JPS63261625A - Manufacture of superconductive thin film - Google Patents

Manufacture of superconductive thin film

Info

Publication number
JPS63261625A
JPS63261625A JP62096648A JP9664887A JPS63261625A JP S63261625 A JPS63261625 A JP S63261625A JP 62096648 A JP62096648 A JP 62096648A JP 9664887 A JP9664887 A JP 9664887A JP S63261625 A JPS63261625 A JP S63261625A
Authority
JP
Japan
Prior art keywords
group
metal
thin film
substrate
cathodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62096648A
Other languages
Japanese (ja)
Inventor
Masayasu Nigami
正安 丹上
Koji Okamoto
康治 岡本
Eiji Kamijo
栄治 上條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP62096648A priority Critical patent/JPS63261625A/en
Publication of JPS63261625A publication Critical patent/JPS63261625A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To form a superconductive thin film on the surface of a substrate by applying the negative bias voltage to a holder and eroding cathodes made of the group IIIa, group IIa and group Ib metals or their alloys by the vacuum arc discharge. CONSTITUTION:An arc is ignited across a trigger electrode 7 and cathodes 1-3 by the inductance component of a feeding path, the sufficient energy is applied to the cathodes 1-3 for erosion, the metal vapor made of the group Ib metal, group IIa metal, and group IIIa metal is generated and ionized, and the arc is transferred and continued across the cathodes 1-3 and a vacuum container 4. As a result, the ionized plasma is generated in the oxygen or fluorine gas atmosphere in the vacuum container 4, metal ions and gas molecules are reacted, and a superconductive thin film is formed on the surface of a substrate 10. When the arc current is controlled, the dissolution quantity of the cathodes 1-3 can be adjusted. The element ratios of the group Ib metal, group IIa metal and group IIIa metal of the thin film formed on the surface of the substrate 10 can be thereby adjusted.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は超電導薄膜の製造方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for manufacturing a superconducting thin film.

(背景となる技術およびその問題点) 超電導材料の応用分野として、たとえばジョセフソン素
子や5QUIDセンサーなど各種クライオエレクトロニ
クスデパスがきわめて有望である。
(Background technology and its problems) As an application field of superconducting materials, various cryoelectronic devices such as Josephson devices and 5QUID sensors are extremely promising.

ところが、従来の超電導材料は、焼結により酸化物セラ
ミックスを製作しており、その薄膜化が困難であった。
However, conventional superconducting materials are made of oxide ceramics by sintering, and it is difficult to make them thin.

この発明は上述の事柄に鑑み、基体の表面に超電導薄膜
を形成することを目的とする。
In view of the above-mentioned problems, the present invention aims to form a superconducting thin film on the surface of a substrate.

(問題点を解決するための手段) この発明は酸素または弗素ガス雰囲気中において、基体
またはこれを保持するホルダに負のバイアス電圧を印加
した状態で、Ia族金属とIa族金属とIb族金属また
はこれらの合金からなるカソードを、真空アーク放電に
よってエロージヨンすることにより、基体表面に超電導
薄膜を形成することを特徴とする。
(Means for Solving the Problems) The present invention provides a method for forming a group Ia metal, a group Ia metal, and a group Ib metal in an oxygen or fluorine gas atmosphere while applying a negative bias voltage to a substrate or a holder holding the substrate. Alternatively, a superconducting thin film is formed on the surface of the substrate by eroding a cathode made of these alloys by vacuum arc discharge.

(作用) カソードは真空アーク放電により二ロージョンされ、l
la族金属とIa族金属とIb族金属またはこれらの合
金からなる金属蒸気を発生し、これがイオン化されてプ
ラズマを生成する。このプラズマ中のイオン粒子は、負
のバイアス電圧によって基体表面に引きつけられ、その
際雰囲気中の酸素または弗素ガス分子と反応し、気相物
理蒸着1こより基体表面に超電導薄膜が形成される。
(Function) The cathode is subjected to two injections by vacuum arc discharge, and
A metal vapor consisting of a group Ia metal, a group Ia metal, a group Ib metal, or an alloy thereof is generated, and this is ionized to generate plasma. Ion particles in this plasma are attracted to the substrate surface by a negative bias voltage, and at this time react with oxygen or fluorine gas molecules in the atmosphere, forming a superconducting thin film on the substrate surface by vapor phase physical vapor deposition.

(実施例) 以下この発明の一実施例を図によって説明する。(Example) An embodiment of the present invention will be described below with reference to the drawings.

図はこの発明に使用するのに適した薄膜形成装置を示す
。1はCu、 Ag、 Auなどのtb族金属からなる
カソード、2はCa、 Sr、 Ba、 RaなどcD
Ia族金属からなるカソード、3はSc、 Y、 La
、 Ce、 Pr。
The figure shows a thin film forming apparatus suitable for use with the present invention. 1 is a cathode made of a tb group metal such as Cu, Ag, or Au, and 2 is a cD such as Ca, Sr, Ba, or Ra.
Cathode made of group Ia metal, 3 is Sc, Y, La
, Ce, Pr.

Nd、 Pm、 Sm、 Eu、 Gd、 Tb、 D
y、 Ho、 Er、 Tm。
Nd, Pm, Sm, Eu, Gd, Tb, D
y, Ho, Er, Tm.

Yb、LuなどのIa族金属からなるカソードで、これ
らカソード1〜′5は図示しない絶縁物を介して真空容
器4に気密状態に取付けられている。
The cathodes 1 to '5 are made of group Ia metals such as Yb and Lu, and are airtightly attached to the vacuum container 4 via an insulator (not shown).

5は真空容器4の外部に設けられたトリガ電極駆動用の
金属製のエアシリンダで、このエアシリンダ5の金属製
のピストンロッド6は、真空容器4を気密に進退自在に
貫通し、かつ真空容器4から電気的に絶縁されている。
Reference numeral 5 denotes a metal air cylinder for driving a trigger electrode provided outside the vacuum container 4. A metal piston rod 6 of this air cylinder 5 passes through the vacuum container 4 in a hermetic manner so as to be freely movable and retractable. It is electrically insulated from the container 4.

このピストンロッド6の先端にはかぎ形状に折曲したワ
イヤ状のトリガ電極7が、その先端を前記カソード1〜
6に対応するように固着されている。
A wire-shaped trigger electrode 7 bent into a hook shape is attached to the tip of the piston rod 6, and its tip is connected to the cathode 1 to
It is fixed to correspond to 6.

各カソード1〜3と真空容器4との間には、それぞれア
ーク電s8を、各トリガ電極7と真空容器4との間には
、それぞれ電流制限用の抵抗9を接続し、各カソード1
〜6と真空容器4間にアーク電圧を、また各トリガ電極
7と真空容器4間にトリガ電圧をそれぞれ印加するよう
に構成する。
An arc current s8 is connected between each cathode 1 to 3 and the vacuum vessel 4, and a current limiting resistor 9 is connected between each trigger electrode 7 and the vacuum vessel 4.
6 and the vacuum container 4, and a trigger voltage is applied between each trigger electrode 7 and the vacuum container 4, respectively.

10はその表面に超wL導倚嗅が形成される基体で、こ
の基体10またはこれを保持するホルダ11と真空容器
4との間にバイアス電#12を接続し、基体10または
これを保持するホルダ11に10〜500v程度の負の
バイアス電圧を印加するようにも1成する。前記ホルダ
11は基板10を保持した状態で成膜中矢印のよう回転
するように形、成されている。
Reference numeral 10 denotes a base on which an ultra-wL conductor is formed, and a bias voltage #12 is connected between the base 10 or a holder 11 that holds it and the vacuum container 4, and the base 10 or a holder that holds this is connected. A negative bias voltage of approximately 10 to 500 V is applied to the circuit 11. The holder 11 is shaped and configured to rotate as shown by the arrow during film formation while holding the substrate 10.

16は真空容器4内に、酸素または弗素ガスを導入する
ための導入ノズルで、14は酸素または弗素ガスボンベ
である。15はバルブ、16は真空容器4内を10−3
〜10−’ Torr程度に排気するため゛の真空ポン
プである。
16 is an introduction nozzle for introducing oxygen or fluorine gas into the vacuum container 4, and 14 is an oxygen or fluorine gas cylinder. 15 is the valve, 16 is the inside of the vacuum container 4 10-3
This is a vacuum pump for evacuation to about 10-' Torr.

以上の構成において、真空容器4内を10−3〜1O−
6Torr程度の真空に排気した後、バルブ15を開き
、10−1〜10−4Torr程度の酸素または弗素ガ
スを導入し、前記基体10に負のバイアス電圧を印加し
た状態で、図示しないバルブを操作してエアシリンダ5
のピストンロッド6を後退させ、各カソード1〜3に各
トリガ電極7の先端を接触させる。ξの結果、各アーク
電源8によって各トリガ電極7と各カソード1〜3間に
各抵抗?で制限された各電流が流れる。
In the above configuration, the inside of the vacuum container 4 is 10-3 to 1O-
After evacuating to a vacuum of about 6 Torr, the valve 15 is opened and oxygen or fluorine gas of about 10-1 to 10-4 Torr is introduced, and while a negative bias voltage is applied to the base 10, a valve (not shown) is operated. and air cylinder 5
The piston rod 6 is moved back, and the tip of each trigger electrode 7 is brought into contact with each of the cathodes 1 to 3. As a result of ξ, each arc power source 8 connects each resistor between each trigger electrode 7 and each cathode 1 to 3? Each current limited by .

その後、図示しないバルブを操作してエアシリンダ5の
ピストンロッド6を前進させ、トリガ電極7を各カソー
ド1〜3から離す。このときに上記の給電路のインダク
タンス成分によって各トリガ電極7と各カソード1〜3
との間に種火となるアークが点弧し、このアークによっ
て各カソード1〜3に十分なエネルギーが与えられ、カ
ソード1〜3はエロージョンされ、Ib族金属、lla
族金属および厘a族金属からなる金属蒸気が発生しイオ
ン化され、前記アークが各カソード1〜6と真空容器4
との間に移行し持続、する。仁の結果、真空容器4内の
酸素または弗素ガス雰囲気中に、イオン化プラズマが生
成され、これが負のバイアス電圧によって基体10に引
きつけられ、その際これら金属イオンとガス分子とが反
応し、気相物理蒸着により基体10表面に超電導薄膜が
形成される。
Thereafter, the piston rod 6 of the air cylinder 5 is moved forward by operating a valve (not shown), and the trigger electrode 7 is separated from each of the cathodes 1 to 3. At this time, each trigger electrode 7 and each cathode 1 to 3 are
An arc serving as a pilot fire is ignited between the two, and sufficient energy is given to each cathode 1 to 3 by this arc, and the cathodes 1 to 3 are eroded, and the Ib group metal
Metal vapor consisting of Group A metals and Group A metals is generated and ionized, and the arc connects each cathode 1 to 6 and the vacuum vessel 4.
transition between and persist and do. As a result of this, an ionized plasma is generated in the oxygen or fluorine gas atmosphere in the vacuum vessel 4, which is attracted to the substrate 10 by a negative bias voltage, during which these metal ions and gas molecules react, and the gas phase A superconducting thin film is formed on the surface of the base 10 by physical vapor deposition.

前記アーク電流を制御することにより、各カソード1〜
3のエロージョン、すなわち溶解量を調整でキ、シたが
って、これにより基体10表面に形成される薄膜のIb
族金属、Ia族金属およびIa族金属の元素割合を調整
する仁とができる。
By controlling the arc current, each cathode 1~
3.Erosion, that is, the amount of dissolution can be adjusted, so that the Ib of the thin film formed on the surface of the substrate 10 is reduced.
It is possible to adjust the element proportions of group metals, group Ia metals, and group Ia metals.

また、前記カソード1〜6に代えて、Ib族金属、Ia
族金属および璽a族金属の元素を、所望割合に調合し合
金化したものをカソードとして用いても、あるいは、合
金化したものと単一元素からなるものとを組合せて構成
してもよいのは勿論である。
Moreover, in place of the cathodes 1 to 6, group Ib metal, Ia
The cathode may be formed by mixing and alloying group metals and B-A group metals in desired proportions, or by combining an alloyed material with a single element. Of course.

前記アーク電源8としては、通常1〜1000 Aの範
囲で定電流動作が可能で、トリガ電極7に放電時のアー
ク電圧として5〜100v供給できるものであればよい
The arc power source 8 may be of any type as long as it is capable of constant current operation in the range of 1 to 1000 A and can supply the trigger electrode 7 with an arc voltage of 5 to 100 V during discharge.

前述のアークが消弧した場合には、再度エアシリンダ5
にてトリガ電極7を再度駆動し、再点弧すればよい。ま
た、前記エアシリンダ5に代えて電磁石などを用いてト
リガ電極7を機械的に駆動してもよい。更には、トリガ
電極7を機械的に駆動せず、電気的にたとえば、抵抗9
に代えてコンデンサと振動抑止抵抗とギャップスイッチ
の直列回路を接続し、前記コンデンサを予じめ充電電源
によって充電しておき、始動電源によりギャップスイッ
チに火花放電を生じさせ、これによってカソード1〜6
とトリガfQ!83i17との間で前記コンデンサの充
電電圧に基づいてアーク放電を生じさせるようにしても
よい。
When the aforementioned arc is extinguished, the air cylinder 5 is turned on again.
What is necessary is to drive the trigger electrode 7 again and re-ignite it. Furthermore, instead of the air cylinder 5, an electromagnet or the like may be used to mechanically drive the trigger electrode 7. Furthermore, the trigger electrode 7 is not driven mechanically, but electrically, for example, by a resistor 9.
Instead, a series circuit of a capacitor, a vibration suppression resistor, and a gap switch is connected, and the capacitor is charged in advance by a charging power source, and a spark discharge is caused in the gap switch by the starting power source, thereby causing cathodes 1 to 6 to
and trigger fQ! 83i17 may be generated based on the charging voltage of the capacitor.

次に本発明者が行なった成膜実験について説明する。Next, a film forming experiment conducted by the present inventor will be explained.

(成膜実験その1) カソード1〜6としてCu、 Ba、 Yの純金属を用
い、基体10として予じめフレオン系洗浄装置により洗
浄したステンレス板を用い、このステンレス板をホルダ
11にて保持した後、真空容器4内を10  Torr
以下に排気し、その後水素とヘリウムの混合ガスを10
0mTorr導入し、ステンレス板にバイアス電圧10
00V印加し、グロー放電を起こし、ステンレス板から
なる基体10の放電洗浄を行なった。
(Film forming experiment 1) Pure metals such as Cu, Ba, and Y were used as the cathodes 1 to 6, and a stainless steel plate that had been previously cleaned with a freon-based cleaning device was used as the substrate 10, and this stainless steel plate was held in the holder 11. After that, the inside of the vacuum container 4 is set to 10 Torr.
Evacuate to below, then add a mixture of hydrogen and helium gas to 10
0 mTorr is introduced, and a bias voltage of 10 is applied to the stainless steel plate.
00V was applied to generate glow discharge, and the base 10 made of a stainless steel plate was discharge-cleaned.

その後、真空容器4内を1O−6Torrまで排気して
からフッ化アルゴンガスを導入し、真空容器4内のフッ
化アルゴンガス圧力が20mTorrになるように調整
しつつ、ステンレス板からなる基体10に一300Vの
負のバイアス電圧を印加し、ホルダ11を4rpmで回
転した状態で、前記各カソード1〜6を陰極、真空容器
4を陽極とし、前記Cuからなるカソード1には90A
1Baからなるカソード2には50A、Yからなるカソ
ードには80Aのアーク電流をそれぞれ流し、真空アー
ク放電を起して成膜実験を行なった。
Thereafter, the inside of the vacuum container 4 is evacuated to 10-6 Torr, and then argon fluoride gas is introduced, and while adjusting the argon fluoride gas pressure in the vacuum container 4 to 20 mTorr, the substrate 10 made of a stainless steel plate is heated. - Applying a negative bias voltage of 300 V and rotating the holder 11 at 4 rpm, each of the cathodes 1 to 6 is used as a cathode, the vacuum container 4 is used as an anode, and the cathode 1 made of Cu is heated at 90 A.
An arc current of 50 A was applied to the cathode 2 made of 1Ba, and an arc current of 80 A was applied to the cathode made of Y to generate a vacuum arc discharge to conduct a film formation experiment.

これによってステンレス板からなる基体10の表面に、
厚゛さ1μmのBa−Y−Cu弗化物からなる超電導薄
膜を形成した。この超電導薄膜に金電極を蒸着し、液体
窒素中で電気抵抗を測定したところ0であった。
As a result, on the surface of the base body 10 made of a stainless steel plate,
A superconducting thin film made of Ba-Y-Cu fluoride with a thickness of 1 μm was formed. A gold electrode was deposited on this superconducting thin film, and the electrical resistance was measured in liquid nitrogen and found to be 0.

(成膜実験その2) カソードとして、Y、 Ba、 Cuの粉末をモル比で
3:6:4の割合で混合し、加熱静水圧法にて焼結した
ものを、また基体10としてステンレス板を用い、この
ステンレス板を前記成膜実験その1と同様、予じめフレ
オン系洗浄および放電洗浄を行なった後、真空容器4内
を1O−6Torrまで排気してから酸素ガスを導入し
、真空容器4内の酸素ガス圧力が20mTorrになる
ように調整しつつ、ステンレス板からなる基体10に一
400Vの負のバイアス電圧を印加した状態で、前記カ
ソードを陰極、真空容器4を陽極として100Aのアー
ク電流を流し、真空アーク放電を起して成膜実験を行な
った。
(Film Forming Experiment Part 2) As a cathode, a mixture of powders of Y, Ba, and Cu in a molar ratio of 3:6:4 was sintered using a heating isostatic pressure method, and as a substrate 10, a stainless steel plate was used. This stainless steel plate was previously subjected to freon cleaning and discharge cleaning in the same manner as in the film formation experiment part 1, and then the inside of the vacuum chamber 4 was evacuated to 10-6 Torr, oxygen gas was introduced, and vacuum While adjusting the oxygen gas pressure in the container 4 to 20 mTorr and applying a negative bias voltage of -400 V to the base 10 made of a stainless steel plate, a voltage of 100 A was applied using the cathode as a cathode and the vacuum container 4 as an anode. A film deposition experiment was conducted by applying an arc current and causing a vacuum arc discharge.

これによってステンレス板からなる基体10の表面に、
厚さ1μmのY−Ba−Cu酸化物からなる超電導薄膜
を形成した。この超電導薄膜に金電極を蒸着し、液体窒
素中で電気抵抗を測定したところ0であった。
As a result, on the surface of the base body 10 made of a stainless steel plate,
A superconducting thin film made of Y-Ba-Cu oxide and having a thickness of 1 μm was formed. A gold electrode was deposited on this superconducting thin film, and the electrical resistance was measured in liquid nitrogen and found to be 0.

なお、上述した成膜実験では、基板10を加熱していな
いが、必要に応じて加熱しなから成膜を行なっても、あ
るいは成膜後にアニーリング処理を行なうようにしても
よいのは勿論である。
Although the substrate 10 was not heated in the film formation experiment described above, it is of course possible to perform film formation without heating, or to perform an annealing treatment after film formation, if necessary. be.

(発明の効果) 以上詳述したようにこの発明によれば、超電導薄膜の生
成が可能となるといった効果を奏する。
(Effects of the Invention) As detailed above, according to the present invention, it is possible to produce a superconducting thin film.

なお、この発明は前述した実施例、実験例に限られるこ
となく、その精神および範囲を逸脱しない範囲で種々の
変形例が考えられ、たとえば基体10として線状のもの
を用い、これにこの発明にしたがって被覆してもよい。
Note that the present invention is not limited to the above-described embodiments and experimental examples, and various modifications can be made without departing from the spirit and scope of the invention. It may be coated according to.

これによれば、これをコイルとして使用すれば超電導コ
イルを得ることができる。
According to this, if this is used as a coil, a superconducting coil can be obtained.

また、この発明によれば、Ib族金属、Ia族金属およ
び厘a族金属をもってそれぞれカソードとし、各カソー
ドと真空容器との間に印加するアーク電圧を、0N−O
FF制御して酸素または弗素ガス雰囲気中で、これらの
酸化物または弗化物薄膜を順次交互に層状に積層した多
層超電導薄膜(超格子薄膜または人工格子薄膜)を形成
してもよいのは勿論である。
Further, according to the present invention, group Ib metals, group Ia metals, and group A metals are used as cathodes, respectively, and the arc voltage applied between each cathode and the vacuum container is 0N-O.
Of course, a multilayer superconducting thin film (superlattice thin film or artificial lattice thin film) may be formed by sequentially and alternately stacking these oxide or fluoride thin films in an oxygen or fluorine gas atmosphere under FF control. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施にあたって使用する薄膜形成装
置の一例を示す平面断面図、第2図は第1図のA−A’
視断面図である。 1〜3:カソード、4:真空容器、10:基体、11:
ホルダ。
FIG. 1 is a plan sectional view showing an example of a thin film forming apparatus used in carrying out the present invention, and FIG. 2 is a cross-sectional view taken along line AA' in FIG.
FIG. 1 to 3: cathode, 4: vacuum container, 10: substrate, 11:
holder.

Claims (1)

【特許請求の範囲】[Claims] 基体を収納した真空容器内に、酸素または弗素ガスを導
入し、前記基体またはこれを保持するホルダに負のバイ
アス電圧を印加した状態で、IIIa族金属とIIa族金属
と I b族金属またはこれらの合金からなるカソードを
、真空アーク放電によつてエロージヨンし、前記基体表
面に薄膜を形成してなることを特徴とする超電導薄膜の
製造方法。
Oxygen or fluorine gas is introduced into a vacuum container containing a substrate, and a group IIIa metal, a group IIa metal, a group Ib metal, or a group IIIa metal, a group IIa metal, a group Ib metal, or these are introduced into a vacuum container containing a substrate, and a negative bias voltage is applied to the substrate or a holder holding the substrate. 1. A method for producing a superconducting thin film, comprising: eroding a cathode made of an alloy by vacuum arc discharge to form a thin film on the surface of the substrate.
JP62096648A 1987-04-20 1987-04-20 Manufacture of superconductive thin film Pending JPS63261625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62096648A JPS63261625A (en) 1987-04-20 1987-04-20 Manufacture of superconductive thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62096648A JPS63261625A (en) 1987-04-20 1987-04-20 Manufacture of superconductive thin film

Publications (1)

Publication Number Publication Date
JPS63261625A true JPS63261625A (en) 1988-10-28

Family

ID=14170646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62096648A Pending JPS63261625A (en) 1987-04-20 1987-04-20 Manufacture of superconductive thin film

Country Status (1)

Country Link
JP (1) JPS63261625A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255501A (en) * 1989-03-30 1990-10-16 Nippon Steel Corp Production of oxide superconducting thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255501A (en) * 1989-03-30 1990-10-16 Nippon Steel Corp Production of oxide superconducting thin film

Similar Documents

Publication Publication Date Title
WO1989008605A1 (en) Process for producing thin-film oxide superconductor
Lindfors et al. Cathodic arc deposition technology
JPH02296784A (en) Method for protecting ceramic object from mechanical and thermal deterioration
JPS63230866A (en) Vacuum vapor deposition method and apparatus by arc discharge between anode and cathode
EP0288001A2 (en) Process for producing superconducting thin film and device therefor
JP2650910B2 (en) Method of forming oxide superconductor thin film
JPS63261625A (en) Manufacture of superconductive thin film
JP2588985B2 (en) Oxide thin film deposition method
US5061684A (en) Production of thin layers of a high temperature superconductor (htsc) by a plasma-activated physical vapor deposition process, and cathodes used therein
RU2752334C1 (en) Gas-discharge sputtering apparatus based on planar magnetron with ion source
JPS61238962A (en) Method and apparatus for forming film
Godechot et al. Thin film synthesis using miniature pulsed metal vapor vacuum arc plasma guns
JP2857743B2 (en) Thin film forming apparatus and thin film forming method
JP2776362B2 (en) Method of forming oxide superconductor thin film
JP4053210B2 (en) Plasma processing method
Anders et al. Film synthesis on powders by cathodic arc plasma deposition
JP3018605B2 (en) Superconducting thin film forming method and apparatus
JPH02296724A (en) Manufacture of thin film superconductor
JPH0297661A (en) Sputtering device for forming thin film
JPH01212752A (en) Apparatus for producing thin superconducting film
JP2639510B2 (en) Preparation method of superconducting thin film
RU2080692C1 (en) Method for generation of superconducting films
JP2501616B2 (en) Preparation method of superconducting thin film
JP2854648B2 (en) Manufacturing method of oxide superconducting film
JPH01264114A (en) Manufacture of compound oxide superconductor thin film