検知
して操向車輪の操舵角を検出する操舵角検出手段
である。40は、ハイ・ロー切換装置5の出力軸
5aの近傍の車体1に設けられ、出力軸5aの回
転数を検知して車両の速度を検出する車速検出手
段である。41は、操向車輪である前車輪25a
の近傍の車体1に設けられ、前車輪25aのタイ
ヤと路面との接触面に垂直方向にかかる力を概算
して検出する垂直荷重検出手段である。42は操
舵手段28の一部に設けられ、図外のステアリン
グホイールによつて駆動されることにより発生す
る操舵力を検出する操舵力検出手段である。33
は、操舵角検出手段30、車速検出手段40、垂
直荷重検出手段41および操舵力検出手段42よ
り信号を入力し、その信号結果によりタイヤと路
面との間の摩擦係数を演算する摩擦係数演算装置
である。これらの信号結果により摩擦係数が演算
できる理由としては次の通りである。車両走行時
のキングピン軸まわりのモーメントMを求めるた
めの式としては次に示すようになる。
In addition to the deceleration detection means 35 and the front and rear wheel differential control detection means 31 provided in the previous embodiment, this embodiment also includes a friction coefficient detection means for detecting the friction coefficient between the tire of the wheel and the road surface. This is an additional feature. As the coefficient of friction between the tires and the road surface decreases, the braking friction force of the vehicle also decreases, resulting in poor braking efficiency. Therefore, when the coefficient of friction becomes low, the deceleration of the vehicle is set to a lower predetermined value accordingly, and when the deceleration exceeds the predetermined value, the front and rear wheel differential control means 26 is operated in the direction of inhibiting the differential function. I need to do it. In this way, the braking efficiency of the vehicle is improved. In FIG. 5, 30 indicates the vehicle body 1 near the steering means 28.
The steering angle detecting means is provided in the steering wheel and detects the state in which the steering means 28 moves to detect the steering angle of the steered wheels. Reference numeral 40 denotes a vehicle speed detection means that is provided in the vehicle body 1 near the output shaft 5a of the high/low switching device 5 and detects the rotational speed of the output shaft 5a to detect the speed of the vehicle. 41 is a front wheel 25a which is a steering wheel.
This vertical load detection means is provided on the vehicle body 1 near the front wheel 25a and roughly detects the force applied in the vertical direction to the contact surface between the tire of the front wheel 25a and the road surface. Reference numeral 42 denotes a steering force detection means that is provided as a part of the steering means 28 and detects a steering force generated by being driven by a steering wheel (not shown). 33
is a friction coefficient calculation device that receives signals from a steering angle detection means 30, a vehicle speed detection means 40, a vertical load detection means 41, and a steering force detection means 42, and calculates a friction coefficient between a tire and a road surface based on the signal results. It is. The reason why the friction coefficient can be calculated from these signal results is as follows. The formula for determining the moment M around the king pin axis when the vehicle is running is as shown below.

M=Nsinζ sinφe(r+Rwsinζ cosφe)+SRwsin
ζ sinφe cosζ +SXscosζ+Nfrcosζ (自動車工学ハンドブツク8−16頁右欄下段、
自動車技術会編より) この式において、Mはキングピン軸まわりのモ
ーメントであるから操舵力が分かれば求まる値で
あり、Nは路面と操行車輪25aのタイヤとの接
触面にかかる垂直方向の荷重、rはスクラブ半
径、Rwはタイヤの有効半径、Sは路面とタイヤ
との接触面においてタイヤの進行方向と直角な水
平方向に働く力(サイドフオース)である。この
Sは、S=Nfs(fsは横すべり摩擦係数)の式か
ら求められる。このfsは車速により変化する値で
あるので、結局Sは、垂直荷重検出手段41およ
び車速検出手段40の検出結果から概算できるこ
とになる。XsはTsat/Sで表され、Tsatはセル
フアライニングトルクであつて車種と操向車輪2
5aの操舵角により求められる。したがつて、
Xsは車種、操舵角、車速および操向車輪と路面
との間の垂直荷重が定まれば概算できることにな
る。fは操向車輪25aのタイヤと路面との間の
摩擦係数である。またζは、次式の如くキングピ
ン傾斜角δとキヤスタ角βとで決まる角度、すな
わち車種によりおのずと定まる角度である。
M=Nsinζ sinφe(r+Rwsinζ cosφe)+SRwsin
ζ sinφe cosζ +SXscosζ+Nfrcosζ (Automotive Engineering Handbook, page 8-16, bottom right column,
(From the Society of Automotive Engineers of Japan) In this formula, M is the moment around the kingpin axis, so it is a value that can be found if the steering force is known, and N is the vertical load applied to the contact surface between the road surface and the tire of the steering wheel 25a, r is the scrub radius, Rw is the effective radius of the tire, and S is the force (side force) that acts in the horizontal direction perpendicular to the direction of travel of the tire at the contact surface between the road surface and the tire. This S is obtained from the formula S=Nfs (fs is the sideslip friction coefficient). Since this fs is a value that changes depending on the vehicle speed, S can be approximately estimated from the detection results of the vertical load detection means 41 and the vehicle speed detection means 40. Xs is expressed as Tsat/S, where Tsat is the self-aligning torque and is based on the vehicle type and steering wheel 2.
It is determined by the steering angle 5a. Therefore,
Xs can be roughly estimated if the vehicle type, steering angle, vehicle speed, and vertical load between the steered wheels and the road surface are determined. f is the coefficient of friction between the tires of the steering wheels 25a and the road surface. Further, ζ is an angle determined by the kingpin inclination angle δ and the caster angle β as shown in the following equation, that is, an angle that is naturally determined depending on the vehicle type.

tan2ζ=tan2δ+tan2β φeは操向車輪25aの操舵角である。したが
つて、M、N、φe、SおよびXsは操舵力、操向
車輪25aと路面との接触面に垂直方向にかかる
荷重、操向車輪25aの操舵角および車速を検出
することにより概算され、ζ、rおよびRwは車
種(仕様)により定まつているものであり、fだ
けが未知数として残る。このため、摩擦係数演算
装置33は、操舵角検出手段30、車速検出手段
40、垂直荷重検出手段41および操舵力検出手
段42が検出した検出値の出力信号が入力されれ
ば摩擦係数fが概算で演算できるようになつてい
る。そして、その演算結果を信号として電子制御
回路32に出力する。したがつて、操舵角検出手
段30、車速検出手段40、垂直荷重検出手段4
1および摩擦係数演算装置33は、全体として摩
擦係数検出手段を構成している。摩擦係数演算装
置33より信号が電子制御回路32に入力される
と、電子制御回路32は摩擦係数の値に応じた車
両減速度の所定値を演算して記憶する。すなわ
ち、摩擦係数が低い値のときは減速度の所定値も
低くする。減速度検出手段35および前後輪差動
制御検出手段31より信号が電子制御回路32に
入力され、車両の減速度が記憶された所定値以上
になり、かつ、前後輪差動制御手段26が差動機
能阻止方向に作動していないときは、電子制御回
路32は、前後輪差動制御手段26を差動機能阻
止方向に作動させるよう前後輪差動制御手段26
のソレノイド23に信号を出力するようになつて
いる。このように、この実施例によれば、タイヤ
と路面との間の摩擦係数が低い値のときにも車両
の制動効率を改善して優れた制動性能を発揮させ
ることができる。
tan 2 ζ=tan 2 δ+tan 2 β φe is the steering angle of the steering wheel 25a. Therefore, M, N, φe, S, and Xs can be roughly estimated by detecting the steering force, the load applied in the vertical direction to the contact surface between the steering wheel 25a and the road surface, the steering angle of the steering wheel 25a, and the vehicle speed. , ζ, r, and Rw are determined by the vehicle type (specifications), and only f remains as an unknown quantity. Therefore, the friction coefficient calculating device 33 can roughly calculate the friction coefficient f when output signals of the detection values detected by the steering angle detection means 30, the vehicle speed detection means 40, the vertical load detection means 41, and the steering force detection means 42 are input. It is now possible to calculate with . Then, the calculation result is output to the electronic control circuit 32 as a signal. Therefore, the steering angle detection means 30, the vehicle speed detection means 40, the vertical load detection means 4
1 and the friction coefficient calculation device 33 collectively constitute a friction coefficient detection means. When a signal is input from the friction coefficient calculating device 33 to the electronic control circuit 32, the electronic control circuit 32 calculates and stores a predetermined value of vehicle deceleration according to the value of the friction coefficient. That is, when the coefficient of friction is a low value, the predetermined value of deceleration is also set low. Signals are input from the deceleration detection means 35 and the front and rear wheel differential control detection means 31 to the electronic control circuit 32, and when the deceleration of the vehicle exceeds the stored predetermined value and the front and rear wheel differential control means 26 is When the electronic control circuit 32 is not operating in the direction of inhibiting the differential function, the electronic control circuit 32 causes the front and rear wheel differential control means 26 to operate in the direction of inhibiting the differential function.
A signal is output to the solenoid 23 of the As described above, according to this embodiment, even when the coefficient of friction between the tires and the road surface is low, the braking efficiency of the vehicle can be improved and excellent braking performance can be exhibited.

以上説明してきたように、この考案によれば、
車体と、車体に回転自在に支持される前車輪およ
び後車輪と、前車輪および後車輪にそれぞれ連結
され前車輪と後車輪との回転数差を吸収する前後
輪差動機構と、前後輪差動機構の作動機能を制限
あるいは阻止可能な前後輪差動制御手段と、を有
する4輪駆動車において、車両の減速度を検出す
る減速度検出手段と、減速度検出手段より信号を
入力して車両の減速度が所定値以上のときは前後
輪差動制御手段を差動機能阻止方向に作動させる
よう前後輪差動制御手段を制御する差動阻止手段
と、を備えた構成としたため、車両の急制動時に
おいて4つの車輪すべてが同時に制動停止するこ
とが可能となつて優れた制動性能を発揮させるこ
とができるという効果が得られる。また、乗員に
とつては、車両の急制動時にいちいち手動で前後
輪差動制御手段を差動阻止方向に作動させる必要
がないため、4輪駆動車の操作性の改善を図るこ
とができるという効果が得られる。さらに、制動
力が真に必要なときのみ4輪駆動による制動力が
付与されることから、駆動系の負担軽減に伴う耐
久性および運転フイーリングの向上を図ることが
できるとともに、タイトコーナーブレーキ現象を
適切に回避することができる。
As explained above, according to this idea,
A vehicle body, a front wheel and a rear wheel that are rotatably supported by the vehicle body, a front and rear wheel differential mechanism that is connected to the front and rear wheels and absorbs the difference in rotational speed between the front wheels and the rear wheels, and a front and rear wheel differential In a four-wheel drive vehicle having a front and rear wheel differential control means capable of limiting or blocking the operating function of a dynamic mechanism, a deceleration detection means for detecting deceleration of the vehicle and a signal input from the deceleration detection means are provided. and a differential blocking means that controls the front and rear wheel differential control means to operate the front and rear wheel differential control means in the differential function blocking direction when the deceleration of the vehicle is equal to or higher than a predetermined value. During sudden braking, all four wheels can be braked and stopped at the same time, resulting in excellent braking performance. In addition, for the occupants, there is no need to manually operate the front and rear wheel differential control means in the direction of blocking the differential every time the vehicle suddenly brakes, making it possible to improve the operability of four-wheel drive vehicles. Effects can be obtained. Furthermore, since braking force is applied by four-wheel drive only when braking force is truly needed, it is possible to improve durability and driving feel by reducing the load on the drive system, and to reduce the tight corner braking phenomenon. can be appropriately avoided.

また、他の実施例においては、車輪のタイヤと
路面との間の摩擦係数が低い値のときでも優れた
制動性能を発揮させることができるという効果が
得られる。
Further, in other embodiments, it is possible to obtain an effect that excellent braking performance can be exhibited even when the coefficient of friction between the tire of the wheel and the road surface is a low value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は操向車輪の操舵角が大きい場合の路面
における前車輪と後車輪とのそれぞれの回転半径
の差異を示す車両の平面図、第2図はこの考案に
係る4輪駆動車の一実施例を示す骨組図、第3図
は前後輪差動制御手段を示す部分断面概略図、第
4図は第2図に示す一実施例の信号系統を示すブ
ロツク図、第5図は他の実施例に係る4輪駆動車
の骨組図、第6図は第5図に示す他の実施例の信
号系統を示すブロツク図である。 1……車体、7……前後輪差動機構、7a……
デイフアレンシヤルケース、7b……ピニオンシ
ヤフト、7c……デイフアレンシヤルピニオン、
7d……サイドギヤ、16a,16b……後車
輪、23……ソレノイド、25a,25b……前
車輪、26……前後輪差動制御手段、27……前
後輪差動制御バルブ、29……油圧多板クラツ
チ、30……操舵角検出手段、31……前後輪差
動制御検出手段、32……電子制御回路(差動阻
止手段)、33……摩擦係数演算装置、35……
減速度検出手段、40……車速検出手段、41…
…垂直荷重検出手段、42……操舵力検出手段。
Figure 1 is a plan view of a vehicle showing the difference in the respective turning radii of the front wheels and rear wheels on a road surface when the steering angle of the steering wheel is large, and Figure 2 is a diagram of a four-wheel drive vehicle according to this invention. FIG. 3 is a partial cross-sectional schematic diagram showing the front and rear wheel differential control means, FIG. 4 is a block diagram showing the signal system of one embodiment shown in FIG. 2, and FIG. FIG. 6 is a schematic diagram of a four-wheel drive vehicle according to an embodiment, and FIG. 6 is a block diagram showing a signal system of another embodiment shown in FIG. 1... Vehicle body, 7... Front and rear wheel differential mechanism, 7a...
Differential case, 7b...Pinion shaft, 7c...Differential pinion,
7d... Side gear, 16a, 16b... Rear wheel, 23... Solenoid, 25a, 25b... Front wheel, 26... Front and rear wheel differential control means, 27... Front and rear wheel differential control valve, 29... Hydraulic pressure Multi-disc clutch, 30... Steering angle detection means, 31... Front and rear wheel differential control detection means, 32... Electronic control circuit (differential blocking means), 33... Friction coefficient calculation device, 35...
Deceleration detection means, 40...Vehicle speed detection means, 41...
... Vertical load detection means, 42 ... Steering force detection means.

Claims (1)

【実用新案登録請求の範囲】 (1) 車体と、車体に回転自在に支持される前車輪
および後車輪と、前車輪および後車輪にそれぞ
れ連結され前車輪と後車輪との回転数差を吸収
する前後輪差動機構と、前後輪差動機構の差動
機能を制限あるいは阻止可能な前後輪差動制御
手段と、を有する4輪駆動車において、車両の
減速度を検出する減速度検出手段と、減速度検
出手段より信号を入力して車両の減速度が所定
値以上のときは前後輪差動制御手段を差動機能
阻止方向に作動させるよう前後輪差動制御手段
を制御する差動阻止手段と、を備えたことを特
徴とする4輪駆動車。 (2) 前記4輪駆動車に、操向車輪と路面との間の
摩擦係数を検出する摩擦係数検出手段を備え、
前記差動阻止手段は摩擦係数検出手段より信号
を入力し、摩擦係数が低い値のときは前記減速
度の所定値もそれに応じて低いときに前後輪差
動制御手段を差動機能阻止方向に作動させるよ
う制御することを特徴とする実用新案登録請求
の範囲第1項記載の4輪駆動車。
[Scope of Claim for Utility Model Registration] (1) A vehicle body, a front wheel and a rear wheel that are rotatably supported by the vehicle body, and a vehicle that is connected to the front and rear wheels and absorbs the difference in rotational speed between the front wheels and the rear wheels. A deceleration detection means for detecting deceleration of a vehicle in a four-wheel drive vehicle having a front and rear wheel differential mechanism, and a front and rear wheel differential control means capable of limiting or blocking the differential function of the front and rear wheel differential mechanism. and a differential that controls the front and rear wheel differential control means so as to input a signal from the deceleration detection means and operate the front and rear wheel differential control means in the direction of blocking the differential function when the deceleration of the vehicle exceeds a predetermined value. A four-wheel drive vehicle comprising a blocking means. (2) The four-wheel drive vehicle is provided with a friction coefficient detection means for detecting a friction coefficient between the steered wheels and the road surface,
The differential blocking means inputs a signal from the friction coefficient detection means, and when the friction coefficient is a low value and the predetermined value of the deceleration is correspondingly low, the front and rear wheel differential control means is set in the differential function blocking direction. A four-wheel drive vehicle according to claim 1, characterized in that the four-wheel drive vehicle is controlled to operate.
JP1983048337U 1983-04-01 1983-04-01 4 wheel drive vehicle Granted JPS59154427U (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1983048337U JPS59154427U (en) 1983-04-01 1983-04-01 4 wheel drive vehicle
US06/589,774 US4538700A (en) 1983-04-01 1984-03-15 Four-wheel drive system with deceleration-responsive center differential control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1983048337U JPS59154427U (en) 1983-04-01 1983-04-01 4 wheel drive vehicle

Publications (2)

Publication Number Publication Date
JPS59154427U JPS59154427U (en) 1984-10-17
JPS6326245Y2 true JPS6326245Y2 (en) 1988-07-18

Family

ID=12800589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1983048337U Granted JPS59154427U (en) 1983-04-01 1983-04-01 4 wheel drive vehicle

Country Status (2)

Country Link
US (1) US4538700A (en)
JP (1) JPS59154427U (en)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4715467A (en) * 1984-03-27 1987-12-29 Fuji Jukogyo Kabushiki Kaisha Control system for a four-wheel drive vehicle
DE3418520A1 (en) * 1984-05-18 1985-11-21 Teves Gmbh Alfred SLIP-CONTROLLED BRAKE SYSTEM FOR ROAD VEHICLES WITH ALL-WHEEL DRIVE
JPS6194822A (en) * 1984-10-16 1986-05-13 Toyota Motor Corp Power transferring device for 4-wheel driven car
US4644822A (en) * 1985-02-11 1987-02-24 American Motors Corporation Transfer case for vehicle drivetrains
DE3505455A1 (en) * 1985-02-16 1986-08-28 Daimler-Benz Ag, 7000 Stuttgart DEVICE FOR AUTOMATICALLY SWITCHING ON AND OFF OF DRIVE ELEMENTS OF A MOTOR VEHICLE
JPH0623014B2 (en) * 1985-04-30 1994-03-30 富士重工業株式会社 Hydraulic control device for four-wheel drive
US4991679A (en) * 1985-06-21 1991-02-12 Honda Giken Kogyo Kabushiki Kaisha Four wheel-drive anti-locking braking
JPS624645A (en) * 1985-06-29 1987-01-10 Fuji Heavy Ind Ltd Hydraulic pressure control device of continuously variable speed change gear
US4770266A (en) * 1985-08-13 1988-09-13 Mazda Motor Corporation Brake control system for four-wheel drive vehicle
JPH0416741Y2 (en) * 1985-08-23 1992-04-15
JPS6255229A (en) * 1985-09-04 1987-03-10 Toyota Motor Corp Power transmission gear for four-wheel drive
DE3535090C2 (en) * 1985-10-02 1994-05-05 Teves Gmbh Alfred Slip-controlled brake system for all-wheel drive motor vehicles
JPH0689680B2 (en) * 1985-10-11 1994-11-09 日産自動車株式会社 Vehicle Traction Control Device
JPH0615325B2 (en) * 1985-10-11 1994-03-02 日産自動車株式会社 Wheel spin detector
DE3542417C2 (en) * 1985-11-30 1994-11-24 Teves Gmbh Alfred Arrangement for an anti-lock brake system
US4702341A (en) * 1985-12-13 1987-10-27 Toyota Jidosha Kabushiki Kaisha Four wheel drive vehicle slippage control device and method limiting center differential action according to input torque supplied thereto
US4677873A (en) * 1985-12-23 1987-07-07 Chrysler Motors Corporation Transfer case with inter-axle dual-planetary differential
DE3600870C1 (en) * 1986-01-15 1987-06-11 Daimler Benz Ag Switching device for two clutches for switching between standard single-axle drive and two-axle all-wheel drive in a motor vehicle with two drivable vehicle axles
US4699236A (en) * 1986-01-20 1987-10-13 Toyota Jidosha Kabushiki Kaisha Four wheel drive vehicle slippage control device and method limiting center differential action during transmission shifting
AT390406B (en) * 1986-02-11 1990-05-10 Steyr Daimler Puch Ag DRIVE ARRANGEMENT FOR MOTOR VEHICLES
JPH0643171B2 (en) * 1986-02-13 1994-06-08 アイシン・エィ・ダブリュ株式会社 Center-diff mechanism controller for four-wheel drive
US4805720A (en) * 1986-02-27 1989-02-21 Clenet Alain J M Vehicle drivetrain
MX160231A (en) * 1986-02-27 1990-01-10 Clenet Alain J M IMPROVEMENTS IN A DRIVE TRAIN FOR A VEHICLE
AT390409B (en) * 1986-04-25 1990-05-10 Steyr Daimler Puch Ag DRIVE ARRANGEMENT FOR MOTOR VEHICLES WITH AT LEAST TWO DRIVE AXLES
AT390410B (en) * 1986-04-29 1990-05-10 Steyr Daimler Puch Ag DRIVE ARRANGEMENT FOR MOTOR VEHICLES WITH AT LEAST TWO DRIVE AXLES
US4751856A (en) * 1986-05-22 1988-06-21 Toyota Jidosha Kabushiki Kaisha Device for controlling 4wd vehicle central differential restriction device according to vehicle road speed and engine load, and method of operation thereof
US4884651A (en) * 1986-07-24 1989-12-05 Mazda Motor Corporation Vehicle slip control apparatus
DE3631280A1 (en) * 1986-09-13 1988-03-24 Bosch Gmbh Robert SLIP-CONTROLLED BRAKE SYSTEM FOR ROAD VEHICLES WITH ALL-WHEEL DRIVE
US4755945A (en) * 1986-09-24 1988-07-05 General Motors Corporation Adaptive mode anti-lock brake controller
DE3633399C1 (en) * 1986-10-01 1987-07-09 Deere & Co Drive device of wheels of two axes
CA1294559C (en) * 1987-04-15 1992-01-21 Terutaka Takei Working vehicle
JP2516780B2 (en) * 1987-04-17 1996-07-24 本田技研工業株式会社 Bad road detection device when the vehicle is running
DE3714330A1 (en) * 1987-04-29 1988-11-10 Porsche Ag ARRANGEMENT FOR CONTROLLING THE POWER TRANSMISSION OF AN ALL-WHEEL DRIVE VEHICLE
US4936406A (en) * 1987-10-23 1990-06-26 Fuji Jukogyo Kabushiki Kaisha Power transmitting system for a four-wheel drive vehicle
US4937750A (en) * 1987-12-23 1990-06-26 Dana Corporation Electronic control for vehicle four wheel drive system
JP2575452B2 (en) * 1988-03-31 1997-01-22 日産自動車株式会社 Anti-skid control system for four-wheel drive vehicles
US5184695A (en) * 1988-06-10 1993-02-09 Honda Giken Kogyo Kabushiki Method for controlling a change-over between two and four-wheel drive modes for a vehicle
GB8819325D0 (en) * 1988-08-13 1988-09-14 Massey Ferguson Mfg Vehicle with multiple driven axles
US4962969A (en) * 1988-09-30 1990-10-16 Ford Motor Company Adaptive controller for regenerative and friction braking system
JPH0386625A (en) * 1989-08-28 1991-04-11 Fuji Heavy Ind Ltd Unequal torque distribution controller for four-wheel drive vehicle
JP3004283B2 (en) * 1989-08-28 2000-01-31 富士重工業株式会社 Unequal torque distribution control device for four-wheel drive vehicle
US5030182A (en) * 1990-02-14 1991-07-09 New Venture Gear, Inc. Full time power transfer case
JP2903720B2 (en) * 1991-01-11 1999-06-14 日産自動車株式会社 Driving force distribution control device for four-wheel drive vehicle
US5334116A (en) * 1992-12-31 1994-08-02 Dana Corporation All wheel drive transfer case having two wheel overdrive
GB9611819D0 (en) * 1996-06-06 1996-08-07 Rover Group A power train for a motor vehicle
DE19724490A1 (en) * 1996-06-12 1997-12-18 Ntn Toyo Bearing Co Ltd Torque coupling for transmission in four-wheeled vehicle
US6354675B1 (en) * 1997-05-22 2002-03-12 Japan Electronics Industry Ltd. ABS apparatus
WO2002032732A1 (en) * 2000-10-17 2002-04-25 Continental Teves Ag & Co. Ohg Method for improving the control response of an automatic slip control system
AT7553U1 (en) * 2004-02-23 2005-05-25 Magna Drivetrain Ag & Co Kg DRIVE TRAIN OF A ALL-ROAD GEARED VEHICLE
US7353927B2 (en) * 2005-09-28 2008-04-08 Dana Automotive Systems Group, Llc. Electro-magnetic actuator for torque coupling with variable pressure-control spool valve
US9878614B1 (en) 2016-01-27 2018-01-30 Textron Innovations Inc. All-terrain vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5572420A (en) * 1978-11-24 1980-05-31 Aisin Warner Ltd Four-wheel driving gear
JPS5766022A (en) * 1980-10-09 1982-04-22 Fuji Heavy Ind Ltd Four-wheel drive vehicle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4075538A (en) * 1976-05-19 1978-02-21 General Electric Company Adaptive acceleration responsive system
US4070924A (en) * 1976-05-21 1978-01-31 International Harvester Company Automatic control of lockable differentials
US4320813A (en) * 1979-12-10 1982-03-23 Caterpillar Tractor Co. Differential lock control
US4467886A (en) * 1980-01-23 1984-08-28 Rockwell International Corporation Vehicle drive control system
JPS5856921A (en) * 1981-09-29 1983-04-04 Fuji Heavy Ind Ltd Four wheel drive car

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5572420A (en) * 1978-11-24 1980-05-31 Aisin Warner Ltd Four-wheel driving gear
JPS5766022A (en) * 1980-10-09 1982-04-22 Fuji Heavy Ind Ltd Four-wheel drive vehicle

Also Published As

Publication number Publication date
US4538700A (en) 1985-09-03
JPS59154427U (en) 1984-10-17

Similar Documents

Publication Publication Date Title
JPS6326245Y2 (en)
US4582159A (en) Part-time four-wheel drive system with braking force responsive control
JPH0455891B2 (en)
JPH0351605B2 (en)
JPS59216731A (en) Four-wheel-drive vehicle
JP2527204B2 (en) Drive force distribution controller for four-wheel drive vehicle
US4609064A (en) Part-time four-wheel drive system with steering angle responsive control
JPH0127896B2 (en)
JPH0195939A (en) Driving power distribution control device for four-wheel-drive vehicle
JPS6311428A (en) Four wheel drive vehicle with front and rear wheel engaging mechanism
JP2583910B2 (en) Driving force distribution control method for front and rear wheel drive vehicles
JPS59184025A (en) Four-wheel-drive vehicle
US5437586A (en) Restrictive control system for differential
JPS62241732A (en) Driving force distribution controller for vehicle
JPS5856922A (en) Change-over controller for four wheel drive car
JPH111129A (en) Slip control device for four-wheel drive vehicle
JPS59160630A (en) Four-wheel-drive vehicle
JPH0439065Y2 (en)
JPH0735130B2 (en) Four-wheel drive vehicle
JPH076050Y2 (en) 4-wheel steering / anti-skid integrated control device
JPS62265028A (en) Controlling device for driving force distribution for vehicle
JPH06270708A (en) Differential limitting gear for vehicle
JPH0313091B2 (en)
JP3327964B2 (en) Automotive differential limiter
JPH0741804B2 (en) Break control device for four-wheel drive vehicle