JPS63261404A - Automatic carrying and traveling controller - Google Patents

Automatic carrying and traveling controller

Info

Publication number
JPS63261404A
JPS63261404A JP62094902A JP9490287A JPS63261404A JP S63261404 A JPS63261404 A JP S63261404A JP 62094902 A JP62094902 A JP 62094902A JP 9490287 A JP9490287 A JP 9490287A JP S63261404 A JPS63261404 A JP S63261404A
Authority
JP
Japan
Prior art keywords
deceleration
weight
travel control
acceleration
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62094902A
Other languages
Japanese (ja)
Inventor
Kazuhiro Suenaga
末永 和裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62094902A priority Critical patent/JPS63261404A/en
Publication of JPS63261404A publication Critical patent/JPS63261404A/en
Pending legal-status Critical Current

Links

Landscapes

  • Platform Screen Doors And Railroad Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To automatically allow the titled device to correspond to the variation of a load by calculating an acceleration factor and a deceleration factor based on weight detected by a weight detector. CONSTITUTION:The automatic carrying/traveling controller 5 mounts the weight detector 1 on its load receiving part 2. Weight detected by the detector 1 is sent to an acceleration factor arithmetic part 12 and a deceleration factor arithmetic part 13 and the acceleration and deceleration factors are calculated based on the load signal. A traveling control part 14 determines a speed notch ON/OFF point and a brake driving point based on the acceleration factor or the deceleration factor obtained from the arithmetic part 12 or 13 and applies the determined points to a start/stop control part 9.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、荷を受けるとその荷を所定の位置へ自動的
に搬送する搬送装置の自動搬送走行制御装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an automatic transport travel control device for a transport device that automatically transports a load to a predetermined position upon receiving a load.

〔従来の技術〕[Conventional technology]

従来、この種装置として第7図から第io図に示すもの
があった。図において、2は自動搬送走行装置(A)の
荷受は部、3は走行する台車、4は走行駆動部、5はこ
れら自動搬送走行装置(A)を自動走行停止制御させる
自動搬送走行制御装置、6は移動目標地点及び起動指令
を出力する中央指令監視装置、21は走行レールである
Conventionally, there have been devices of this type as shown in FIGS. 7 to io. In the figure, reference numeral 2 denotes a cargo receiving section of the automatic conveyance traveling device (A), 3 a traveling cart, 4 a travel drive section, and 5 an automatic conveyance traveling control device that automatically stops and controls these automatic conveyance traveling devices (A). , 6 is a central command and monitoring device that outputs a movement target point and a start command, and 21 is a running rail.

また、第9図は自動搬送走行制御装置5の機能ブロゾク
図であシ、7,8は中央指令監視装置6から出力される
信号の受信部で夫々目標走行地点データ受信部及び起動
指令受信部、11は前記°目標走行地点データ受信部7
から目標地点データを元に現在位置から移動地点までの
距離を求め、その距離に応じた適性な速度と移動方向と
を求める移動距離、方向、設定速度算出部、42.43
は夫々走行、停止制御に使用する目的であらかじめ試験
走行に依シ決定しておいた加速度係数固定テーブル及び
減速度係数固定テーブル、14は前記加速度係数固定テ
ーブル42及び減速度係数固定テーブル43の固定テー
ブルからの加速度又は減速度係数を元に速度ノツチの大
切ポイント及びブレーキ作動ポイントを決定する走行制
御部、9は起動指令受信部8からの起動指令及び移動距
離、方向。
FIG. 9 is a functional block diagram of the automatic transport travel control device 5, and 7 and 8 are signal receiving units output from the central command and monitoring device 6, a target travel point data receiving unit and a start command receiving unit, respectively. , 11 is the target travel point data receiving section 7
A moving distance, direction, and set speed calculation unit that calculates the distance from the current position to the moving point based on the target point data, and calculates an appropriate speed and moving direction according to the distance, 42.43
14 is an acceleration coefficient fixed table and a deceleration coefficient fixed table that have been determined in advance based on test driving for the purpose of use in running and stopping control, and 14 is a fixed table for the acceleration coefficient fixed table 42 and deceleration coefficient fixed table 43. A travel control section determines important points of the speed notch and brake operation points based on acceleration or deceleration coefficients from the table; 9 is a starting command, movement distance, and direction from a starting command receiving section 8;

設定速度算出部11からの速度と方向及び走行制御部1
4からの速度ノツチ入切ポイントやブレーキ作動ポイン
ト等を受信して実際に走行駆動部4に対し起動、停止信
号を出力し、かつそれらのアンサ−を取込んで制御する
起動、停止制御部、10は自動搬送走行装置を制御する
ため現在位置を示す位置検出部である。
Speed and direction from set speed calculation unit 11 and travel control unit 1
a start/stop control section that receives speed notch on/off points, brake activation points, etc. from 4, actually outputs start/stop signals to the travel drive section 4, and receives those answers for control; Reference numeral 10 denotes a position detection unit that indicates the current position to control the automatic conveyance traveling device.

また、第7図は自動搬送走行装置(A)を制御する走行
線図の一般的な例を示したもので、横軸に走行距離S、
縦軸に速度Vを示す。ポイント23はスタートPから速
度が安定するまでの加速走行区間、ポイント23からポ
イント24までは速度一定な安定走行区間、ポイント2
4からポイント25まではポイント24よシブレーキ作
動を開始しポイント25の目標地点へ停止させるまでの
減速走行区間を示す。
Moreover, FIG. 7 shows a general example of a travel diagram for controlling the automatic conveyance traveling device (A), in which the horizontal axis shows the travel distance S,
The vertical axis shows the speed V. Point 23 is the acceleration running section from start P until the speed stabilizes, and from point 23 to point 24 is the stable running section where the speed is constant, point 2
4 to point 25 indicates a deceleration traveling section from point 24 where the braking operation is started until the vehicle is stopped at the target point at point 25.

次にK10図の7a−チャートを参照して動作について
説明する。まず、ステップ8T3Qにおいて、中央指令
監視装置6からの目標地点及び起動信号を受信するとそ
の信号は各々目標走行地点データ受信部7と起動指令受
信部8とに分けられ、目標走行地点データ受信部7から
目標地点データを元に、移動距離、方向、設定速度算出
部11にて現在地点を元に移動距離及び移動方向を算出
しくステップ5T31)、その移動距離に応じて適性な
速度ンツチを選択する(ステップ8T32)。
Next, the operation will be explained with reference to chart 7a in Figure K10. First, in step 8T3Q, when the target point and starting signal are received from the central command monitoring device 6, the signals are divided into the target driving point data receiving section 7 and the starting command receiving section 8, respectively. Based on the target point data, the moving distance, direction, and set speed calculation unit 11 calculates the moving distance and moving direction based on the current point (step 5T31), and selects an appropriate speed according to the moving distance. (Step 8T32).

次に走行開始すると、第7図のポイント23までの距離
Sは加速度係数をす、初速vOs またポイント23で
の速度をVlとすると、 但し、Cは比例定数 で表わされ、加速度係数すに依って決定される。
Next, when you start driving, the distance S to point 23 in Fig. 7 is the acceleration coefficient, initial velocity vOs, and if the speed at point 23 is Vl, where C is expressed as a proportionality constant, and the acceleration coefficient is Determined accordingly.

また、ポイント24は制動開始地点であるが、減速度係
数をal、ポイント24での速度”Is停止ポイント2
5での速度VO(従って、O)とすると、 但し、Bは比例定数 で表わされ、減速度係数alに依って決定される(ステ
ップ8T45)。
Also, point 24 is the braking start point, but the deceleration coefficient is al, and the speed at point 24 is "Is stop point 2.
5 is the velocity VO (therefore, O), where B is expressed by a proportionality constant and is determined by the deceleration coefficient al (step 8T45).

第io図の例では制動開始ポイント24を決定するため
の例で記述しているが、加速度時における目標ポイント
到達という走行制御も同様の制御内容で行うことができ
る。
Although the example of FIG. io is described as an example for determining the braking start point 24, the same control content can be used for driving control to reach a target point during acceleration.

従って、制動時について説明すると、ステップ3T45
で現在走行するステージはどのポイントからどのポイン
トへ行くもので、どの速度で走行するのかという内容に
応じてあらかじめ走行試験を行ない、各ステージに応じ
て減速度係数を固定的に決定されたテーブルからその時
の減速度係数を選択して前記(2)式により制動開始地
点を算出する。その後ステップ5T35で走行開始を行
ない、ステップST35で走行し、ステップ5T37で
先はど決定した制動開始ポイントへ到達したか否かの判
断を行ない、イエスであればステップ5T38でブレー
キを作動させ、ステップ8T39で目標ポイントに停止
する処理手順を実行する。
Therefore, when braking is explained, step 3T45
A running test is conducted in advance depending on the stage where the current stage is being traveled, from which point to which point it is traveling, and at what speed, and the deceleration coefficient is determined from a fixed table according to each stage. The braking start point is calculated by selecting the deceleration coefficient at that time and using equation (2) above. After that, in step 5T35, the vehicle starts traveling, in step ST35, the vehicle travels, and in step 5T37, it is determined whether or not the previously determined braking start point has been reached.If yes, the brake is activated in step 5T38, and At 8T39, a processing procedure for stopping at the target point is executed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の自動搬送走行制御装置は以上のように構成されて
いるので、走行ポイントの全ステージに亘ってあらかじ
め走行試験を行ない固定的に加速度係数と減速度係数を
決めておく必要があった。
Since the conventional automatic conveyance travel control device is configured as described above, it is necessary to carry out a travel test in advance over all stages of travel points to determine fixed acceleration coefficients and deceleration coefficients.

このため荷受は部の重量に変動が生ずると、その重量変
動に対応できず搬送走行制御が信頼性の低(ハものにな
ってしまうという問題点があった。
For this reason, when the weight of a part changes, the cargo receiver cannot respond to the weight change, resulting in a problem in that the transport control becomes unreliable.

この発明は上記のような問題点を解消するためになされ
たもので、走行ポイントの全ステージに亘って走行試験
を行なう手間を省き、また荷受は部の重量を自動測定す
ることによって荷重の変動にも自動的に対応できる高信
頼性の自動搬送走行制御装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and it eliminates the trouble of carrying out running tests at all stages of the running point, and also automatically measures the weight of the cargo receiving section, thereby eliminating load fluctuations. The purpose of the present invention is to obtain a highly reliable automatic conveyance travel control device that can automatically handle various situations.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る自動搬送走行制御装置は、荷重の変動を
検知できる重量検出器を荷受は部に設置し、その重量検
出器によって検出した重量を加速度係数演算部及び減速
度係数演算部に転送し目的地へ到達するための制御点を
算出して搬送走行制御を行なうようにしたものである。
The automatic transport travel control device according to the present invention installs a weight detector capable of detecting changes in load in a cargo receiving section, and transfers the weight detected by the weight detector to an acceleration coefficient calculation section and a deceleration coefficient calculation section. This system calculates the control points for reaching the destination and controls the transport travel.

〔作 用〕[For production]

この発明における自動搬送走行制御装置の加速度係数及
び減速度係数は最高(MAX)と最低(MIN)値を実
走行試験により算出しておくことによ多荷受部に取付け
た荷の重量検出器にょシ任意の重量時の走行にも自動的
に加速度及び減速度係数が決定され自動走行制御を行な
う。
The acceleration coefficient and deceleration coefficient of the automatic conveyance travel control device in this invention can be calculated by calculating the maximum (MAX) and minimum (MIN) values through actual driving tests, and then using the load weight detector attached to the multi-load receiving section. Acceleration and deceleration coefficients are automatically determined and automatic travel control is performed even when the vehicle is traveling at a given weight.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。図中
、第8図及び第9図と同一の部分は同一符号をもって図
示した第1図及び第2図において、1は荷受は部2の重
量を検出する重量検出器である。また、12は重量検出
器1からの荷重信号により加速度係数を算出する加速度
係数演算部、13は同様に減速度係数演算部である。
An embodiment of the present invention will be described below with reference to the drawings. In FIGS. 1 and 2, the same parts as in FIGS. 8 and 9 are designated by the same reference numerals. In FIGS. Further, 12 is an acceleration coefficient calculation unit that calculates an acceleration coefficient based on the load signal from the weight detector 1, and 13 is a deceleration coefficient calculation unit.

更に第3図は自動搬送制御装置のハード・ウェアを示す
機能ブロック図で、15は中央演算処理装置、16は走
行制御のプログラムメモリを格納しておくメモリ、17
及び18は夫々走行制御に必要な入力、出力を行う入力
回路及び出力回路、19は電源部である。
Furthermore, FIG. 3 is a functional block diagram showing the hardware of the automatic conveyance control device, in which 15 is a central processing unit, 16 is a memory for storing a travel control program memory, and 17 is a functional block diagram showing the hardware of the automatic conveyance control device.
and 18 are an input circuit and an output circuit that respectively perform input and output necessary for driving control, and 19 is a power supply section.

また、第4図は一例としてハードウェア機能ブロックに
よる自動搬送走行制御装置の外観図で、15〜19の符
号は前記第3図の符号と同−又は相当部分である。但し
、20は筐体である。
Further, FIG. 4 is an external view of an automatic conveyance travel control device using hardware function blocks as an example, and the reference numerals 15 to 19 are the same as or equivalent to the reference numerals in FIG. 3. However, 20 is a housing.

次に第5図のフローチャートを参照して動作について説
明する。まず、ステップ5T3Q〜32までは従来技術
の作用、動作の説明と同一であるので省略し、ステップ
5T33から説明する。
Next, the operation will be explained with reference to the flowchart shown in FIG. First, steps 5T3Q to 5T32 are the same as the description of the function and operation of the prior art, so they will be omitted, and the explanation will be from step 5T33.

加速度係数または減速度係数は第6図に示すように移動
走行する走行装置自体の重量に反比例し、たとえば減速
の場合では、減速力を21重量をWlとすると、減速度
係数a1は(3)式で表わされる。
As shown in Fig. 6, the acceleration coefficient or deceleration coefficient is inversely proportional to the weight of the moving traveling device itself.For example, in the case of deceleration, if the deceleration force is 21 and the weight is Wl, the deceleration coefficient a1 is (3). It is expressed by the formula.

但し、Aは定数 で表わされる。However, A is a constant It is expressed as

ここで、減速力Fを一定とするため、結果的に減速度係
数alは重量W1によって決定されることになる。従っ
て、可変となる重量は各移動走行ステージにおいて変動
する荷受は部2のみであるから、この荷受は部2の重量
を重量検出器1によって測定し、荷受は部2の重量が最
小の場合と最大の場合とにより試験走行を行ない、前記
(3)式における定数Aを決定しておく。このようにし
てあらかじめ決定された(3)式により、ステップ5T
33でその時の走行の重量建応じて減速度係数a1が算
出される。
Here, since the deceleration force F is kept constant, the deceleration coefficient al is determined by the weight W1. Therefore, since the variable weight is only part 2, the weight of part 2 is measured by weight detector 1, and the weight of part 2 is the minimum. A test run is conducted based on the maximum case and the constant A in the above equation (3) is determined. According to equation (3) determined in advance in this way, step 5T
At step 33, the deceleration coefficient a1 is calculated according to the weight of the vehicle at that time.

次にステップST34では制動開始ポイント24を決定
するため、前記(2)式により、走行速度v1及び停止
時速度To (=O)及びステップ8T33での減速度
係数alにより制動開始ポイントSが決定される。その
後従来例で説明したステップと同様のステップST35
〜39を経て、目標ポイントへ停止する。
Next, in step ST34, in order to determine the braking start point 24, the braking start point S is determined from the traveling speed v1, the speed at stop To (=O), and the deceleration coefficient al in step 8T33, using equation (2) above. Ru. After that, step ST35 is similar to the step explained in the conventional example.
~39 and then stop at the target point.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、加速度係数が減速度
係数の算出を荷受は部に取付けた重量検出器の計測デー
タをもとに荷重の変動に応じて自動的に演算により行な
うように制御装置を構成したので、全走行ステージにお
ける加速度係数、減速度係数を試験走行によりアらかじ
め実測しておく必要がなく、また予想外の重量の変動に
対しても自動的に速度係数を演算制御し迅速に対応でき
、省力化及び信頼性の高い自動搬送走行制御装置が得ら
れる効果がある。
As described above, according to the present invention, the acceleration coefficient and the deceleration coefficient are automatically calculated based on the measurement data of the weight detector attached to the cargo receiving section in accordance with load fluctuations. Since the control device has been configured, there is no need to actually measure the acceleration and deceleration coefficients in all travel stages through test runs, and the speed coefficients can be automatically calculated in the event of unexpected weight changes. This has the effect of providing an automatic conveyance travel control device that can perform calculation control and respond quickly, and is labor-saving and highly reliable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による自動搬送走行装置の
モデル図、第2図は第1図の自動搬送走行制御装置の機
能ブロック図、第3図は第2図の自動搬送走行制御装置
のノ・−ドウエア機能ブロック図、第4図は第3図の7
・−ドウエア外観図、第5図はこの発明の一実施例によ
る自動搬送走行制御装置の制御内容を説明するフローチ
ャート、第6図はこの発明の一実施例による重量−減速
度線図の説明図、第7図は一般的な走行距離−速度を示
す走行線図、第8図は従来の自動搬送走行装置図、第9
図は従来の自動搬送走行制御装置の機能ブロック図、第
10図は従来の自動搬送走行制御装置の制御内容を説明
するフローチャートである。 置、9は起動、停止制御部、12は加速度係数演算部、
13は減速度係数演算部、14は走行制御部、15は中
央演算処理装置である。 なお、図中、同一符号は同一、又は相当部分を示す。 特許出願人  三菱電機株式会社 代理人 弁理士  1)澤 博 昭: = (外2名) !漫W →
FIG. 1 is a model diagram of an automatic conveyance travel control device according to an embodiment of the present invention, FIG. 2 is a functional block diagram of the automatic conveyance travel control device of FIG. 1, and FIG. 3 is a model diagram of the automatic conveyance travel control device of FIG. 2. The software function block diagram in Figure 4 is similar to 7 in Figure 3.
・-Dware external view, FIG. 5 is a flowchart explaining the control contents of the automatic conveyance travel control device according to an embodiment of the present invention, and FIG. 6 is an explanatory diagram of a weight-deceleration diagram according to an embodiment of the present invention. , FIG. 7 is a travel diagram showing a general travel distance vs. speed, FIG. 8 is a diagram of a conventional automatic transport traveling device, and FIG.
The figure is a functional block diagram of a conventional automatic conveyance travel control device, and FIG. 10 is a flowchart illustrating the control contents of the conventional automatic conveyance travel control device. 9 is a start and stop control unit; 12 is an acceleration coefficient calculation unit;
13 is a deceleration coefficient calculation section, 14 is a travel control section, and 15 is a central processing unit. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Patent applicant Mitsubishi Electric Corporation Representative Patent attorney 1) Hiroshi Sawa: = (2 others)! Man W →

Claims (3)

【特許請求の範囲】[Claims] (1)目的地指定を行うと該目的地まで所定の走行線図
に従つて自動的に荷を搬送する中央演算処理装置付の自
動搬送走行制御装置において、前記荷の重量を自動測定
する重量検出器と、前記重量検出器を搭載した台車と、
前記重量検出器からの計測値を受信し目的地へ到達する
までの走行制御演算をする加速度係数演算部及び減速度
係数演算部と、前記加速度係数演算部及び前記減速度係
数演算部の演算データにより前記荷を目的地へ搬送する
ための制御点を算出し制御を行う走行制御部と、前記走
行制御部からの出力信号を受けて走行駆動部を制御する
起動、停止制御部とを備えたことを特徴とする自動搬送
走行制御装置。
(1) When a destination is specified, the weight of the load is automatically measured in an automatic transport travel control device equipped with a central processing unit that automatically transports the load to the destination according to a predetermined travel chart. a detector; a trolley equipped with the weight detector;
an acceleration coefficient calculation unit and a deceleration coefficient calculation unit that receive measurement values from the weight detector and perform travel control calculations until reaching the destination; and calculation data of the acceleration coefficient calculation unit and the deceleration coefficient calculation unit. a travel control section that calculates and controls a control point for transporting the load to a destination, and a start/stop control section that receives an output signal from the travel control section and controls a travel drive section. An automatic transport travel control device characterized by:
(2)前記加速度係数演算部及び減速度係数演算部によ
つて算出された加速度係数及び減速度係数は最高、最低
値を実走行試験により予め算出しておくことにより重量
検出器からの計測値に対し前記加速度係数及び減速度係
数を自動決定することを特徴とする特許請求の範囲第1
項記載の自動搬送走行制御装置。
(2) The acceleration coefficient and deceleration coefficient calculated by the acceleration coefficient calculation section and deceleration coefficient calculation section are the highest and lowest values calculated in advance by actual driving tests, and the measured values from the weight detector are calculated in advance. Claim 1, characterized in that the acceleration coefficient and deceleration coefficient are automatically determined for
The automatic conveyance travel control device described in .
(3)前記重量検出器は荷受け部の重量を検出するよう
にしたことを特徴とする特許請求の範囲第1項記載の自
動搬送走行制御装置。
(3) The automatic transport travel control device according to claim 1, wherein the weight detector detects the weight of the load receiving section.
JP62094902A 1987-04-17 1987-04-17 Automatic carrying and traveling controller Pending JPS63261404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62094902A JPS63261404A (en) 1987-04-17 1987-04-17 Automatic carrying and traveling controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62094902A JPS63261404A (en) 1987-04-17 1987-04-17 Automatic carrying and traveling controller

Publications (1)

Publication Number Publication Date
JPS63261404A true JPS63261404A (en) 1988-10-28

Family

ID=14122958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62094902A Pending JPS63261404A (en) 1987-04-17 1987-04-17 Automatic carrying and traveling controller

Country Status (1)

Country Link
JP (1) JPS63261404A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5070959A (en) * 1989-11-20 1991-12-10 General Electric Company Work vehicle having an electric propulsion system with adapted overspeed limit for traction motors
US5673672A (en) * 1993-01-16 1997-10-07 Pedersen; John R. C. Carburettor metering systems
WO2016103452A1 (en) * 2014-12-26 2016-06-30 株式会社日立製作所 Transport vehicle and transport system
CN110332946A (en) * 2019-05-24 2019-10-15 天津五八到家科技有限公司 Running speed based reminding method, device, equipment and storage medium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5070959A (en) * 1989-11-20 1991-12-10 General Electric Company Work vehicle having an electric propulsion system with adapted overspeed limit for traction motors
US5673672A (en) * 1993-01-16 1997-10-07 Pedersen; John R. C. Carburettor metering systems
WO2016103452A1 (en) * 2014-12-26 2016-06-30 株式会社日立製作所 Transport vehicle and transport system
JPWO2016103452A1 (en) * 2014-12-26 2017-08-24 株式会社日立製作所 Transport vehicle and transport system
CN107533332A (en) * 2014-12-26 2018-01-02 株式会社日立制作所 Transport vehicle and transportation system
CN107533332B (en) * 2014-12-26 2021-07-09 株式会社日立制作所 Transport vehicle and transport system
CN110332946A (en) * 2019-05-24 2019-10-15 天津五八到家科技有限公司 Running speed based reminding method, device, equipment and storage medium

Similar Documents

Publication Publication Date Title
JP2625550B2 (en) Method and apparatus for measuring load in elevator
JPS6241189A (en) Crane control system
JPS63261404A (en) Automatic carrying and traveling controller
JPH06135260A (en) Device for automatically controlling vehicle speed during descending slope
JP2997126B2 (en) Elevator running characteristics inspection device
JPH08202446A (en) Method and device for stop control of moving body
JPH0912266A (en) Travel controller of overhead crane
JPS58168107A (en) Driving device of automatic running dolly
JP4183316B2 (en) Suspension control device for suspended loads
JPS60168928A (en) Detection of brake abrasion
JPH09272605A (en) Running controller for stacker crane
JP4079412B2 (en) Vehicle stop system
JPH11157613A (en) Stop control method and stop control device for moving body
JP2000318973A (en) Steady rest control device for hung load
JP2645010B2 (en) Elevator control device
JPH0378483A (en) Load torque detecting method for carrying machine
JP2000313586A (en) Swing stopping controller for suspended cargo
JPS6166924A (en) Recording and reading device for operation of moving body
JPH05238674A (en) Suspended load oscillation angle detector
JPH059606Y2 (en)
JPH01287714A (en) Acceleration/deceleration data arithmetic unit for mobile body
JPH04340305A (en) Controller for electric vehicle
JPH0829920B2 (en) Balance cargo handling device control circuit
JPH0672033U (en) Passenger rate measuring device
JPH11139761A (en) Crane positioning bracing control method and device thereof