JPS63260836A - Glass composition for lens of refractive index distribution type - Google Patents

Glass composition for lens of refractive index distribution type

Info

Publication number
JPS63260836A
JPS63260836A JP9187987A JP9187987A JPS63260836A JP S63260836 A JPS63260836 A JP S63260836A JP 9187987 A JP9187987 A JP 9187987A JP 9187987 A JP9187987 A JP 9187987A JP S63260836 A JPS63260836 A JP S63260836A
Authority
JP
Japan
Prior art keywords
refractive index
lens
glass
20mol
glass composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9187987A
Other languages
Japanese (ja)
Inventor
Seiichi Aragaki
新垣 誠一
Kohei Nakada
耕平 中田
Takashi Serizawa
芹沢 高
Haruo Tomono
晴夫 友野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP9187987A priority Critical patent/JPS63260836A/en
Priority to EP88303311A priority patent/EP0287345A1/en
Publication of JPS63260836A publication Critical patent/JPS63260836A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a glass composition having excellent chemical durability, providing lens of refractive index distribution type with a large angle of aper ture, comprising Li2O, Na2O, K2O, Al2O3, B2O3, TiO2, SiO2, ZrO2, GeO2, MgO, SnO2 and PbO having given mol%, respectively. CONSTITUTION:The glass composition has the following composition of 3-22mol% Li2O, 0-20mol% Na2O, 0-20mol% K2O, 3-20mol% Na2O+K2O, 0-20mol% Al2O3, 0-25mol% B2O3, 2-25mol% TiO2, 40-62mol%SiO2, 3-10mol% ZrO2, 0-20mol% GeO2, 0-20mol% MgO, 0-10mol% SnO2 and 0-15mol% PbO. The main characteristics of this inventions are that the glass composition contains 2-35mol% TiO2 as a component for raising refractive index of prepared glass and contains 3-10mol% ZrO3. Consequently, the composi tion has improved chemical durability and its refractive index distribution close to an ideal refractive index distribution near to the circumferential part.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガラス組成物、さらに詳しくはイオン交換法に
よる屈折率分布型レンズの製造に適したガラス組成物に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a glass composition, and more particularly to a glass composition suitable for manufacturing a gradient index lens by an ion exchange method.

〔従来の技術〕[Conventional technology]

中心軸から外周面に向けて半径方向にほぼ二乗分布で屈
折率が連続的に変化している透明の円柱体はレンズ作用
を持っており、屈折率分布型レンズとして良く知られて
いる。
A transparent cylindrical body whose refractive index changes continuously in the radial direction from the central axis toward the outer circumferential surface with an approximately square law distribution has a lens effect and is well known as a gradient index lens.

この屈折率分布型レンズはその両端面を光軸に垂直な平
行平面に研磨して、単レンズは主に光通信用部品の材料
として、また該レンズを多数密接配列したレンズアレイ
は複写機・ファクシミリの結合素子として広く使用され
てきている。
Both end surfaces of this gradient index lens are polished into parallel planes perpendicular to the optical axis, and the single lens is mainly used as a material for optical communication components, and the lens array in which many such lenses are closely arranged is used for copying machines and It has been widely used as a facsimile coupling element.

この屈折率分布型レンズを工業的に生産している方法と
してイオン交換法が良く知られている。
The ion exchange method is well known as a method for industrially producing this gradient index lens.

この方法はガラス中にT1. +1.s、 Li、 R
hのような1僅の陽イオンを含有させ、このガラスを硝
酸ナトリウムのような溶融塩に浸漬して1僅の陽イオン
同士(例えばTI”とNa” )のイオン交換を行なわ
せて屈折率分布を形成するというものである。
This method uses T1. +1. s, Li, R
This glass is immersed in a molten salt such as sodium nitrate to perform ion exchange between the cations (for example, TI" and Na") to change the refractive index. The idea is to form a distribution.

従来この屈折率分布型レンズ用ガラスとしてはTl含有
、Cs含有のものが多く研究されてきたが、前者は開口
角θが大きいレンズ(θ=20°程度)が得られるが色
収差が非常に大きく、また後者は色収差は比較的小さい
が開口角が最大でも6°程度しかとれないという欠点が
あった。これらの欠点は近年の複写機・ファクシミリ等
の高性能化に伴なう上記レンズの高開口、高解像の必要
性に対して大きな問題となってきている。
Conventionally, many studies have been conducted on glasses containing Tl and Cs as glasses for gradient index lenses, but the former allows for lenses with a large aperture angle θ (θ = about 20°), but has very large chromatic aberration. , and the latter has a relatively small chromatic aberration, but has the disadvantage that the maximum aperture angle is only about 6 degrees. These drawbacks have become a major problem in response to the need for higher apertures and higher resolutions for the above-mentioned lenses as the performance of copying machines, facsimile machines, etc. has increased in recent years.

このため近年Li含有ガラスが多く研究されるようにな
ってきている。このガラスの場合、硝酸ナトリウム溶融
塩中でイオン交換することにより色収差はCs含有の場
合よりもさらに小さくなり、かつ開口角も9°〜12°
程度のものが得られている(特開昭58−125632
.特公昭59−41934)。
For this reason, Li-containing glasses have been increasingly studied in recent years. In the case of this glass, chromatic aberration is further reduced by ion exchange in sodium nitrate molten salt than in the case containing Cs, and the aperture angle is also 9° to 12°.
(Japanese Unexamined Patent Publication No. 58-125632)
.. Special Publication No. 59-41934).

しかしながら従来の1.i含有ガラスにより得られたレ
ンズの開口角は未だ充分とはいえず、より大きい開口角
、換言すればより屈折率差を大きくとれるガラス組成物
の開発が必要となってきている。
However, the conventional 1. The aperture angle of lenses obtained with i-containing glasses is still not sufficient, and there is a need to develop glass compositions that can have a larger aperture angle, in other words, a larger difference in refractive index.

また従来のLi含有ガラスはその組成にアルカリ全屈を
多く含むため、化学的耐久性が悪く、イオン交換時に溶
融塩により浸食されたり、研磨したレンズ端面にヤケを
起こしやすいという欠点があった。
In addition, since conventional Li-containing glasses contain a large amount of alkali in their composition, they have poor chemical durability, are easily eroded by molten salt during ion exchange, and tend to cause discoloration on polished lens end surfaces.

〔発明が解決しようとすつ問題点〕[Problems that the invention attempts to solve]

本発明の目的は、前記従来のLi含有屈折率分布型レン
ズ用組成物の欠点を解消し、より化学的耐久性にすぐれ
、開口角の大きな屈折率分布型レンズを得るためのガラ
ス組成物を提供することにある。
An object of the present invention is to eliminate the drawbacks of the conventional Li-containing gradient index lens compositions, and to provide a glass composition for obtaining a gradient index lens with better chemical durability and a larger aperture angle. It is about providing.

また他の目的として、屈折率分布を円柱状レンズの中心
から周辺まで極めて理想分布に近くすることにより有効
視野径の大きな屈折率分布型レンズを得るためのガラス
組成物を提供することにある。
Another object of the present invention is to provide a glass composition for obtaining a gradient index lens with a large effective field of view by making the refractive index distribution extremely close to the ideal distribution from the center to the periphery of a cylindrical lens.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち本発明は、モル%表示で下記組成よりなる屈折
率分布型レンズ用ガラス組成物である。
That is, the present invention is a glass composition for a gradient index lens having the following composition expressed in mol%.

Li2O3〜22 Na2O  0〜20 に2O  0〜20 但し Na2O+K2O3〜20 八1203  0〜20 8203  0〜25 Tin22〜25 Si02  40〜62 Zr0.  3〜10 GeO30〜20 Mg0    O〜20 Sn02(1〜l0 pbo    o〜15 本発明の主たる特徴は、ガラス組成中に得られたレンズ
の屈折率を大きくとるための成分とじてTiO2が2〜
25モル%含み、かつZrO□が3〜lOモル%含有さ
せることにより化学的耐久性を向上させ併せて屈折率分
布をレンズの周辺部まで理想分布に近くするようにした
ことである。
Li2O3~22 Na2O 0~20 2O 0~20 However, Na2O+K2O3~20 81203 0~20 8203 0~25 Tin22~25 Si02 40~62 Zr0. 3-10 GeO30-20 Mg0 O-20 Sn02 (1-10 pbo o-15
By containing 25 mol% of ZrO□ and 3 to 10 mol% of ZrO□, the chemical durability is improved and the refractive index distribution is made close to the ideal distribution up to the peripheral portion of the lens.

次に本発明のガラス組成の範囲限定理由について述べる
Next, the reason for limiting the range of the glass composition of the present invention will be described.

Li2Oは屈折率分布を形成する成分でありガラス中に
3〜22モル%含有させる。3モル%未満ではイオン交
換により充分な屈折率差を得ることができず、かつ22
モル%を超えるとガラスの失透が起こる。開口数が9°
以上のレンズを得るためには8モル%以上であることが
望ましく、かつ20モル%以下であれば失透が完全に防
止できるのでガラス成形の歩留が良くより好ましい。
Li2O is a component that forms a refractive index distribution, and is contained in the glass in an amount of 3 to 22 mol%. If it is less than 3 mol%, a sufficient refractive index difference cannot be obtained by ion exchange, and 22
If the amount exceeds mol%, devitrification of the glass occurs. Numerical aperture is 9°
In order to obtain the above lens, it is desirable that the content be 8 mol % or more, and if it is 20 mol % or less, devitrification can be completely prevented, so the yield of glass molding is good and it is more preferable.

Na2O及びK2Oはガラス化領域を広くし、かつガラ
ス組成物の溶解性を良くするのに役立つ。また溶融塩が
Na塩である場合のガラス組成物中のNa2O、及び溶
融塩かに塩である場合のガラス組成物中のK2Oケそれ
ぞれLX+とNa”又はに1とのイオン交換のドライビ
ング・フォースとなり、多ければ多いほどイオン交換速
度は大きくなる。
Na2O and K2O serve to widen the vitrification area and improve the solubility of the glass composition. In addition, the driving force of ion exchange between LX+ and Na'' or Ni1 is Na2O in the glass composition when the molten salt is Na salt, and K2O in the glass composition when the molten salt is crab salt. Therefore, the higher the number, the higher the ion exchange rate.

(Na20+K2O)の量としては3モル%以上20モ
ル%以下含ませる。(Na20◆K2O)が3モル%未
満ではイオン交換速度が著しく低下し、20モル%を越
えると化学的耐久性が低下する。また溶融塩がNa塩の
場合のガラス組成物中のK2O、及び溶融塩かに塩の場
合のガラス組成物中のNa2Oはそれぞれ前記Li+と
Na+又はに+とのイオン交換を阻害するので混在しな
いことが望ましいが、屈折率分布形成に悪影響を与えな
い範囲なら混在してもかまわない。
The amount of (Na20+K2O) is 3 mol% or more and 20 mol% or less. If (Na20◆K2O) is less than 3 mol%, the ion exchange rate will be significantly reduced, and if it exceeds 20 mol%, the chemical durability will be reduced. In addition, K2O in the glass composition when the molten salt is Na salt, and Na2O in the glass composition when the molten salt is crab salt, inhibit the ion exchange between Li+ and Na+ or Ni+, so they are not mixed together. However, they may be mixed as long as they do not adversely affect the formation of the refractive index distribution.

Al2O3及びB2O3はそれぞれ20モル%、25モ
ル%まで含有させつるが、これを越えると前者は粘性の
増大と共にガラス溶融、成形が困難となり、後者は化学
的耐久性が低下する。
Al2O3 and B2O3 can be contained up to 20 mol% and 25 mol%, respectively, but if this is exceeded, the former increases viscosity and becomes difficult to melt and mold the glass, while the latter deteriorates chemical durability.

Tie、は屈折率差を大きくとるための必須成分であり
Li含有ガラスにおいてその効果はかなり大きい。Li
量が同じでもTie2を含む場合と含まない場合とでは
屈折率差は通常数倍異なる。 Tie2の効果は2モル
%以上で特に大きく、25モル%を越えると失透を生じ
易くなる。
Tie is an essential component for increasing the difference in refractive index, and its effect is quite large in Li-containing glass. Li
Even if the amount is the same, the difference in refractive index is usually several times different between when Tie2 is included and when it is not. The effect of Tie2 is particularly large at 2 mol% or more, and when it exceeds 25 mol%, devitrification tends to occur.

前記TfO,の屈折率差を増大させる効果はTiO□量
が8モル%を越えると徐々に飽和してくるので、さらに
屈折率差を上げるためにPbO,MgOをそれぞれ15
モル%、20モル%を上限として加えると非常に効果が
ある。この上限値を越えると、PbOの場合にはガラス
が変形しやすくなり、かつイオン交換速度の低下がおこ
る。MgOの場合は失透を生じやすくなりガラスの成形
が困難となる。ざらにPbO,MgOの添加は色収差の
改善にも役立ち、高開口・低色収差レンズを実現させる
The effect of increasing the refractive index difference of TfO gradually becomes saturated when the amount of TiO□ exceeds 8 mol%, so in order to further increase the refractive index difference, PbO and MgO were added by 15
It is very effective to add up to 20 mol%. If this upper limit is exceeded, in the case of PbO, the glass becomes easily deformed and the ion exchange rate decreases. In the case of MgO, devitrification tends to occur, making it difficult to mold glass. Furthermore, the addition of PbO and MgO also helps to improve chromatic aberration, realizing a lens with a high aperture and low chromatic aberration.

SiO□はガラスの網目形成の主成分であり、400モ
ル%未満は失透や化学的耐久性の低下が起り、62モル
%を越えると屈折率分布形成酸化物や他の酸化物の含有
量が制限され充分な屈折率差が得られずかつ粘性の増大
とともにガラス溶解に高温を要し作業性が低下する。 
ZrO2は本発明の特徴となる成分で10モル%を上限
として含有させることができる。これを越えると失透が
生じ易くなる。
SiO□ is the main component of glass network formation, and if it is less than 400 mol%, devitrification and chemical durability will occur, and if it exceeds 62 mol%, the content of refractive index distribution forming oxides and other oxides will decrease. is limited, making it impossible to obtain a sufficient refractive index difference, and as the viscosity increases, high temperatures are required for glass melting, reducing workability.
ZrO2 is a characteristic component of the present invention and can be contained up to 10 mol%. If this value is exceeded, devitrification tends to occur.

ZrO,はガラスの化学的耐久性を著しく向上させ、特
にイオン交換時の溶融塩による侵食を防ぐ効果がある。
ZrO significantly improves the chemical durability of glass, and is particularly effective in preventing erosion by molten salt during ion exchange.

例えばZrO,を含まないガラス棒とz「02を含むガ
ラス棒の側周面を研磨したものを500℃に保った硝酸
ナトリウム溶融塩中K2O時間浸漬した後取り出すと、
前者の側周面は数拾μの凹凸部をもったマット面になる
が、後者の場合はほとんど変化がない。この溶融塩によ
るガラス表面の浸食のため屈折率分布はレンズ周辺部で
乱れを生じ、レンズの有効視野径はかなり低下する。
For example, when a glass rod that does not contain ZrO and a glass rod that contains Z"02 with their side surfaces polished are immersed in molten sodium nitrate salt kept at 500°C for K2O hours and then taken out.
In the former case, the side circumferential surface becomes a matte surface with irregularities of several tens of micrometers, but in the latter case, there is almost no change. This erosion of the glass surface by the molten salt causes the refractive index distribution to be disturbed at the lens periphery, and the effective field diameter of the lens is considerably reduced.

またガラス表面が浸食された場合には屈折率分布の対称
性が悪くなり非点収差の増大となってレンズの光学性能
を低下させる。また、この表面の浸食により微細なりラ
ックを生じレンズの機械的強度も低下する。以上揚げた
問題はz「02を含有させることによって解決すること
ができ、有効視野の大きいレンズを歩留り良く作製する
ことが可能となる。
Furthermore, if the glass surface is eroded, the symmetry of the refractive index distribution deteriorates, resulting in an increase in astigmatism and deteriorating the optical performance of the lens. Furthermore, this surface erosion causes fine racks and reduces the mechanical strength of the lens. The above-mentioned problems can be solved by containing z'02, and it becomes possible to manufacture lenses with a large effective field of view with a high yield.

z「02の含有量については3モル%未満では上記効果
が充分あられれないのでそれ以上であることが必要であ
り、4モル%以上が望ましい、 SnO,もz「02と
同様な効果があり10モル%を上限として含有させるこ
とにより上記効果はさらに増大する。
Regarding the content of Z'02, if it is less than 3 mol%, the above effects cannot be sufficiently obtained, so it is necessary to have a content higher than that, and a content of 4 mol% or more is desirable.SnO also has the same effect as Z'02. The above effect is further enhanced by containing 10 mol% as an upper limit.

これを越えると失透が生じ易くなる。 SnO,は連光
されやすい成分なので通常数モル%以上含有させる場合
にはガラスの溶解を酸化雰囲気で行なうことが望ましい
。SnO2の含有量は他の酸化物との兼ね合いで調整す
ればよく1通常1〜5モル%程度含有させることにより
充分効果が上がる。また(ZrO,◆SnO□)の量は
5〜12モル%であることが望ましく、それをこえて大
きくすると失透を起しやすくなる。
If this value is exceeded, devitrification tends to occur. Since SnO is a component that is easily exposed to continuous light, it is usually desirable to melt the glass in an oxidizing atmosphere when it is contained in an amount of several mol % or more. The content of SnO2 may be adjusted depending on the balance with other oxides. 1 Usually, the effect is sufficiently improved by containing it in an amount of about 1 to 5 mol %. Further, the amount of (ZrO, ◆SnO□) is desirably 5 to 12 mol %, and if it exceeds this amount, devitrification tends to occur.

ZrO2とSnO2の効果はイオン交換後のレンズの化
学的耐久性を向上させ、このレンズを用いた光学素子の
耐候性の向上にも寄与する。
The effects of ZrO2 and SnO2 improve the chemical durability of the lens after ion exchange, and also contribute to improving the weather resistance of optical elements using this lens.

Gem2がガラスの屈折率を上げるため20モル%を上
限として含有されつる。これを越えると失速が生じ易く
なる。
Gem2 is contained up to 20 mol% in order to increase the refractive index of the glass. If this value is exceeded, stall is likely to occur.

本発明では上述した成分と他にガラス安定化剤として次
の酸化物を下記の範囲で含有させることができる。
In the present invention, in addition to the above-mentioned components, the following oxides can be contained as glass stabilizers in the following ranges.

CaOQ〜6   SrOO〜[i   Ba0   
0〜5zn0  0〜5  Rb2O0〜5  La2
O30〜5YtOs   O〜3   Gd20s  
O〜3   Ga2O30〜31r+、O,、o〜:l
   Ta2(160〜5   Nb2O50〜5Ce
O,G〜3   WO30〜3   ^s20.  (
1〜2sb2o、  o〜2 (実施例〕 第1表に示す実施例及び比較例のガラスがそれぞれ約8
にg得られるように各種原料を用いてバッチ調合し、こ
れを充分混合した後31の白金ルツボを用いて1350
℃で2時間溶解した後キャスト、急冷してカレットを作
成した0次にカレットを同じく3ILの白金ルツボに投
入し、1300℃で4時間再溶解した後ブロック状にキ
ャストして均質で泡、脈理のないガラスブロックを得た
。このガラスブロックから直径20a+m、長さ200
m寵のガラス丸棒を切り出した後この丸棒をガラス延伸
炉を用いて延伸し、直径1mmのガラス棒試料を得た。
CaOQ~6 SrOO~[i Ba0
0~5zn0 0~5 Rb2O0~5 La2
O30~5YtOs O~3 Gd20s
O~3 Ga2O30~31r+, O,, o~:l
Ta2(160~5 Nb2O50~5Ce
O, G~3 WO30~3 ^s20. (
1 to 2 sb2o, o to 2 (Example) The glasses of Examples and Comparative Examples shown in Table 1 each have approximately 8
Batch preparations are made using various raw materials so as to obtain 10 g, and after thorough mixing, 1350 g is prepared using a 31 platinum crucible.
After melting at 1300°C for 2 hours, casting and quenching to create a cullet, the next cullet was placed in the same 3IL platinum crucible, melted again at 1300°C for 4 hours, and then cast into a block, which was homogeneous with no bubbles or veins. Obtained a glass block that makes no sense. From this glass block, the diameter is 20a+m and the length is 200mm.
After cutting out m-sized glass round rods, the round rods were drawn using a glass drawing furnace to obtain glass rod samples with a diameter of 1 mm.

このガラス棒を第1表に示す処理条件で溶融塩中に浸漬
してイオン交換を行ない、比較例No、 1 。
This glass rod was immersed in molten salt under the treatment conditions shown in Table 1 to perform ion exchange, resulting in Comparative Example No. 1.

No、2及び実施例No、lNNo、6の屈折率分布型
レンズを得た。これらのレンズについて中心屈折率、屈
折率分布を測定し、その値を用いて開口角を算出した。
Gradient index lenses No. 2 and Example No. 1N No. 6 were obtained. The center refractive index and refractive index distribution of these lenses were measured, and the aperture angle was calculated using the values.

また耐久性についてはレンズの耐水性を表面法により測
定した。具体的には端面を研磨したレンズを90℃の温
水中に浸漬し、端面にアルカリ成分等の析出を生じはじ
める時間を測定した。
Regarding durability, the water resistance of the lens was measured by a surface method. Specifically, a lens with a polished end face was immersed in warm water at 90°C, and the time required for precipitation of alkaline components and the like to begin to occur on the end face was measured.

第1表から明らかなように、ZrO2を3モル%以上含
有させた実施例のレンズは比較例のレンズに比べ耐久性
が著しく向上した。特に開口角をさらに大きくするため
にTiO2量を増やした場合でも耐久性の低下は見られ
ず開口角が13℃を越える化学的耐久性の良好なレンズ
を得ることができた。
As is clear from Table 1, the durability of the lenses of Examples containing 3 mol % or more of ZrO2 was significantly improved compared to the lenses of Comparative Examples. In particular, even when the amount of TiO2 was increased in order to further increase the aperture angle, no decrease in durability was observed, and a lens with an aperture angle exceeding 13° C. and good chemical durability could be obtained.

さらに実施例のレンズは比較例のそれに対して有効視野
径も大きくなり径の90%以上で良好な結像性能を示し
、かつ屈折率分布は対称的で非点収差のほとんどないも
のが得られた。
Furthermore, the lens of the example has a larger effective field diameter than that of the comparative example, exhibits good imaging performance over 90% of the diameter, and has a symmetrical refractive index distribution with almost no astigmatism. Ta.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明のガラス組成物により、開
口角が大きく化学的耐久性にすぐれ、有効視野径の大き
な屈折率分布型レンズを得ることが可能となりその工業
的価値は極めて大きい。
As detailed above, the glass composition of the present invention makes it possible to obtain a gradient index lens with a large aperture angle, excellent chemical durability, and a large effective field diameter, and its industrial value is extremely large.

Claims (2)

【特許請求の範囲】[Claims] (1)モル%表示で下記組成よりなる屈折率分布型レン
ズ用ガラス組成物。 Li_2O 3〜22 Na_2O 0〜20 K_2O 0〜20 但しNa_2O+K_2O 3〜20 Al_2O_3 0〜20 B_2O_3 0〜25 TiO_2 2〜25 SiO_2 40〜62 ZrO_2 3〜10 GeO_2 0〜20 MgO 0〜20 SnO_2 0〜10 PbO 0〜15
(1) A glass composition for a gradient index lens having the following composition expressed in mol%. Li_2O 3-22 Na_2O 0-20 K_2O 0-20 However, Na_2O+K_2O 3-20 Al_2O_3 0-20 B_2O_3 0-25 TiO_2 2-25 SiO_2 40-62 ZrO_2 3-10 GeO_2 0- 20 MgO 0~20 SnO_2 0~10 PbO 0-15
(2)モル%表示で Li_2Oが8〜20、ZrO_3が4〜10、SnO
_2が1〜5で、かつZrO_2+SnO_2が5〜1
2の組成である特許請求の範囲第1項記載のガラス組成
物。
(2) Li_2O is 8-20, ZrO_3 is 4-10, SnO in mol%
_2 is 1 to 5, and ZrO_2+SnO_2 is 5 to 1
2. The glass composition according to claim 1, which has a composition of 2.
JP9187987A 1987-04-16 1987-04-16 Glass composition for lens of refractive index distribution type Pending JPS63260836A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9187987A JPS63260836A (en) 1987-04-16 1987-04-16 Glass composition for lens of refractive index distribution type
EP88303311A EP0287345A1 (en) 1987-04-16 1988-04-13 Glass composition for and method for preparation of gradient index lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9187987A JPS63260836A (en) 1987-04-16 1987-04-16 Glass composition for lens of refractive index distribution type

Publications (1)

Publication Number Publication Date
JPS63260836A true JPS63260836A (en) 1988-10-27

Family

ID=14038846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9187987A Pending JPS63260836A (en) 1987-04-16 1987-04-16 Glass composition for lens of refractive index distribution type

Country Status (1)

Country Link
JP (1) JPS63260836A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11302033A (en) * 1998-04-17 1999-11-02 Nippon Sheet Glass Co Ltd Glass composition and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11302033A (en) * 1998-04-17 1999-11-02 Nippon Sheet Glass Co Ltd Glass composition and its production

Similar Documents

Publication Publication Date Title
JP2747964B2 (en) Manufacturing method of optical glass
JP3247482B2 (en) High refractive ophthalmic and optical glass
JPH0149649B2 (en)
JP2001159702A (en) Distributed index lens
JPS6114090B2 (en)
JPH01133956A (en) Glass composition for distributed refractive index lens
JPS605037A (en) Optical glass
JPS6243936B2 (en)
JP2001139341A (en) Preform glass composition for gradient index lens
JPS6311292B2 (en)
JP3899825B2 (en) Optical waveguide device and manufacturing method thereof
US3661600A (en) Optical glass with a high refractive index and a high dispersing ability
JPS63230536A (en) Thallium-containing optical glass
JP3130245B2 (en) Optical glass
EP1275622B1 (en) An optical glass for molding
US4562162A (en) Glass for multi-focal eyeglass lens
JPS5941934B2 (en) Glass composition for light focusing lenses
JP2020029378A (en) Optical glass
US4568651A (en) Glass for multi-focal eyeglass lens
JPS63260836A (en) Glass composition for lens of refractive index distribution type
JPH01148726A (en) Optical glass
JPS63288930A (en) Glass composition for distributed index lens
JPS61101433A (en) Glass composition for chemical reinforcing
JPS63288931A (en) Glass composition for distributed index lens
JP2002211947A (en) Matrix glass composition for gradient index lens