JPS59184025A - Four-wheel-drive vehicle - Google Patents

Four-wheel-drive vehicle

Info

Publication number
JPS59184025A
JPS59184025A JP5726083A JP5726083A JPS59184025A JP S59184025 A JPS59184025 A JP S59184025A JP 5726083 A JP5726083 A JP 5726083A JP 5726083 A JP5726083 A JP 5726083A JP S59184025 A JPS59184025 A JP S59184025A
Authority
JP
Japan
Prior art keywords
rear wheel
differential
vehicle
wheels
control means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5726083A
Other languages
Japanese (ja)
Inventor
Kunihiko Suzuki
邦彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP5726083A priority Critical patent/JPS59184025A/en
Publication of JPS59184025A publication Critical patent/JPS59184025A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/06Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels acting otherwise than on tread, e.g. employing rim, drum, disc, or transmission or on double wheels

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

PURPOSE:To make it possible to simultaneously brake and stop all four wheels upon a vehicle being rapidly braked, so that the braking function is enhanced, by providing a differential function inhibiting means for operating a front and rear wheel differential control means in a differential function inhibiting direction when the braking force of the vehicle exceeds a predetermined value. CONSTITUTION:When a vehicle on running is rapidly braked in such a condition that a front and rear wheel differential control means 26 is not operated in a differential function inhibiting direction, braking force exceeds a predetermined value. A brake force detecting means 35 detects this braking force, and simultaneously, a fron and rear wheel differential control detecting means 31 detects such a condition that the control means 26 does not operate in the differential function inhibiting direction. When output signals from the detecting meand 35, 31 are delivered to an electronic control circuit 32, the circuit 32 delivers a signal to a solenoid 23 so that the control means 26 is operated in the differential function inhibiting direction. With this arrangment, a spool 27a in a valve 27 moves downward to increase the hydraulic pressure in an oil chamber 29a, and therefore, a multiple-disc clutch 29 is frictionally engaged. Then, the control means 26 is operated in the differential function inhibiting direction, and therefore, the differential function of a front and rear operating mechanism 7 is inhibited. Accordingly, all wheels are braked and stopped, simultaneously, thereby excellent braking function may be exhibited.

Description

【発明の詳細な説明】 この発明は、前後輪差動制御手段が差動機能阻止方向に
作動していないときに、車両の制動力が所定値以上にな
るとその前後輪差動制御手段が自動的に差動機能阻止方
向に作動して、車両制動時の制動性能を高めた4輪駆動
車に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention provides that when the front and rear wheel differential control means is not operating in the direction of inhibiting the differential function, when the braking force of the vehicle exceeds a predetermined value, the front and rear wheel differential control means automatically activates the front and rear wheel differential control means. The present invention relates to a four-wheel drive vehicle that operates in the direction of inhibiting the differential function to improve braking performance when braking the vehicle.

一般に、2輪駆動車は駆動摩擦力を発生させる車輪が2
輪だけなので坂道を登る力が弱く、2つの駆動輪のうち
1つでもオフロード(道路外)のぬかるみ等に入り込む
と左右軸の差動装置により全く駆動力を発生できなくな
り、さらに、車輪の半径より高い障害物を乗り越えるこ
とができない等の欠点を有している。このような2輪駆
動車の欠点を解決するためには4輪駆動車が従来用いら
れている。ところが、4輪駆動車は以上の欠点を解決す
ることはできるが、第1図に示すように、操向車輪の操
舵角θが大きくなって前車輪と後車輪との回転半径差(
R−r)が大きくなると前車輪の回転数(正確には左右
輪で異なるため平均回転数)と後車輪の回転数との間に
も大きな差が生じる。この場合、無理に車両を操舵しよ
うとすると、前車輪や後車輪に回転を伝達するプロペラ
シャフトやアクスルシャフトの両端部に非常に大きなト
ルクが発生してステアリングホイールの手応えがかたく
なったり、あるいは、前車輪および後車輪に互いに反対
方向のスリップを生して車両の操舵にアンダステア(操
舵角により本来得られるべき旋回半径よりもその旋回半
径が大きくなる現象)傾向を生じるとともに、その走行
を制動、停止、またはエンストを生じるような摩擦力で
タイトコーナブレーキと称されている)がタイヤに発生
する。このような事態を解決するために、前車輪と後車
輪との間に前後輪差動機構を設けた4輪駆動車がある。
Generally, a two-wheel drive vehicle has two wheels that generate driving friction force.
Since there are only wheels, the power to climb a slope is weak, and if one of the two drive wheels gets into muddy off-road (outside the road), the differential device on the left and right axles will not be able to generate any driving force, and furthermore, the wheel It has drawbacks such as not being able to overcome obstacles higher than the radius. Four-wheel drive vehicles have been conventionally used to overcome the drawbacks of two-wheel drive vehicles. However, although four-wheel drive vehicles can solve the above drawbacks, as shown in Fig. 1, the steering angle θ of the steering wheels increases, resulting in a difference in the turning radius between the front wheels and the rear wheels (
R-r) increases, a large difference also occurs between the rotation speed of the front wheels (more precisely, the average rotation speed since the left and right wheels differ) and the rotation speed of the rear wheels. In this case, if you try to forcefully steer the vehicle, a very large torque will be generated at both ends of the propeller shaft and axle shaft that transmit rotation to the front and rear wheels, making the steering wheel less responsive, or This causes the front wheels and rear wheels to slip in opposite directions, causing a tendency to understeer (a phenomenon in which the turning radius becomes larger than the one that should be obtained due to the steering angle), and also brakes the vehicle's running. Frictional force that causes the engine to stop or stall (referred to as tight corner braking) occurs on the tires. In order to solve this situation, there are four-wheel drive vehicles that are equipped with a front-rear wheel differential mechanism between the front wheels and the rear wheels.

と、ころが今度は、前後4車輪のうち1つでも車輪がぬ
かるみ等に入り込むと、左右輪の間の差動機構と前後輪
差動機構とが連動する結果、ぬかるみに入った車輪に全
てまたはほとんどの駆動力が供給されて空転してしまい
、他の3車輪全部が駆動力を失って、車両が進行困難に
なるという欠点がある。
Now, if even one of the four wheels in the front and rear gets into the mud, the differential mechanism between the left and right wheels and the front and rear wheel differential mechanism work together, and as a result, all of the wheels that got into the mud get stuck. Otherwise, most of the driving force is supplied and the wheel spins, causing all the other three wheels to lose driving force, making it difficult for the vehicle to proceed.

このような事態を解決するために、前後輪差動機構を備
えた4輪駆動車には、前後輪差動機構の差動機能を阻止
する方向に制御できる前後輪差動制御手段(ロックアン
プ機構やノン・スリップ・デフ機構)を設ける必要があ
る。すなわち、このような前後輪差動制御手段によれば
、前後輪差動機構の差動機能を阻止する方向に制御する
ことにより、前車輪および後車輪の一方がぬかるみ等に
入り込んでも、ぬかるみ外にある高い摩擦力を有する他
方の車輪に駆動トルクを伝達することが可能となる。ま
た、このような前後輪差動制御手段を備えた4輪駆動車
においては、その手段が差動機能阻止方向に作動してい
るときは、前車輪と後車輪とが駆動系統を介して一体的
に回転する。このため、車両の急制動時において、前車
輪および後車輪のいずれか一方が先に制動停止すること
はな(、前後4車輪が同時に制動停止できるようになっ
ており、車両の制動性能が非常に優れているという特性
を持っている。このような前後輪差動機構および前後輪
差動制御手段を設けた4輪駆動車としては、例えば特開
昭57−114727号に係るものがある。
To solve this situation, four-wheel drive vehicles equipped with front and rear differential mechanisms are equipped with front and rear differential control means (lock amplifiers) that can control the differential function of the front and rear differential mechanisms. mechanism or non-slip differential mechanism). In other words, according to such a front and rear wheel differential control means, even if one of the front wheels and the rear wheels gets into mud, etc., it is possible to prevent the front wheel or the rear wheel from moving out of the mud by controlling the front and rear wheels in a direction that blocks the differential function of the front and rear wheel differential mechanism. It becomes possible to transmit the driving torque to the other wheel which has a high frictional force. In addition, in a four-wheel drive vehicle equipped with such front and rear wheel differential control means, when the means is operating in the direction of blocking the differential function, the front wheels and rear wheels are integrated via the drive system. rotate. For this reason, when the vehicle suddenly brakes, either the front wheels or the rear wheels will not brake to a stop first (the front and rear wheels can brake to a stop at the same time, and the braking performance of the vehicle is extremely high. An example of a four-wheel drive vehicle equipped with such a front and rear wheel differential mechanism and front and rear wheel differential control means is disclosed in Japanese Patent Laid-Open No. 114727/1983.

しかしながら、このような4輪駆動車にありでは、車両
制動時の制動力の変動と前後輪差動制御手段の作動とは
無関係となっていたため、この手段を差動機能阻止方向
に作動させないで車両を急制動させる場合があり、その
場合には、上記のような優れた車両の制動特性を生がす
ことができないという問題点かあった。また、乗員にと
っては、車両の急制動時にいちいち2輪4輪切換手段を
作動させることは困難であり、その操作性の点で問題が
あった。
However, in such four-wheel drive vehicles, variations in braking force during vehicle braking are unrelated to the operation of the front and rear wheel differential control means, so this means cannot be operated in the direction of blocking the differential function. There are cases where the vehicle is suddenly braked, and in that case, there is a problem in that the above-mentioned excellent braking characteristics of the vehicle cannot be utilized. Furthermore, it is difficult for the occupant to operate the two-wheel/four-wheel switching means each time the vehicle is suddenly braked, which poses a problem in terms of operability.

この発明は、このような従来の問題点に着目してなされ
たもので、前後輪差動機構と前後輪差動制御手段とを有
する4輪駆動車において、制動力検出手段と、前後輪差
動制御検出手段と、車両の制動力が所定値以上になると
前後輪差動制御手段を差動機能阻止方向に作動させるよ
う制御する差動阻止手段とを備えることにより、上記問
題点を解決することを目的としている。
This invention was made by focusing on such conventional problems, and provides a four-wheel drive vehicle having a front and rear wheel differential mechanism and a front and rear wheel differential control means. The above-mentioned problem is solved by comprising a dynamic control detection means and a differential blocking means that controls the front and rear wheel differential control means to operate in the differential function blocking direction when the braking force of the vehicle exceeds a predetermined value. The purpose is to

以下、この発明を図面に基づいて説明する。The present invention will be explained below based on the drawings.

第2図は、この発明の一実施例を示す図である。まず構
成を説明すると、第2図において、lは車体であり、2
はこの車体lに支持されたエンジンである。このエンジ
ン2には変速機3および副変速機4が連結されている。
FIG. 2 is a diagram showing an embodiment of the present invention. First, to explain the configuration, in Fig. 2, l is the vehicle body, and 2
is an engine supported by this vehicle body l. A transmission 3 and an auxiliary transmission 4 are connected to the engine 2.

変速ta3には副変速機4の一部を構成するハイ・ロー
(2段変速)切換装置5が連結されており、ハイ・ロー
切換装置5には、その出力軸5aを介して、やはり副変
速機4の一部を構成する前後輪差動機構7が連結されて
いる。前後輪差動機構7は、ディファレンシャルケース
7aと、ディファレンシャルケース7aに固定されたピ
ニオンシャフト7bと、ピニオンシャフト7bに回転自
在に支持された2個のディファレンシャルピニオン7c
と、2個のディファレンシャルピニオン7cと常に噛合
する2個のサイドギヤ7dとを有している。一方のサイ
ドギヤ7dには後車輪用プロペラシャフト13の一端が
連結され、後車軸用プロペラシャフ目3の他端には後左
右輪差動機構14が連結されている。後左右輪差動機構
14の両側には、後車輪用アクスルシャフト15a、1
5bを介して左右の後車@16a、16bが連結してお
り、後左右輪差動機構14により左右の後車輪16a、
16bの回転数差を吸収できるようになっている。他方
のサイドギヤ7dには同一軸線上に第1チエーンホイー
ル18が連結されており、第1チエーンホイール】8は
チェーンヘル目9を介して第2チエーンホイール20と
連結している。第2チエーンホイール20の車軸には前
車輪用プロペラシャフト21の一端が連結しており、前
車輪用プロペラシャフト21の他端には前左右輪差動機
構22が連結されている。前左右輪差動機構22の両側
には前車輪用アクスル24a、24 bを介して左右の
前車輪25a、25 bが連結しており、前左右輪差動
機構22により左右の前車輪25a、25bの回転数差
を吸収できるようになっている。前後輪差動機構7のデ
ィファレンシャルケース7aと第1チエーンホイール1
8との間には前後輪差動制御手段26が介装されている
A high/low (two-speed) switching device 5, which constitutes a part of the sub-transmission 4, is connected to the shift ta3. A front and rear wheel differential mechanism 7 forming a part of the transmission 4 is connected. The front and rear wheel differential mechanism 7 includes a differential case 7a, a pinion shaft 7b fixed to the differential case 7a, and two differential pinions 7c rotatably supported by the pinion shaft 7b.
and two side gears 7d that are always in mesh with two differential pinions 7c. One end of a rear wheel propeller shaft 13 is connected to one side gear 7d, and a rear left and right wheel differential mechanism 14 is connected to the other end of the rear axle propeller shaft 3. Rear wheel axle shafts 15a, 1 are provided on both sides of the rear left and right wheel differential mechanism 14.
The left and right rear wheels @16a, 16b are connected via the rear wheel 5b, and the left and right rear wheels 16a, 16b are connected by the rear left and right wheel differential mechanism 14.
16b can absorb the difference in rotational speed. A first chain wheel 18 is connected to the other side gear 7d on the same axis, and the first chain wheel [8] is connected to a second chain wheel 20 via a chain heel 9. One end of a front wheel propeller shaft 21 is connected to the axle of the second chain wheel 20, and a front left and right wheel differential mechanism 22 is connected to the other end of the front wheel propeller shaft 21. Left and right front wheels 25a and 25b are connected to both sides of the front left and right wheel differential mechanism 22 via front wheel axles 24a and 24b. 25b can absorb the difference in rotation speed. Differential case 7a of front and rear wheel differential mechanism 7 and first chain wheel 1
Front and rear wheel differential control means 26 is interposed between the front and rear wheels 8.

この前後輪差動制御手段26は、第3図に示すように、
車両の変速機3等を含む油圧系統に連結された前後輪差
動制御バルブ27と、このバルブ27のスプール27a
に当接してこのスプール27aを移動可能な鉄心23a
を軸線部に収納したソレノイド23と、それを作動させ
る油圧がかかる油室29aが前後輪差動制御バルブ27
のボート(出入口)と連結された油圧多板クラッチ29
とを有している。油圧子−板クラッチ29は一対のクラ
ッチ・プレート29 b、29cを備えており、それら
の一方がディファレンシャルケース7dに、他方が第1
チエーンホイール18に連結されている。
This front and rear wheel differential control means 26, as shown in FIG.
A front and rear wheel differential control valve 27 connected to a hydraulic system including a vehicle transmission 3, etc., and a spool 27a of this valve 27.
Iron core 23a that can move this spool 27a in contact with
The solenoid 23 housed in the axis and the oil chamber 29a that receives the hydraulic pressure to operate it are the front and rear wheel differential control valves 27.
Hydraulic multi-disc clutch 29 connected to the boat (entrance/exit)
It has The hydraulic child plate clutch 29 includes a pair of clutch plates 29b and 29c, one of which is attached to the differential case 7d, and the other is attached to the first clutch plate.
It is connected to a chain wheel 18.

ソレノイド詔に流れる電流の大きさを調整することによ
り鉄心23aを移動させ、この鉄心23aが移動するこ
とによりそれが当接するスプー)527 aを移動させ
て前後輪差動制御バルブ27の油の流れを調整する。油
室29aに油圧を高くかければ油圧多板クラッチ29が
摩擦係合し、油室29aの油圧を低くすれば油圧多板ク
ラッチ29がスリップし、油室29aをドレンさせると
油圧多板クラッチ29の摩擦係合が外れるようになって
いる。28はその両端部が操向車輪としての前車輪25
a、25bに連結され、図外のステアリングホイールに
より駆動される操舵手段である。31は、油圧多板クラ
ッチ29の油室29aの油圧を測定して前後輪差動制御
手段26の作動、すなわち油圧多板クラッチ29の摩擦
係合の有無を検出する、前後輪差動制御検出手段である
。35は、図外のブレーキペダルを含む車体1に設けら
れた、車両の制動力を検出する制動力検出手段である。
By adjusting the magnitude of the current flowing through the solenoid, the iron core 23a is moved, and as this iron core 23a moves, the spout (527a) that it comes into contact with is moved to improve the oil flow of the front and rear wheel differential control valve 27. Adjust. If a high oil pressure is applied to the oil chamber 29a, the hydraulic multi-disc clutch 29 will be frictionally engaged, if the oil pressure in the oil chamber 29a is low, the hydraulic multi-disc clutch 29 will slip, and if the oil chamber 29a is drained, the hydraulic multi-disc clutch 29 will be engaged. The frictional engagement is released. 28 has front wheels 25 at both ends serving as steering wheels.
a, 25b, and is a steering means driven by a steering wheel (not shown). Reference numeral 31 indicates front and rear wheel differential control detection, which measures the oil pressure in the oil chamber 29a of the hydraulic multi-disc clutch 29 and detects the operation of the front and rear wheel differential control means 26, that is, the presence or absence of frictional engagement of the hydraulic multi-disc clutch 29. It is a means. 35 is a braking force detection means for detecting the braking force of the vehicle, which is provided on the vehicle body 1 and includes a brake pedal (not shown).

すなわち、ブレーキペダルに歪ゲージを取付けて、ブレ
ーキペダルのたわみ量から車両制動時の制動力を電子回
路により演算して検出せんとするものである。32は制
動力検出手段35および前後輪差動制御検出手段31よ
り信号を入力し、その信号結果によりソレノイド23に
信号を出力することができる電子制御回路である。この
電子制御回路32は、前後輪差動制御手段26を差動機
能阻止方向に作動させるよう制御する差動阻止手段の一
部を構成する。
That is, a strain gauge is attached to the brake pedal, and an electronic circuit calculates and detects the braking force during braking of the vehicle from the amount of deflection of the brake pedal. 32 is an electronic control circuit that can input signals from the braking force detection means 35 and the front and rear wheel differential control detection means 31 and output a signal to the solenoid 23 based on the signal results. This electronic control circuit 32 constitutes a part of differential blocking means that controls the front and rear wheel differential control means 26 to operate in the differential function blocking direction.

次に作用を説明する。今、前後輪差動制御手段26を差
動阻止方向に作動させずに運転しており、第1図に示す
ように、操向車輪としての前車輪25a、25bを操舵
してその操舵角θが大きくなると、前車輪25a、25
bと後車輪16a116bとの路面上の旋回半径(R,
r)に大きな差(R−r)が生じ、そのために前車輪2
5a、25 bと後車輪16a、16bとのそれぞれの
平均回転数の間にも大きな差が生じる。この平均回転数
の差は前後輪差動機構7が作動することにより吸収され
、車両は大きな操舵角θで操舵されながら円滑に旋回す
ることができる。このように前後輪差動制御手段26を
差動阻止方向に作動させない状態で車両が走行を続け、
何かの都合で車両が急制動されると、車両の制動力は所
定値以上になる。このとき、制動力検出手段35は車両
の制動力が所定値以上になったことを検出する。また同
時に、前後輪差動制御検出手段31は、前後輪差動制御
手段26が差動機能阻止方向に作動していないことを検
出している。したがって、これら制動力検出手段35お
よび前後輪差動制御検出手段31が出力した検出信号が
電子制御回路32に入力されると、第4図に示すように
、電子制御回路32は前後輪差動制御手段26を差動機
能阻止方向に作動させるようソレノイド23に信号を出
力する。電子制御回路32からの信号によりソレノイド
23への電流供給が次第に増大し、前後輪差動制御バル
ブ27のスプール27aの図中下方移動により油室29
aの油圧が高くなると油圧多板クラッチ29が摩擦係合
し、前後輪差動制御手段26が差動阻止方向に作動して
前後輪差動機構7の差動機能が阻止される。この結果、
前車輪25a、25’ bと後車輪IEia、16 b
とが駆動系統を介して一体的に回転するため、車両の急
制動時において、前車輪25a、25bおよび後車輪1
6a、16 bのいずれか一方が先に制動停止すること
なく車輪25 a、25b、16a、16bのすべてが
同時に制動停止し、非常に優れた制動性能を発揮させる
ことができる。また、乗員にとっては、車両の急制動時
にいちいち前後輪差動制御手段26を差動阻止方向に作
動させる必要がないため、4輪駆動車の操作性の改善を
図ることができる。
Next, the effect will be explained. Currently, the vehicle is being operated without operating the front and rear wheel differential control means 26 in the differential blocking direction, and as shown in FIG. becomes larger, the front wheels 25a, 25
The turning radius (R,
r), which causes a large difference (R-r) in front wheel 2.
A large difference also occurs between the respective average rotational speeds of the wheels 5a, 25b and the rear wheels 16a, 16b. This difference in average rotational speed is absorbed by the operation of the front and rear wheel differential mechanism 7, and the vehicle can turn smoothly while being steered at a large steering angle θ. In this way, the vehicle continues to run without operating the front and rear wheel differential control means 26 in the differential prevention direction,
When a vehicle is suddenly braked for some reason, the braking force of the vehicle becomes greater than a predetermined value. At this time, the braking force detection means 35 detects that the braking force of the vehicle has exceeded a predetermined value. At the same time, the front and rear wheel differential control detection means 31 detects that the front and rear wheel differential control means 26 is not operating in the differential function inhibiting direction. Therefore, when the detection signals outputted by the braking force detection means 35 and the front and rear wheel differential control detection means 31 are input to the electronic control circuit 32, the electronic control circuit 32 controls the front and rear wheel differential control as shown in FIG. A signal is output to the solenoid 23 to operate the control means 26 in the direction of inhibiting the differential function. The current supply to the solenoid 23 gradually increases in response to a signal from the electronic control circuit 32, and the spool 27a of the front and rear wheel differential control valve 27 moves downward in the figure, thereby increasing the oil chamber 29.
When the oil pressure at a increases, the hydraulic multi-disc clutch 29 is frictionally engaged, the front and rear wheel differential control means 26 is operated in the direction of blocking differential, and the differential function of the front and rear wheel differential mechanism 7 is blocked. As a result,
Front wheels 25a, 25'b and rear wheels IEia, 16b
Because the front wheels 25a, 25b and the rear wheels 1 rotate integrally through the drive system, when the vehicle suddenly brakes, the front wheels 25a, 25b and the rear wheels 1
All of the wheels 25a, 25b, 16a, and 16b are braked to a stop at the same time without any one of the wheels 6a and 16b being braked to a stop first, and extremely excellent braking performance can be exhibited. Further, for the occupant, there is no need to operate the front and rear wheel differential control means 26 in the differential prevention direction every time the vehicle is suddenly braked, so that the operability of the four-wheel drive vehicle can be improved.

なお、上記実施例ではブレーキペダルのたわみ量から車
両制動力を検出しているが、車両制動力を検出できるも
のであれば他の手段、たとえばブレーキ・マスクシリン
ダの油圧を検出することにより制動力を検出する手段で
あってもよい。
In the above embodiment, the vehicle braking force is detected from the amount of deflection of the brake pedal, but the braking force may be detected by other means as long as the vehicle braking force can be detected, such as by detecting the hydraulic pressure of the brake mask cylinder. It may also be a means for detecting.

第5図には、他の実施例を示す。FIG. 5 shows another embodiment.

この実施例は、前記実施例において備えられていた制動
力検出手段35および前後輪差動制御検出手段31の他
に、車輪のタイヤと路面との間の摩擦係数を検出する摩
擦係数検出手段を追加して備えたものである。タイヤと
路面との間の摩擦係数か低くなると当然車両の制動摩擦
力も小さくなって制動効率が悪化する。したがって、摩
擦係数が低くなったときは車両の減速度もそれに応じて
より低い所定値を設定し、それを越えたときに前後輪差
動制御手段26を差動機能阻止方向に作動させてやる必
要がある。このようにして車両の制動効率を向上させよ
うとするものである。第5図において、3oは、操舵手
段28の近傍の車体lに設けられ、牒舵手段28が移動
する状態を検知して操向車輪の操舵角を検出する操舵角
検出手段である。4oは、ハイ・ロー切換装置5の出力
軸5aの近傍の車体1に設けられ、出力軸5aの回転数
を検知して車両の速度を検出する車速検出手段である。
In addition to the braking force detection means 35 and the front and rear wheel differential control detection means 31 provided in the previous embodiment, this embodiment also includes a friction coefficient detection means for detecting the friction coefficient between the tire of the wheel and the road surface. This is an additional feature. As the coefficient of friction between the tires and the road surface decreases, the braking friction force of the vehicle also decreases, resulting in poor braking efficiency. Therefore, when the coefficient of friction becomes low, the deceleration of the vehicle is set to a lower predetermined value accordingly, and when the deceleration exceeds the predetermined value, the front and rear wheel differential control means 26 is operated in the direction of inhibiting the differential function. There is a need. In this way, the braking efficiency of the vehicle is improved. In FIG. 5, reference numeral 3o denotes a steering angle detecting means that is provided on the vehicle body l near the steering means 28 and detects the state in which the steering means 28 moves and detects the steering angle of the steered wheels. Reference numeral 4o denotes a vehicle speed detection means that is provided in the vehicle body 1 near the output shaft 5a of the high/low switching device 5 and detects the rotational speed of the output shaft 5a to detect the speed of the vehicle.

41は、操向車輪である前車輪25aの近傍の車体1に
設けられ、前車輪25aのタイヤと路面との接触面に垂
直方向にかかる力を概算して検出する垂直荷重検出手段
である。42は操舵手段28の一部に設けられ、図外の
ステアリンクホイールによって駆動されることにより発
生する操舵力を検出する操舵力検出手段である。33は
、操舵角検出手段30、車速検出手段40、垂直荷重検
出手段41および操舵力検出手段42より信号を入力し
、その信号結果によりタイヤと路面との間の摩擦係数を
演算する摩擦係数演算装置である。これらの信号結果に
より摩擦係数が演算できる理由としては次の通りである
。車両走行時のキングピン軸まわりのモーメントMを求
めるだめの式としては次に示すようになる。
A vertical load detection means 41 is provided on the vehicle body 1 near the front wheels 25a, which are steering wheels, and roughly detects the force applied in the vertical direction to the contact surface between the tires of the front wheels 25a and the road surface. Reference numeral 42 denotes a steering force detection means that is provided as a part of the steering means 28 and detects a steering force generated by being driven by a steering link wheel (not shown). 33 is a friction coefficient calculation which inputs signals from the steering angle detection means 30, vehicle speed detection means 40, vertical load detection means 41 and steering force detection means 42, and calculates the friction coefficient between the tires and the road surface based on the signal results. It is a device. The reason why the friction coefficient can be calculated from these signal results is as follows. The formula for determining the moment M around the king pin axis when the vehicle is running is as shown below.

M=Nsinζsinφe  (r +Rw sinζ
cosφe)+SRwsinζsinψe cosζ+
5Xscosζ+Nfrcosζ(自動車工学ハンドブ
ック8−16頁右掴下段、自動車技術余線より)この式
において、Mはキングピン軸まわりのモーメントである
から操舵力が分かれば求まる値であり、Nは路面と操向
車輪25aのタイヤとの接触面にかかる垂直方向の荷重
、rはスクラブ半径、Rwはタイヤの有効半径、Sは路
面とタイヤとの接触面においてタイヤの進行方向と直角
な水平方向に働く力(サイドフォース)である。このS
は、5=Nf’5(fsは横すべり摩擦係数)の式から
求められる。このfsは車速により変化する値であるの
で、結局Sは、垂直荷重検出手段41および車速検出手
段40の検出結果から概算できることになる。XsはT
sat/sで表され、Tsatはセルファライニングト
ルクであって車種と操向車輪25aの操舵角により求め
られる。したがって、Xsは車種、操舵角、車速および
操向車輪と路面との間の垂直荷重が定まれば概算できる
ことになる。fは操向車輪25aのタイヤと路面との間
の摩擦係数である。
M=Nsinζsinφe (r +Rw sinζ
cosφe)+SRwsinζsinψe cosζ+
5Xscosζ + Nfrcosζ (Automotive Engineering Handbook, page 8-16, bottom right corner, Automotive Technology Extra Line) In this formula, M is the moment around the kingpin axis, so it is a value that can be found if the steering force is known, and N is the value that can be found if the steering force is known. 25a, the vertical load applied to the contact surface with the tire, r is the scrub radius, Rw is the effective radius of the tire, and S is the force acting in the horizontal direction perpendicular to the tire traveling direction on the contact surface between the road surface and the tire (side force). This S
is obtained from the formula 5=Nf'5 (fs is the sideslip friction coefficient). Since this fs is a value that changes depending on the vehicle speed, S can be approximately estimated from the detection results of the vertical load detection means 41 and the vehicle speed detection means 40. Xs is T
It is expressed in sat/s, and Tsat is the self-lining torque and is determined based on the vehicle type and the steering angle of the steered wheels 25a. Therefore, Xs can be roughly estimated if the vehicle type, steering angle, vehicle speed, and vertical load between the steered wheels and the road surface are determined. f is the coefficient of friction between the tires of the steering wheels 25a and the road surface.

またζは、次式の如くキングピン傾斜角δとキャスタ角
βとで決まる角度、すなわち車種によりおのずと定まる
角度である。
Further, ζ is an angle determined by the kingpin inclination angle δ and the caster angle β as shown in the following equation, that is, an angle that is naturally determined depending on the vehicle type.

tan2ζ= ta’n”δ+tan2βφeば操向車
輪25aの操舵角である。したがって、M、N、φe、
SおよびXsは操舵力、操向車輪25aと路面との接触
面に垂直方向にかかる荷重、操向車輪25aの操舵角お
よび゛車速を検出することにより概算され、ζ、rおよ
びRW躍゛車種(仕様)により定まっているものであり
、fだげが未知数として残る。このため、摩擦係数演算
装置33は、操舵角検出手段30、車速検出手段40、
垂直荷重検出手段41および操舵力検出手段42が検出
した検出値の出力信号が入力されズtば摩擦係数fが概
算で演算できるようになっている。そして、その演算結
果を信号として電子制御回路32に出力する。したがっ
て、操舵角検出手段30、車速検出手段40、垂直荷重
検出手段41操舵力検出手段42および摩擦係数演算装
置33は、全体として摩擦係数検出手段を構成している
。摩擦係数演算装置33より信号が電子側1ali回路
32に入力されると、電子制御回路32は摩擦係数の値
に応じた車両制動力の所定値を演算して記憶する。すな
わち、摩擦係数が低い値のときは制動力の所定値も低(
する。制動力検出手段35および前後輪差動制御検出手
段31より信号が電子制御回路32に入力され、車両の
制動力が記憶された所定値以上になり、かつ、前後輪差
動制御手段26が差動機能阻止方向に作動していないと
きは、電子制御回路32は、前後輪差動制御手段26を
差動機能阻止方向に作動させるよう前後輪差動制御手段
26のソレノイド23に信号を出力するようになってい
る。このように、この実施例によれば、タイヤと路面と
の間の摩擦係数が低い値のときにも車両の制動効率を改
善して優れた制動性能を発揮させることができる。
tan2ζ=ta'n''δ+tan2βφe is the steering angle of the steering wheel 25a. Therefore, M, N, φe,
S and Xs are estimated by detecting the steering force, the load applied in the vertical direction to the contact surface between the steering wheel 25a and the road surface, the steering angle of the steering wheel 25a, and the vehicle speed, (specification), and the f deviation remains as an unknown quantity. Therefore, the friction coefficient calculation device 33 includes the steering angle detection means 30, the vehicle speed detection means 40,
By inputting the output signals of the detected values detected by the vertical load detecting means 41 and the steering force detecting means 42, the friction coefficient f can be approximately calculated. Then, the calculation result is output to the electronic control circuit 32 as a signal. Therefore, the steering angle detection means 30, the vehicle speed detection means 40, the vertical load detection means 41, the steering force detection means 42, and the friction coefficient calculation device 33 collectively constitute a friction coefficient detection means. When a signal is input from the friction coefficient calculating device 33 to the electronic side 1ali circuit 32, the electronic control circuit 32 calculates and stores a predetermined value of the vehicle braking force according to the value of the friction coefficient. In other words, when the coefficient of friction is low, the predetermined value of braking force is also low (
do. Signals are input from the braking force detecting means 35 and the front and rear wheel differential control detecting means 31 to the electronic control circuit 32, and when the braking force of the vehicle exceeds the stored predetermined value and the front and rear wheel differential control means 26 is When the front and rear wheel differential control means 26 is not operating in the differential function blocking direction, the electronic control circuit 32 outputs a signal to the solenoid 23 of the front and rear wheel differential control means 26 to operate the front and rear wheel differential control means 26 in the differential function blocking direction. It looks like this. As described above, according to this embodiment, even when the coefficient of friction between the tires and the road surface is low, the braking efficiency of the vehicle can be improved and excellent braking performance can be exhibited.

以上説明してきたように、この発明によれば、車体と、
車体に回転自在に支持される前車輪および後車輪と、前
車輪および後車輪にそれぞれ連結され前車輪と後車輪と
の回転数差を吸収する前後輪差動機構へ、前後輪差動機
構の作動機能を制限あるいは阻止可能な前後輪差動制御
手段と、を有する4輪駆動車において、車両の制動力を
検出する制動力検出手段と、前記前後輪差動制御手段の
作動機能阻止方向の作動の有無を検出する前後輪差動制
御検出手段と、制動力検出手段および前後輪差動制御検
出手段より信号を入力して車両の制動力が所定値以上に
なりかつ前後輪差動制御手段が作動機能阻止方向に作動
していないときは前後輪差動制御手段を差動機能阻止方
向に作動させるよう前後輪差動制御手段を制御する差動
阻止手段と、を備えた構成としたため、車両の急制動時
において4つの車輪すべてが同時に制動停止することが
可能となって優れた制動性能を発揮させることができる
という効果が得られる。また、乗員にとっては、車両の
急制動時にいちいち手動で前後輪差動制御手段を差動阻
止方向に作動させる必要がないため、4輪駆動車の操作
性の改善を図ることができるという効果が得られる。
As explained above, according to the present invention, the vehicle body and
The front and rear wheels are rotatably supported by the vehicle body, and the front and rear differential mechanism is connected to the front and rear wheels, respectively, and absorbs the difference in rotational speed between the front and rear wheels. A four-wheel drive vehicle having a front and rear wheel differential control means capable of limiting or blocking an operational function, a braking force detection means for detecting a braking force of the vehicle, and a front and rear wheel differential control means capable of inhibiting an operational function of the front and rear wheel differential control means. Front and rear wheel differential control detection means for detecting the presence or absence of operation; and a front and rear wheel differential control means that inputs signals from the braking force detection means and the front and rear wheel differential control detection means to ensure that the braking force of the vehicle exceeds a predetermined value. and differential blocking means for controlling the front and rear wheel differential control means to operate in the differential function blocking direction when the front and rear wheel differential control means is not operating in the differential function blocking direction. When the vehicle suddenly brakes, all four wheels can be braked and stopped at the same time, resulting in excellent braking performance. In addition, for the occupants, there is no need to manually operate the front and rear wheel differential control means in the differential blocking direction each time the vehicle suddenly brakes, which has the effect of improving the operability of the four-wheel drive vehicle. can get.

また、他の実施例においては、車輪のタイヤと路面との
間の摩擦係数が低い値のときでも優れた制動性能を発揮
させることができるという効果が得られる。
Further, in other embodiments, it is possible to obtain an effect that excellent braking performance can be exhibited even when the coefficient of friction between the tire of the wheel and the road surface is a low value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は操向車輪の操舵角が大きい場合の路面における
前車輪と後車輪とのそれぞれの回転半径の差異を示す車
両の平面図、第2図はこの発明に係る4輪駆動車の一実
施例を示す骨組図、第3図は前後輪差動制御手段を示す
部分断面積略図、第4図は第2図に示す一実施例の信号
系統を示すブロック図、第5図は他の実施例に係る4輪
駆動車の刊組図、第6図は第5図に示す他の実施例の信
号系統を示すフロック図である。 1−−−−−一車体、 7−−−−へ一前後輪差動機構、 7 a −−−−−ティファレンシ中ルケース、7b−
−−−ピニオンシャフト、 7C・−・−ディファレンシャルピニオン、7d−−−
−−−サイドギヤ、 16a、16 b −−−−−後車輪、23−−−−−
−ソレノイド、 25a、25 b −−−−一前車輪、26−・−前後
輪差動制御手段、 27−−−−−一前後輪差動制御パルブ、29−−−−
一油圧多板クラッチ、 30−−−−−一操舵角検出手段、 31−−−−−一前後輪差動制御検出手段、32−−−
−−一電子制御回路(差動阻止手段)、33−−−−一
摩擦係数演算装置、 35−−−−一制動力検出手段、 40−−−−一軍速検出手段、 41−−一−−・垂直荷重検出手段、 42−一−−・−操舵力検出手段。 特許出願人      日産自動車株式会社代理人弁理
士 有我軍一部
FIG. 1 is a plan view of a vehicle showing the difference in the turning radius of the front wheels and rear wheels on a road surface when the steering angle of the steering wheel is large, and FIG. 2 is a plan view of a four-wheel drive vehicle according to the present invention. FIG. 3 is a partial cross-sectional schematic diagram showing the front and rear wheel differential control means, FIG. 4 is a block diagram showing the signal system of one embodiment shown in FIG. 2, and FIG. 5 is a diagram showing another example. FIG. 6 is a block diagram showing the signal system of another embodiment shown in FIG. 5. 1-------One vehicle body, 7----One front and rear wheel differential mechanism, 7a------Tifferency middle case, 7b-
---Pinion shaft, 7C---Differential pinion, 7d---
--- Side gear, 16a, 16 b --- Rear wheel, 23 ---
-Solenoid, 25a, 25b ----One front wheel, 26--Front and rear wheel differential control means, 27----One front and rear wheel differential control valve, 29----
- Hydraulic multi-disc clutch, 30 - - Steering angle detection means, 31 - Front and rear wheel differential control detection means, 32 - -
---1 electronic control circuit (differential blocking means), 33---1 friction coefficient calculation device, 35--1 braking force detection means, 40--1 military speed detection means, 41--1- - Vertical load detection means, 42-1 - Steering force detection means. Patent Applicant Nissan Motor Co., Ltd. Representative Patent Attorney Agagun Part

Claims (2)

【特許請求の範囲】[Claims] (1)車体と、車体に回転自在に支持される前車輪およ
び後車輪と、前車輪および後車輪にそれぞれ連結され前
車輪と後車輪との回転数差を吸収する前後輪差動機構と
、前後輪差動機構の作動機能を制限あるいは阻止可能な
前後@□差動制御手段と、を有する4輪駆動車において
、車両の制動力を検出する制動力検出手段と、前記前後
輪差動制御手段の作動機能阻止方向の作動の有無を検出
する前後輪差動制御検出手段と、制動力検出手段および
前後輪差動制御検出手段より信号を入力して車両の逢I
j動力が所定値以上になりかつ前後輪差動制御手段が作
動機能阻止方向に作動していないときは前後輪差動制御
手段を差動機能阻止方向に作動させるよう前後輪差動制
御手段を制御する差動阻止手段と、を備えたことを特徴
とする4輪駆動車。
(1) A vehicle body, a front wheel and a rear wheel that are rotatably supported by the vehicle body, and a front and rear wheel differential mechanism that is connected to the front wheels and the rear wheels, respectively, and absorbs the difference in rotational speed between the front wheels and the rear wheels; In a four-wheel drive vehicle having front and rear @□ differential control means capable of limiting or blocking the operating function of the front and rear wheel differential mechanism, a braking force detection means for detecting the braking force of the vehicle, and the front and rear wheel differential control. Front and rear wheel differential control detection means detects whether or not the means operates in the direction of inhibiting the operation function, and signals are input from the braking force detection means and the front and rear wheel differential control detection means to detect the vehicle speed.
j When the power exceeds a predetermined value and the front and rear wheel differential control means is not operating in the direction of inhibiting the differential function, the front and rear wheel differential control means is configured to operate in the direction of inhibiting the differential function. A four-wheel drive vehicle characterized by comprising: differential blocking means for controlling.
(2)前記4輪駆動車に、操向車輪と路面との間の摩擦
係数を検出する摩擦係数検出手段を備え、前記差動阻止
手段は、摩擦係数検出手段より信号を入力し、摩擦係数
が低い値のときは前記制動力の所定値もそれに応じて低
いXきに前後輪差動制御手段を差動機能阻止方向に作動
させるよう制御することを特徴とする特許請求の範囲第
1項記載の4輪駆動車。
(2) The four-wheel drive vehicle is provided with a friction coefficient detection means for detecting a friction coefficient between the steered wheels and the road surface, and the differential blocking means receives a signal from the friction coefficient detection means and receives a friction coefficient from the friction coefficient detection means. Claim 1: When the predetermined value of the braking force is low, the predetermined value of the braking force is correspondingly low and the front and rear wheel differential control means is controlled to operate in the direction of inhibiting the differential function. 4 wheel drive vehicle as described.
JP5726083A 1983-04-01 1983-04-01 Four-wheel-drive vehicle Pending JPS59184025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5726083A JPS59184025A (en) 1983-04-01 1983-04-01 Four-wheel-drive vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5726083A JPS59184025A (en) 1983-04-01 1983-04-01 Four-wheel-drive vehicle

Publications (1)

Publication Number Publication Date
JPS59184025A true JPS59184025A (en) 1984-10-19

Family

ID=13050553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5726083A Pending JPS59184025A (en) 1983-04-01 1983-04-01 Four-wheel-drive vehicle

Country Status (1)

Country Link
JP (1) JPS59184025A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277225A (en) * 1985-09-30 1987-04-09 Aisin Warner Ltd Automatic change over device for four-wheel-drive vehicle
EP0226472A2 (en) * 1985-12-13 1987-06-24 Toyota Jidosha Kabushiki Kaisha Four wheel drive vehicle slippage control device
JPS62181922A (en) * 1986-01-15 1987-08-10 ダイムラ−−ベンツ アクチエンゲゼルシヤフト Changeover device for two clutch conducting changeover between standard one axle drive and two axle whole-wheel drive of automobile with two axle which can be driven
JPS62187623A (en) * 1986-02-13 1987-08-17 Aisin Warner Ltd Controller for center diff mechanism of 4-wheel driving vehicle
JPS6311428A (en) * 1986-06-30 1988-01-18 Aisin Warner Ltd Four wheel drive vehicle with front and rear wheel engaging mechanism
US4768609A (en) * 1986-03-19 1988-09-06 Toyota Jidosha Kabushiki Kaisha Four wheel drive vehicle central differential torque transfer control device and method limiting torque on front wheels or on rear wheels

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277225A (en) * 1985-09-30 1987-04-09 Aisin Warner Ltd Automatic change over device for four-wheel-drive vehicle
EP0226472A2 (en) * 1985-12-13 1987-06-24 Toyota Jidosha Kabushiki Kaisha Four wheel drive vehicle slippage control device
JPS62181922A (en) * 1986-01-15 1987-08-10 ダイムラ−−ベンツ アクチエンゲゼルシヤフト Changeover device for two clutch conducting changeover between standard one axle drive and two axle whole-wheel drive of automobile with two axle which can be driven
JPH022738B2 (en) * 1986-01-15 1990-01-19 Daimler Benz Ag
JPS62187623A (en) * 1986-02-13 1987-08-17 Aisin Warner Ltd Controller for center diff mechanism of 4-wheel driving vehicle
US4768609A (en) * 1986-03-19 1988-09-06 Toyota Jidosha Kabushiki Kaisha Four wheel drive vehicle central differential torque transfer control device and method limiting torque on front wheels or on rear wheels
JPS6311428A (en) * 1986-06-30 1988-01-18 Aisin Warner Ltd Four wheel drive vehicle with front and rear wheel engaging mechanism

Similar Documents

Publication Publication Date Title
JPS6326245Y2 (en)
JPH0455891B2 (en)
JPH0351605B2 (en)
JPH0411412B2 (en)
JPS59216731A (en) Four-wheel-drive vehicle
JP2527204B2 (en) Drive force distribution controller for four-wheel drive vehicle
JPH0313092B2 (en)
JPH0127896B2 (en)
JPS59184025A (en) Four-wheel-drive vehicle
US5437586A (en) Restrictive control system for differential
JPS5856922A (en) Change-over controller for four wheel drive car
JPS62241732A (en) Driving force distribution controller for vehicle
JP3055709B2 (en) Control device for rear wheel differential limiter
JP3100419B2 (en) Control device for rear wheel differential limiter
JPS59160630A (en) Four-wheel-drive vehicle
JPH0439065Y2 (en)
JPS58178040A (en) Diff lock apparatus
JPH0735130B2 (en) Four-wheel drive vehicle
JP2731922B2 (en) Torque distribution control device for four-wheel drive vehicle
JPH06270708A (en) Differential limitting gear for vehicle
JP3327964B2 (en) Automotive differential limiter
JPH076050Y2 (en) 4-wheel steering / anti-skid integrated control device
JPS62265028A (en) Controlling device for driving force distribution for vehicle
JPH05104973A (en) Control device for rear wheel differential limiting device
JPH056182Y2 (en)