JPS63260676A - Multi-electrode submerged arc welding method - Google Patents

Multi-electrode submerged arc welding method

Info

Publication number
JPS63260676A
JPS63260676A JP9385487A JP9385487A JPS63260676A JP S63260676 A JPS63260676 A JP S63260676A JP 9385487 A JP9385487 A JP 9385487A JP 9385487 A JP9385487 A JP 9385487A JP S63260676 A JPS63260676 A JP S63260676A
Authority
JP
Japan
Prior art keywords
welding
electrode
groove
penetration
penetration depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9385487A
Other languages
Japanese (ja)
Inventor
Shigeo Fujimori
藤森 成夫
Yukiyoshi Kitamura
北村 征義
Koichi Shinada
功一 品田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9385487A priority Critical patent/JPS63260676A/en
Publication of JPS63260676A publication Critical patent/JPS63260676A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the weld quality by calculating the depth of penetration of each electrode from a function of a parameter on a welding condition of each electrode and a gouging cross-sectional area of an electrode just before to control a welding source of each electrode based on it. CONSTITUTION:A groove shape detector 7 is set up in front of plural welding electrodes 4a and 4b and an arithmetic and control unit 1 and a welding speed controller 6 are arranged. First, the number (n) of electrodes, the prescribed depth Pm of penetration and its torelance Jp and groove dimensions and the torelance Jk are inputted to the arithmetic and control unit 1 and a setting condition is extracted from a data base stored in advance. Information of the groove shape detector 7 is read and compared with the tolerance Jk and welding sources 2a and 2b are controlled. Further, a welding current value is corrected with respect to the excess and deficiency of a welding current and the welding sources 2a and 2b are again controlled automatically. Since the depth of penetration is maintained constant, the weld quality is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はUOE鋼管製造などで用いられる両面一層サブ
マージアーク溶接のビード形状制御に関し、特に溶け込
み深さの自動制御に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to bead shape control in double-sided, single-layer submerged arc welding used in the manufacture of UOE steel pipes, and particularly to automatic control of penetration depth.

〔従来の技術〕[Conventional technology]

サブマージアーク溶接は、高能率な溶接法として、いま
なお広く用いられているが、他の生産加工技術に比べ、
自動化、無人化という面ではまだ不十分であり、特に製
造業では、競争力強化のため、さらに高能率化、コスト
引き下げ等を目指し、溶接作業の合理化が推進されつつ
ある。
Submerged arc welding is still widely used as a highly efficient welding method, but compared to other production processing techniques,
Automation and unmanned operation are still insufficient, and in order to strengthen competitiveness, the manufacturing industry in particular is promoting the rationalization of welding work with the aim of further increasing efficiency and reducing costs.

サブマージアーク溶接における省人、自動化例としては
、サブマージアーク溶接法で、特開昭61−18067
7号公報にみられるように、母材と裏当て金属板の間に
特定の電気信号を印加し、溶接中両者にかかる電圧を基
準電圧と比較し、溶接電源出力を制御することによって
裏ビード形成を制御する方法をはじめ、開先変動を検知
し、コンピュータが記憶している最適条件を自動設定さ
せ、ビード形状を制御する方法(「溶接技術J vol
 33. no、1゜p39.1985)などが提案さ
れている。しかしながら、この片面サブマージアーク溶
接法は、溶接入熱が大きく、溶接部の靭性及び生産性(
低速溶接)の面から適用分野に制限があり、低温靭性が
要求される高級ラインパイプ製造の分野ではあまり用い
られておらず1両面一層サブマージアーク溶接法が主と
して採用されている。
An example of labor saving and automation in submerged arc welding is the submerged arc welding method, published in Japanese Patent Application Laid-Open No. 61-18067.
As seen in Publication No. 7, back bead formation is achieved by applying a specific electrical signal between the base material and the backing metal plate, comparing the voltage applied to both with a reference voltage during welding, and controlling the output of the welding power source. In addition to the method of controlling the bead shape by detecting groove fluctuations and automatically setting the optimal conditions stored in the computer ("Welding Technology J vol.
33. No. 1° p39.1985), etc. have been proposed. However, this single-sided submerged arc welding method requires a large welding heat input, resulting in poor weld toughness and productivity.
The field of application is limited due to low speed welding), and in the field of manufacturing high-grade line pipes where low-temperature toughness is required, single-sided, single-layer submerged arc welding is mainly adopted.

UOEtl管製造などで用いられる両面一層サブマージ
アーク溶接を自動制御せしめんとする場合、片面サブマ
ージアーク溶接法と異なり、それぞれの層での溶け込み
深さが特に重要となってくる。
When attempting to automatically control double-sided, single-layer submerged arc welding used in the manufacture of UOEtl pipes, penetration depth in each layer becomes particularly important, unlike single-sided submerged arc welding.

すなわち、最初に溶接を行なう内面溶接では開先変動な
どにより、溶け込みが過大となると、致命的な溶け落ち
を生じる。一方、外面溶接では溶け落ちは生じにくくな
るが、逆に溶け込み不足になると板厚中央部に未接合部
を残すことになる。この両面一層サブマージアーク溶接
に適用し得る溶け込み深さ制御法をすでに本発明者らは
特開昭60−92083号公報で提案しているが、その
内容は電極配置は一直線ではなく、また、開先内でアー
クが点弧する場合の溶け込みのような比較的厚手材の深
溶け込み制御に対して適用されるもので、■開先や、高
速溶接で形成される溶け込みの浅いものに対しての適用
には無理がある。
That is, when welding is carried out first on the inner surface, if penetration becomes excessive due to groove variation, fatal burn-through will occur. On the other hand, when welding the outside surface, burn-through is less likely to occur, but on the other hand, if there is insufficient penetration, an unwelded part will remain in the center of the plate thickness. The present inventors have already proposed a penetration depth control method that can be applied to double-sided single-layer submerged arc welding in Japanese Patent Application Laid-open No. 60-92083, but the content is that the electrode arrangement is not in a straight line and that This is applied to deep penetration control of relatively thick materials, such as the penetration when the arc is ignited within the welding tip. It is impossible to apply.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

両面一層サブマージアーク溶接等の溶接欠陥発生を防止
するため、溶接条件を自動制御させる場合、溶接電流、
溶接電圧の制御のみならず、溶接速度の制御も必要とな
るがいづれの制御を行なったときでも、溶け込みは所定
値に確保されることが必須である。特に溶接速度を制御
した場合、溶け込みを所定値に確保するには溶接電流値
も自動的に制御されることが重要となる。
In order to prevent welding defects such as double-sided submerged arc welding, when welding conditions are automatically controlled, welding current,
It is necessary to control not only the welding voltage but also the welding speed, but it is essential that penetration be maintained at a predetermined value no matter which control is performed. Particularly when the welding speed is controlled, it is important that the welding current value is also automatically controlled in order to ensure penetration at a predetermined value.

しかしながら、多電極サブマージアーク溶接における溶
け込みについては、上述したように、特定の範囲につい
ては知見はあるものの、開先の有無や溶け込みレベルの
相違などに係わりなく広い範囲にわたって適用し得る技
術は未だなく、現状においては1種々の溶接条件を試行
錯誤的手法で溶接を行ない、その結果をデータベースに
蓄積させて行くといった膨大な労力が必要となる。
However, regarding penetration in multi-electrode submerged arc welding, as mentioned above, although there is knowledge about a specific range, there is still no technology that can be applied over a wide range regardless of the presence or absence of a groove or differences in penetration levels. Currently, a huge amount of effort is required to carry out welding using a trial and error method under various welding conditions and to accumulate the results in a database.

そこで本発明は、2本以上、7本以下のff1tIを用
いるサブマージアーク溶接において、溶接条件と各電極
毎の溶け込み深さとの相関関係を明らかにし、溶け込み
制御のアルゴリズムに基いて各電極の溶接電流値を演算
で求め、溶け込みを自動制御し、安定した溶け込みが得
られる方法を提供することを目的とする。
Therefore, in submerged arc welding using 2 or more and 7 or less ff1tI, the present invention clarifies the correlation between welding conditions and the penetration depth of each electrode, and calculates the welding current of each electrode based on a penetration control algorithm. The purpose is to provide a method that calculates the value by calculation, automatically controls the penetration, and obtains stable penetration.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記問題点を解決し、目的を達成するため種
々検討した結果、多電極サブマージアーク溶接における
第2電極以降の各電極毎の溶け込み深さは、当該電極で
の溶接条件によって定まるパラメータとその一つ前の電
極でガウジングした断面積の関数で求まることを見い出
し、なされたものであって、その要旨とするところは、
直線状に配列され、2本以上7本以下の電極を用いる多
電極サブマージアーク溶接において、各電極毎の母材溶
融量、溶接速度、アークでガウジングされる幅、及び第
1電極では開先断面積、第2電極以降ではその一つ前の
電極でのガウジング断面積を変数とする関数から各電極
毎の溶け込み深さを演算で求め、該溶け込み深さの最大
値を所定値と比較し、所定値となるべき各電極溶接電流
値を演算によって求め、該溶接電流値となるように各電
極溶接電源を自動制御することを特徴とする多電極サブ
マージアーク溶接方法にある。
The present invention has been made as a result of various studies to solve the above problems and achieve the objectives.The penetration depth of each electrode after the second electrode in multi-electrode submerged arc welding is a parameter determined by the welding conditions of the electrode. It was discovered that it can be found as a function of the cross-sectional area gouged with the previous electrode.
In multi-electrode submerged arc welding using 2 to 7 electrodes arranged in a straight line, the amount of base metal melted for each electrode, the welding speed, the width gouged by the arc, and the groove cut for the first electrode. Calculate the penetration depth for each electrode from a function that uses as variables the area and the gouging cross-sectional area of the previous electrode after the second electrode, and compare the maximum value of the penetration depth with a predetermined value, The multi-electrode submerged arc welding method is characterized in that each electrode welding current value that should be a predetermined value is determined by calculation, and each electrode welding power source is automatically controlled so that the welding current value is achieved.

〔作用・実施例〕[Function/Example]

第1図は、本発明にかかわる2電極サブマージアーク溶
接における一実施態様を模式的に示したブロック図であ
る。演算・制御器1はマイクロプロセッサ、A/D変換
器8およびD/A変換変換器9奢々たる構成要素とする
コンピュータシテスムであるが、第1図において演算・
制御器1のブロック内には、演算・制御器lが実行する
制御フローを示す。
FIG. 1 is a block diagram schematically showing an embodiment of two-electrode submerged arc welding according to the present invention. The arithmetic/control unit 1 is a computer system including a microprocessor, an A/D converter 8, and a D/A converter 9 as luxurious components.
In the block of the controller 1, a control flow executed by the arithmetic/controller 1 is shown.

第1図においてまず、電極数n(同図においてはn=−
2)、所定の溶け込み深さPn+とその許容範囲Jp、
及び、必要に応じて開先形状(幅り。
In Figure 1, first, the number of electrodes n (in the figure, n=-
2), predetermined penetration depth Pn+ and its allowable range JP,
And groove shape (width) as required.

深さdなど)とその許容範囲Jkを演算・制御器1に入
力すると演算・制御器1がこれらを読込み(ステップS
1:以下カッコ内ではステップという語を省略)、あら
かじめ、経験的に得られている適正溶接条件をもとに作
成され記憶しておいたデータベースより、設定条件を抽
出する(S3)。
When inputting the depth d, etc.) and its allowable range Jk to the calculation/controller 1, the calculation/controller 1 reads these (step S
1: Hereinafter, the word step is omitted in parentheses), setting conditions are extracted from a database that has been created and stored based on appropriate welding conditions that have been obtained empirically (S3).

このときデータベースがなくとも差支えなく、その場合
には演算に必要な溶接条件を適当に入力すればよい。そ
して、抽出又は入力した各電極溶接電流値1(1〜n)
から各電極電流の緩和I sumを求め、かつ、各電極
溶接電流配分Ih(1=n)を求める(S3)。ここで
、第1電極溶接電流値を基準としたIh(1〜n)は、 I h(1〜n) = 1 (1〜n)/ I (1)
で求められる。この溶接電流配分比は健全なビード形状
を得るために必要であり、修正した各電極溶接′?r5
.流値が増減しても、各電極毎の溶接電流配分比は同一
であることが望ましい。
At this time, there is no problem even if there is no database, and in that case, the welding conditions required for calculation may be appropriately input. Then, each extracted or input electrode welding current value 1 (1 to n)
The relaxation Isum of each electrode current is determined from the equation, and the welding current distribution Ih (1=n) of each electrode is determined (S3). Here, Ih (1 to n) based on the first electrode welding current value is I h (1 to n) = 1 (1 to n) / I (1)
is required. This welding current distribution ratio is necessary to obtain a sound bead shape, and each electrode welded with the corrected r5
.. Even if the flow value increases or decreases, it is desirable that the welding current distribution ratio for each electrode be the same.

つぎに、溶接電極油力に設置された開先形状検知器7が
検出している溶接開始部の開先情報を読込む(S4)。
Next, the groove information of the welding start portion detected by the groove shape detector 7 installed at the welding electrode hydraulic station is read (S4).

これは、演算・制御器1に内蔵されたA/D変換器8を
介して、該情報をデジタル変換して読込む。
This information is digitally converted and read via the A/D converter 8 built into the arithmetic/controller 1.

ここで用いる開先形状検知器7は、差動トランスを用い
たローラ方式、レーザー光方式等いずれの方式でも上記
開先形状測定が可能なものであればよい。そして、計3
111 した開先が許容範囲Jkを外れるか否かをチェ
ックして(S5)、外れる場合には、後述するような手
順で所定の溶け込み深さを得る設定溶接電流の修正値を
演算によって求め(S6)、得られた溶接電流値I (
1) 、 I (2)を演算・制御器1に内蔵されたD
/A変換器9を介して、溶接電源2a、2bへ、溶接電
圧値E(1)。
The groove shape detector 7 used here may be of any type, such as a roller type using a differential transformer or a laser beam type, as long as it can measure the groove shape. And a total of 3
111 Check whether the prepared groove is outside the allowable range Jk (S5), and if it is outside the allowable range Jk, calculate a correction value for the set welding current to obtain a predetermined penetration depth using the procedure described below ( S6), the obtained welding current value I (
1), I (2) is calculated using D built into the controller 1.
/A converter 9 to welding power sources 2a and 2b, welding voltage value E(1).

E(2)はワイヤ送給制御袋[1ff3a、3bへ、溶
接速度Vは溶接速度制御JA置6へそれぞれ出力する(
S7)。
E(2) outputs the wire feed control bag [1ff3a, 3b, and the welding speed V to the welding speed control JA position 6 (
S7).

次に溶接を開始しくS8)、上述したような方法で再び
開先形状を計測しくS9)、許容範囲Jk内であるかど
うか判断しく5IO)、必要に応じて、設定溶接電流の
修正値を演算で求め(Sll)、該修正値を溶接電源2
a、2bに出力し、そして、溶接状況によっては溶接速
度を増減する(S 12)。例えば高能率性を維持する
ため、一般に溶接速度は溶接欠陥(アッダカット等)発
生の限界速度付近で使用されることが多く、時によって
はアッダカットが発生することがある。
Next, start welding (S8), measure the groove shape again using the method described above (S9), judge whether it is within the allowable range Jk (5IO), and adjust the correction value of the set welding current as necessary. Calculate it (Sll) and apply the corrected value to the welding power source 2.
a and 2b, and the welding speed is increased or decreased depending on the welding situation (S12). For example, in order to maintain high efficiency, the welding speed is generally used near the limit speed for the occurrence of welding defects (such as adder cuts), and in some cases, adder cuts may occur.

このような溶接欠陥発生防止には溶接速度を低下させる
のが有効な手段である。また、溶接欠陥が発生せず、か
つ溶接速度が上限速度未満である場合には、高能率化を
図るため、逆に溶接速度を上限速度まで速めることもあ
り得る。しかしながら溶接速度を変化させた場合(Sl
3)、溶接電流値T (1)、 I (2)はそのまま
で溶接を行うと、必然的に溶け込みに過不足が発生する
。このため、入力した(S14)新らしい溶接速度設定
値で、再び、設定溶接電流の修正値を演算で求め(S 
15)、該修正値I (1)、 I (2)を溶接電源
2a、2bへ、溶接速度設定値Vを溶接速度制御装置6
へ出力する(S 16)。そして最後に溶接が終了した
かどうか判断しく517)、継続中であれば再び開先形
状を検知しくS9)、修正溶接電流値の演算を繰返しく
SIO,5ll)、溶接電流値を制御する(S 12)
ことによって溶け込み深さを所定値に維持する。
An effective means for preventing such welding defects is to reduce the welding speed. Furthermore, if no welding defects occur and the welding speed is less than the upper limit speed, the welding speed may be increased to the upper limit speed in order to increase efficiency. However, when the welding speed is changed (Sl
3) If welding is performed with the welding current values T (1) and I (2) unchanged, excess or deficiency in penetration will inevitably occur. Therefore, using the new welding speed setting value input (S14), the corrected value of the set welding current is calculated again (S14).
15), the correction values I (1) and I (2) are sent to the welding power sources 2a and 2b, and the welding speed setting value V is sent to the welding speed control device 6.
(S16). Finally, it is determined whether welding has been completed (517), and if it is continuing, the groove shape is detected again (S9), the calculation of the corrected welding current value is repeated (SIO, 5ll), and the welding current value is controlled ( S12)
This maintains the penetration depth at a predetermined value.

第2図は、第1図で示した抽出又は入力した(St、S
2);設定条件、すなわち1〜n電極までの各電極溶接
電流I(1〜口)、溶接電圧E(1〜nLワイヤ径Y 
(1−n) 、 fd極間隔D d (1−n−1)、
溶接速度Vをもとに、所定温は込み深さを得る各電極溶
接電流値を求めるフローチャート、すなわち第1図のス
テップS6.Sl 1.S15を実行するサブルーチン
である。
Figure 2 shows the extracted or input data shown in Figure 1 (St, S
2); Setting conditions: each electrode welding current I (1 to n), welding voltage E (1 to nL), wire diameter Y
(1-n), fd pole spacing D d (1-n-1),
A flowchart for determining the welding current value for each electrode to obtain a predetermined temperature penetration depth based on the welding speed V, that is, step S6 in FIG. Sl 1. This is a subroutine that executes S15.

第2図に示すように、各電極毎の溶け込み深さP(1〜
n)、最大溶け込み深さP+aaxを後述する手順で求
め(518) 、該Pmaxが所定の溶け込み深さPm
の許容範囲内であるかどうか調べ(S19)、範囲外で
あれば、各電極溶接電流値の総和150+11を増減(
同図中の例では100A)して(S20,21)再度P
(1〜n)及びP waxを求め(318)、許容範囲
であれば、その演算で用いた溶接電流値1(1〜nL溶
接電圧値E(1〜nL及び溶接速度Vを出力する(S2
2=S7.512)さて、ステップS18のV溝開先に
おける各電極毎の溶け込み深さP(1〜n)、及び、最
大溶け込み深さPmaxを求める手段は、第3図に示す
手順によって得られる。すなわち同図において、まず、
カウンタJを1、最大重は込み深さP maxを0、開
先断面積Saを0.仮の開先幅LxをLとおき(S23
)、各電極溶接′−E流の総和I sumと溶接電流配
分死目+(1−n)からJ?llt極の溶接電流値1(
、J)を求める(S24)。次にあらかじめ求めておい
た定数及び数式を用いてJ電極のアークでガウジングさ
れる幅W(J)と、第4図に示すアーク形態によって使
用する溶け込み式を判断するためのアーク形態判別断面
積Sm(J)、及び当該電極で投入された溶接電力(溶
接電圧E(J)と溶接電流I (J)の積)で溶融する
母材の断面積5(J)を求める(S 25)。そして、
開先の有無を判別しく32G)、開先なしなら開先断面
積Sa及び開先内アーク識別値KをOとしまた。被溶接
材表面から開先側面のアーク止端部までの垂直距離d1
を0として(S27)、アーク形態を判別して(S37
)溶け込み深さを求める式を使い分ける(538,53
9)。一方、開先ありの場合には第1電極かどうか調べ
(828)、第1電極であれば、アークガウジング幅W
(J)と開先幅りとを比較しく529)、溶け込みタイ
プ(イ)の場合には溶け込みに作用する開先断面積Sa
及び被溶接材表面から開先側面のアーク止端部までの垂
直距離d +を求め(S32)、このd、を2′fJ、
piA以降での溶け込みタイプ(ハ)および(ニ)のS
a’ 及びSa”の演t7(S34および535)に使
用するためdyに置き換え、開先内アーク識別値Kを1
とする(S 32)。
As shown in Figure 2, the penetration depth P (1~
n), the maximum penetration depth P+aax is determined by the procedure described below (518), and Pmax is determined as the predetermined penetration depth Pm.
Check whether it is within the allowable range (S19), and if it is outside the range, increase or decrease the total of each electrode welding current value by 150 + 11 (
In the example in the same figure, 100A) and (S20, 21) P again
(1 to n) and P wax are calculated (318), and if the values are within the allowable range, the welding current value 1 (1 to nL) used in the calculation is outputted, as is the welding voltage value E (1 to nL) and the welding speed V (S2
2=S7.512) Now, the means for determining the penetration depth P(1 to n) and the maximum penetration depth Pmax for each electrode in the V-groove groove in step S18 are obtained by the procedure shown in FIG. It will be done. In other words, in the same figure, first,
Counter J is 1, maximum weight penetration depth P max is 0, groove cross-sectional area Sa is 0. The temporary groove width Lx is set as L (S23
), the sum of each electrode welding '-E flow I sum and the welding current distribution dead eye + (1-n) to J? llt pole welding current value 1 (
, J) is determined (S24). Next, use the constants and formulas determined in advance to determine the width W (J) gouged by the arc of the J electrode, and the cross-sectional area for determining the arc form to determine the penetration formula to be used based on the arc form shown in Figure 4. Sm (J) and the cross-sectional area 5 (J) of the base metal that is melted by the welding power (product of welding voltage E (J) and welding current I (J)) applied to the electrode are determined (S25). and,
To determine the presence or absence of a groove (32G), if there is no groove, the groove cross-sectional area Sa and groove internal arc identification value K are set to O. Vertical distance d1 from the surface of the welded material to the arc toe on the side surface of the groove
is set to 0 (S27), the arc form is determined (S37
) Use different formulas to calculate penetration depth (538, 53
9). On the other hand, if there is a groove, check whether it is the first electrode (828), and if it is the first electrode, the arc gouging width W
(J) and the groove width529), and in the case of penetration type (A), the groove cross-sectional area Sa that affects penetration.
Then, the vertical distance d + from the surface of the welded material to the arc toe on the side surface of the groove is determined (S32), and this d is expressed as 2'fJ,
Melting type (c) and (d) S after piA
dy for use in the calculation t7 (S34 and 535) of "a' and Sa", and the groove internal arc identification value K is set to 1.
(S32).

また、タイプ(ロ)の場合には、開先断面積Saを求め
、dl及びKを0とおいて(S33)、アーク形態を判
別して(S37)溶け込み深さを求める式を使い分ける
(S38,539)。すなわちS (J)とSaの和と
Sm(J)とを比較しく537)、S(、J)とSaの
和がSm(J)に等しいか大きい場合は第5図に示すB
アーク形態として次に示す第(1)式からJ電極の溶け
込み深さP (J)を求める(338)。
In the case of type (B), the groove cross-sectional area Sa is determined, dl and K are set to 0 (S33), the arc form is determined (S37), and a formula for determining the penetration depth is used (S38, 539). In other words, compare the sum of S (J) and Sa with Sm (J)537), and if the sum of S (, J) and Sa is equal to or larger than Sm (J), then B as shown in Figure 5
The penetration depth P (J) of the J electrode is determined from the following equation (1) as the arc form (338).

ρ・■・W(J)    2    4    W(J
)ここでmは、単位時間、単位溶接入力で溶融する母材
重量、ρは母材密度である。
ρ・■・W(J) 2 4 W(J
) Here, m is the weight of the base material melted per unit time and unit welding input, and ρ is the base material density.

一方、S (J)とSaの和がSm(J)より小さい場
合は第6図に示すCアーク形態として以下に述べる方法
で試行錯誤的手法で溶け込み深さP (J)を求める(
S39)、すなわち、次の第(2)式に示すアークの広
がり角度θを90°より順次小さくして求めた仮のガウ
ジング面積5b(J)を5(J)とSaの和と比較し、
5b(J)がS (J)とSaの和に等しいか小さくな
る点での0を用い、第(3)式から溶け込み深さP(丁
)を知ることができる。
On the other hand, if the sum of S (J) and Sa is smaller than Sm (J), the penetration depth P (J) is determined by trial and error using the method described below as the C arc shown in Figure 6.
S39), that is, the provisional gouging area 5b(J) obtained by successively decreasing the arc spread angle θ from 90° shown in the following equation (2) is compared with the sum of 5(J) and Sa,
Using 0 at the point where 5b (J) is equal to or smaller than the sum of S (J) and Sa, the penetration depth P (di) can be found from equation (3).

4      180・Sin”   D      
 t、an θ2      Sinθ       
 しanOなお、dlは開先幅をし、開先深さをdとす
れば、d 1  =d  (L−W(J))  /Lで
与えられる。このような溶け込み深さの演算手順は、l
ff1極サブマージアーク溶接についてすでに本発明者
らが開示(溶接学会全国大会講演概要第39朶1986
9月1日p296−297) 、しているところである
が、本発明のポイントは第2電極以降の各電極の溶け込
み深さを以下のような手法で演算させるところにある。
4 180・Sin”D
t, an θ2 Sinθ
Note that, if dl is the groove width and d is the groove depth, it is given by d 1 =d (L-W(J))/L. The calculation procedure for calculating the penetration depth is l
The present inventors have already disclosed ff 1-pole submerged arc welding (Summary of the National Conference of Welding Society, No. 39, 1986)
(September 1, p. 296-297), the key point of the present invention is to calculate the penetration depth of each electrode after the second electrode using the following method.

すなわち、第2電極以降での溶け込み深さは、その一つ
前の電極でのガウジング断面積Saを、当該電極におけ
る開先断面積とみなして前述の第(1)〜(3)式を適
用して演算し得ることが、種々の実験の結果明らかにな
り、この関係を利用して当該電極で得たアークガウジン
グ幅を仮の開先幅Lxに、当該電極での溶接入力による
母材溶融断面積S (J)と一つ前の電極でのアークガ
ウジング断面積Saの和を新しいSaにセットして、J
を増やし、最終電極nまで繰り返し第(1)〜(3)式
を用いて溶け込みP(2〜n)を求めるものである。第
2電極以降の溶け込みタイプは第3図に示す(ハ)、(
ニ)、(ホ)のいずれかに屈し、当該電極でのアークガ
ウジング幅W(J)が。
In other words, the penetration depth at the second and subsequent electrodes is determined by applying equations (1) to (3) above by regarding the gouging cross-sectional area Sa at the previous electrode as the groove cross-sectional area at the electrode. As a result of various experiments, it has become clear that the arc gouging width obtained with the electrode can be calculated using Set the sum of the cross-sectional area S (J) and the arc gouging cross-sectional area Sa at the previous electrode to a new Sa, and set J
is increased, and the penetration P(2 to n) is determined using equations (1) to (3) repeatedly until the final electrode n. The penetration types after the second electrode are shown in Figure 3 (c), (
(d) or (e), the arc gouging width W (J) at the electrode concerned.

開先幅りより小さいときはなお開先内で母材溶融が進む
場合で、溶け込みタイプ(ハ)となる、ここセは、一つ
前の電極でのアークガウジング面積Saと、当該電極で
溶け込みに作用する開先断面積Sa’ の和を、当該電
極の開先断面積Saとし、航述した式でdlを求めてお
けばSa’ は次の(4)式で求められる。
If it is smaller than the groove width, the base metal melting still progresses within the groove, which is the penetration type (c). The sum of the groove cross-sectional areas Sa' acting on the electrode is defined as the groove cross-sectional area Sa of the electrode, and if dl is determined by the above-mentioned formula, then Sa' can be determined by the following formula (4).

W(J)+Ly Sa’ = (dy  dt)  () ”・(4)こ
こでdyは一つ前の電極での母材表面から開先側面のア
ーク止端部までの垂直距離であり、Lxは一つ前の電極
でのガウジング幅で、仮の開先幅と称する。一方、アー
クガウジング幅W (J)が開先幅りより大きい場合は
、開先内アーク識別値にで溶け込みタイプ(ニ)、(ホ
)を判別する(S3L)。K=1であれば(ニ)タイプ
であり、(ハ)タイプと同様、一つ前の電極のアークガ
ウジング断面積Saと溶け込みに作用する開先断面積S
al+の和を、当該電極の開先断面積Saとし、dl及
びKをOにセットする(S35)。ここで、SaI+は
W(J)+Ly Sa' = (dy dt) () ''・(4) Here, dy is the vertical distance from the base metal surface to the arc toe on the groove side surface at the previous electrode, and Lx is the gouging width at the previous electrode and is called the temporary groove width.On the other hand, if the arc gouging width W (J) is larger than the groove width, the in-groove arc identification value is determined by the penetration type ( Determine (d) and (e) (S3L). If K = 1, it is type (d), and like type (c), the arc gouging cross-sectional area Sa of the previous electrode and the opening that affects penetration are determined. Tip cross-sectional area S
The sum of al+ is set as the groove cross-sectional area Sa of the electrode, and dl and K are set to O (S35). Here, SaI+ is.

次の第(5)式で求まる。It is determined by the following equation (5).

L+Lx Sa” = (d−dy)()・・・(5)また、(ホ
)タイプと判断された場合には一つ前の電極でのアーク
ガウジング断面積Saをそのまま当該電極での開先断面
積Saとし、d1=0とする(536)。
L+Lx Sa" = (d-dy) ()... (5) Also, if it is determined to be type (e), the arc gouging cross-sectional area Sa of the previous electrode is changed to the groove of the current electrode. The cross-sectional area is Sa, and d1=0 (536).

かかるSaを用いて、アーク形態を判別し、B及びCア
ーク形態いずれかの溶け込み式を使用し。
The arc form is determined using this Sa, and the penetration formula for either B or C arc form is used.

各電極の溶け込み深さP (J)を求めることができろ
。そして、各電極毎での溶け込みP(J)のうちの最大
値をP rrraxとすれば、その溶接条件での溶け込
み深さが得られることになる。
Can you find the penetration depth P (J) of each electrode? Then, if the maximum value of the penetration P(J) for each electrode is P rrrax, the penetration depth under the welding conditions will be obtained.

なお、第(1)式における単位時間、単位溶接入力当り
の母材溶融量mは、実験的に求めた結果、各電極ともほ
ぼ溶接電流1(1−n)・の平方根に比例し、m=kJ
下で表わすことができ、定数には各電極とも変化なく交
流垂下特性電源を使用した場合は、はぼ8.5 X 1
6−#である。
In addition, as a result of experimentally finding, the base metal melting amount m per unit time and unit welding input in equation (1) is approximately proportional to the square root of the welding current 1(1-n)· for each electrode, and m =kJ
It can be expressed as below, and when using an AC droop characteristic power supply with no change in the constant for each electrode, it is approximately 8.5 × 1
6-#.

アークガウジング幅W(J)についてもあらかじめ実験
的に求めておく必要があり、例えば3r1極サブマージ
アーク溶接においてワイヤ径0.48cmφを使用した
場合の各電極W(J)は次の(6)〜(8)式となる。
It is also necessary to experimentally determine the arc gouging width W (J) in advance. For example, when using a wire diameter of 0.48 cm in 3r single-pole submerged arc welding, each electrode W (J) is as follows (6) ~ The formula (8) is obtained.

W(1)=0.0088・I” ’ ・E/ (v” 
’ ・Dd(1)”” )  −(6)W(2)=0.
00578・I” ・E” /Cv”・” ’ ・Dd
(2)”” @)−・・(7)W(3)=0.0199
・I’・3’ −E” ’ /v” ’      −
(8)ここで、 Dd(1)及びD d (2)は、そ
れぞれ第1〜第2電極間隔及び第2〜第3電極間隔であ
る。
W(1)=0.0088・I” '・E/ (v”
'・Dd(1)"" ) -(6)W(2)=0.
00578・I"・E"/Cv"・"'・Dd
(2)””@)-...(7)W(3)=0.0199
・I'・3' −E” ' /v” ' −
(8) Here, Dd(1) and Dd(2) are the first to second electrode spacing and the second to third electrode spacing, respectively.

また、アーク形態判別断面積Sm(J)は第4図かられ
かるように次の第(9)式となる。
Further, as can be seen from FIG. 4, the arc form determination cross-sectional area Sm(J) is expressed by the following equation (9).

かかる定数、及び数式を演算・制御器lに組み込み、所
定の溶け込み深さを得るための各電極溶接電流値を演算
して出力させることにより、所定の溶け込み深さを維持
することが可能となる。
By incorporating such constants and formulas into the calculation/controller l and calculating and outputting each electrode welding current value to obtain a predetermined penetration depth, it becomes possible to maintain a predetermined penetration depth. .

第7図は、本発明の溶け込み深さ演算手法を検証するた
め、3電極サブマージアーク溶接で各電極の溶接電流を
、第1電極から順に、1200A。
FIG. 7 shows that in order to verify the penetration depth calculation method of the present invention, the welding current of each electrode was 1200 A in order from the first electrode in three-electrode submerged arc welding.

1000A、 800Aとし、溶接電圧を30V、 3
5V、 35Vと一定として溶接速度のみを変化させた
ときの演算及び実測値の溶け込み深さと、溶接速度との
関係を示した図である。使用した溶接電源は交流垂下特
性のものであり、ワイヤは2%Mn系で第1,2電極は
0.48cmφ、第3電極は0.4cmφである。溶融
型フラックスを用い5M50材、板厚20+mmの鋼板
に角度90″、深さ0 、3c+*のV溝開先を設けた
ものを使用した。なお、電極間隔は第1−第2電極間隔
2.5CIIl、第2−第3電極間隔1.5cmである
1000A, 800A, welding voltage 30V, 3
FIG. 4 is a diagram showing the relationship between the calculated and measured penetration depth and the welding speed when only the welding speed is changed while keeping the voltage constant at 5V and 35V. The welding power source used was one with AC drooping characteristics, the wire was 2% Mn-based, the first and second electrodes were 0.48 cmφ, and the third electrode was 0.4 cmφ. A 5M50 steel plate with a thickness of 20+mm and a V-groove groove with an angle of 90'' and a depth of 0, 3c+* was used using melted flux.The electrode spacing was 2 between the first and second electrodes. .5CIIl, and the second-third electrode interval was 1.5 cm.

同図中の第1.第2電極の溶け込み深さ実測値は。1 in the same figure. What is the actual measured penetration depth of the second electrode?

溶接を中断し該中断箇所の各電極でガウジングされたと
みられる箇所から、横断面マクロ試片を採取して81す
定した。このため、同図中の白点及び中思点で示す第1
.第2f!!極での溶け込み深さ実測(!へは、点線及
び一点鎖線で示す演算値からややばらついているが、黒
点で示す定常部マクロでの溶け込み深さ実測値と、実線
で示す第3電極の演算値とはよく一致することが検証さ
れた。なお、この場合の演算結果では、最終電極で最大
溶け込み深さとなっているが、各電極の溶接条件の配分
によっては、中間電極で最大溶け込み深さが得られるこ
ともある。
Welding was interrupted, and 81 cross-sectional macro specimens were taken from the places where the welding was interrupted and appeared to have been gouged by each electrode. For this reason, the first
.. 2nd f! ! Actual measurement of penetration depth at the pole (!) Although there is some variation from the calculated value shown by the dotted line and the dashed-dotted line, the measured value of the penetration depth at the steady-state macro shown by the black dot and the calculation of the third electrode shown by the solid line. It was verified that the values are in good agreement with each other.The calculation results in this case indicate that the maximum penetration depth is at the final electrode, but depending on the distribution of welding conditions for each electrode, the maximum penetration depth may be at the intermediate electrode. may be obtained.

次に、第1図に示す本発明を3電極サブマージアーク溶
接用に構成し、板厚12.7mmの5M50材に開先角
度90m、深さ0.32cm及び90°、 0.30c
mと、開先形状の異なるV溝を設け、該V溝が一直線に
なるようにし、溶接速度は3.1cm/5ee一定とし
て溶接を行ない、溶け込み深さが0.7cmとなるよう
に溶接電流値を自動制御せしめた。使用した電源、ワイ
ヤ、フラックス、及び電極間隔は前述したものと同一で
ある。なお、同試験材の裏面には外面溶接用の開先(開
先角度90°、深さ0.32cmの■)1わを設けであ
る。
Next, the present invention shown in Fig. 1 was configured for three-electrode submerged arc welding, and a groove angle of 90 m, a depth of 0.32 cm, and a groove angle of 90°, 0.30° was applied to a 5M50 material with a thickness of 12.7 mm.
m and a V-groove with different groove shapes are provided, the V-grooves are aligned in a straight line, welding is performed at a constant welding speed of 3.1cm/5ee, and the welding current is adjusted so that the penetration depth is 0.7cm. The value was automatically controlled. The power supply, wires, flux, and electrode spacing used were the same as described above. Note that a groove (■ with a groove angle of 90° and a depth of 0.32 cm) for external welding was provided on the back side of the test material.

その結果、第1表に示す開先形状に対応した溶接条件で
の溶け込み深さの比較かられかるように、開先角度90
°、深さ0.32cmめV溝溶接中では第1〜3電極溶
接電流値はそれぞれ1040A、 7g0A。
As a result, as can be seen from the comparison of penetration depth under welding conditions corresponding to the groove shapes shown in Table 1, the groove angle was 90.
°, during V-groove welding at a depth of 0.32 cm, the welding current values of the first to third electrodes were 1040A and 7g0A, respectively.

620Aで溶け込み深さ約0.7c+++が確保され、
開先角度90a、深さ0 、39cmの■溝に移行した
部分では、第1〜第3電極溶接電流値は、それぞれ97
0A 。
620A ensures a penetration depth of approximately 0.7c+++,
In the part transitioned to the ■groove with a groove angle of 90a, a depth of 0, and 39cm, the first to third electrode welding current values are 97, respectively.
0A.

730A、 580Aに変化し、開先断面積の拡大及び
総溶接電流値の減少から余rii量は少くなるが、溶け
込み深さはほぼ0.7cmが確保され、溶け落ちも発生
していないことを確認した。
730A and 580A, and the amount of remaining rii decreases due to the enlargement of the groove cross-sectional area and the decrease in the total welding current value, but the penetration depth is approximately 0.7 cm, and no burn-through occurs. confirmed.

第1表 さらに、第8a図、第8b図および第8C図に示すよう
に、7電極サブマージアーク溶接でも、実測値と演算値
とを比較した結果、両者とも溶け込み深さはほぼ0.8
cmとよく一致していることを確認した。第8a図にお
いて4cm4gはそれぞれ第1〜7電極で演算によって
描いた溶け込み縦断面の線図、第8b図は同じく演算に
よって描いた溶け込み横断面の線図、第8C図は演算結
果の条件を用い、7電極サブマージを行なったビードの
横断マクロのトレース図である。ここで使用した溶接電
源は第1電極が直流逆極性、第2〜7電極は全て交流垂
下特性、ワイヤは前述と同じであり、第4@極以降は0
.4craφを用いている。溶接母材は第1表で溶接し
た試験材の裏面を使用しており、開先角度90@、深さ
0 、34cmである。なお、フラックスは前述と同じ
である。また、溶接条件(電流/電圧)は第1ffi極
から順ニ107OA/30V、 860A/35゜81
OA/35V、 760A/35V、 720A/35
.66OA/35゜600/35Vで、溶接速度は6 
am/secである。
Table 1 Furthermore, as shown in Figures 8a, 8b, and 8C, even in 7-electrode submerged arc welding, the actual measured values and calculated values were compared, and the penetration depth was approximately 0.8 in both cases.
It was confirmed that there was good agreement with cm. In Fig. 8a, 4cm4g is a line diagram of the vertical penetration cross section drawn by calculation using the 1st to 7th electrodes, Fig. 8b is a line diagram of the penetration cross section similarly drawn by calculation, and Fig. 8C is a diagram using the conditions of the calculation result. , is a cross-sectional macro trace diagram of a bead subjected to 7-electrode submerging. In the welding power source used here, the first electrode has DC reverse polarity, the second to seventh electrodes all have AC drooping characteristics, the wire is the same as described above, and the wires from the 4th @ pole onwards are 0.
.. 4craφ is used. The back surface of the test material welded in Table 1 was used as the welding base material, and the groove angle was 90 @, depth was 0, and 34 cm. Note that the flux is the same as described above. The welding conditions (current/voltage) are 107OA/30V, 860A/35°81 in order from the 1st ffi pole.
OA/35V, 760A/35V, 720A/35
.. 66OA/35°600/35V, welding speed is 6
am/sec.

以上のように本発明によれば2本以上7本以下の任意の
電極数を一つの溶融池になるように一直線に並べて行な
う多電極サブマージアーク溶接にすべて適用できる。
As described above, the present invention can be applied to all multi-electrode submerged arc welding in which any number of electrodes, from 2 to 7, are arranged in a straight line to form one molten pool.

〔発明の効果〕〔Effect of the invention〕

上記のように本発明によれば、溶け込み深さのレベル及
び、開先の有無に関係なく、所定の溶け込み深さを得る
ため、各電極最適溶接電流値が自動的にセットされ、溶
接作業を無人化しても溶け落ち、溶け込みも不足のない
適正な溶接ビードが得られる。また1本発明は溶け込み
深さと溶接条件との関係を数式化しているため膨大なデ
ータベースを必要とせず、演算・制御器1の容量も簡略
化し、及び処理時間の短縮等大きなメリットとなり、産
業上極めて有効である。
As described above, according to the present invention, the optimum welding current value for each electrode is automatically set in order to obtain a predetermined penetration depth regardless of the penetration depth level and the presence or absence of a groove. Even when unmanned, a proper weld bead with no melt-through and insufficient penetration can be obtained. In addition, since the present invention formulates the relationship between penetration depth and welding conditions, it does not require a huge database, the capacity of the calculation/controller 1 is simplified, and processing time is shortened, which is a great advantage for industrial use. Extremely effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は1本発明を2電極サブマージアーク溶接に適用
する一実施例を模式的に示したブロック図である。 第2図は、第1図に示す溶接電流値演算S6゜Sll、
S15の内容を示すフローチャートであり、所定の溶け
込み深さになる各電極溶接電流値を得る手順を示す。 第3図は第2図に示す演算318の内容を示すフローチ
ャートであり、n電極サブマージアーク溶接の最大重は
込み深さを知る手順を示す。 第4図は母材5の横断面図であり、アーク形態によって
使用する溶け込み式を判別するためのアーク形態判別断
面積を示す。 第5図は、母材5の横断面図であり、Bアーク形態によ
る溶け込み形状を示す。 第6図は母材5の横断面図であり、Cアーク形態による
溶け込み形状を示す。 第7図は3電極サブマージアーク溶接の各電極毎での溶
け込み深さの演算値と実測値との相関を示すグラフであ
る。 第8a図は7電極サブマージアーク溶接での溶け込み形
状を演算によって描いた溶接ビード縦断面図、第8b図
は横断面図、第8c図は実測マクロの横断面でのトレー
ス図であり、第8a図は演算によって描いた溶け込み縦
断面を示す、第8b図は同じく演算によって描いた溶け
込み横断面を示し、第8c図は実測マクロの横断面をト
レースした図である。 1:演算・制御器    2a、2b:溶接電源3a、
3b:ワイヤ送給制御装置 4a、4b、4c、4d、4e、4f、4g:溶接電極
  5:母材6:溶接速度制御装置  7:開先形状検
知器8:Δ/D変換器    9 : D/A変換変換
器型極数      PI!l:所完溶け込み深さJP
:溶け込み深さ許容範囲 Jk:開先形状許容範囲 I(1〜n):各電極溶接電流値 ト:(1〜口):各電極溶接電圧値 Y(1”n):各電極ワイヤ径 L) d (1−n−1) :各電極間隔  V:溶接
速度し、:開先幅          d:開先深さT
 h(1〜n):各電極溶接電流配分I sum :総
溶接電流 P(J):各電極溶け込み深さ Prnax:最大重は込み深さ   J:カウンタLx
:仮の開先幅 W(J):各電極ガウジング幅 Sm(J):アーク形態判別断面積 に:開先内アーク止端部 Sθ:溶け込み深さに作用する開先断面積又はガウジン
グ断面積 dl :母材表面から開先測面のアーク止端部までの垂
直距離 0:アークの広がり角度
FIG. 1 is a block diagram schematically showing an embodiment in which the present invention is applied to two-electrode submerged arc welding. FIG. 2 shows the welding current value calculation S6°Sll shown in FIG.
It is a flowchart showing the contents of S15, and shows a procedure for obtaining each electrode welding current value that provides a predetermined penetration depth. FIG. 3 is a flowchart showing the contents of calculation 318 shown in FIG. 2, and shows a procedure for determining the maximum weight penetration depth of n-electrode submerged arc welding. FIG. 4 is a cross-sectional view of the base material 5, and shows a cross-sectional area for determining the arc form for determining the penetration formula to be used depending on the arc form. FIG. 5 is a cross-sectional view of the base material 5, showing the penetration shape according to the B arc form. FIG. 6 is a cross-sectional view of the base material 5, showing a welding shape according to the C-arc form. FIG. 7 is a graph showing the correlation between the calculated value and the measured value of penetration depth for each electrode in three-electrode submerged arc welding. Fig. 8a is a vertical cross-sectional view of a weld bead drawn by calculation of the penetration shape in 7-electrode submerged arc welding, Fig. 8b is a cross-sectional view, and Fig. 8c is a trace diagram of an actually measured macro cross-section. The figure shows a penetration vertical section drawn by calculation, Fig. 8b shows a penetration cross-section drawn by calculation as well, and Fig. 8c is a diagram tracing the cross-section of the actually measured macro. 1: Arithmetic/controller 2a, 2b: Welding power source 3a,
3b: Wire feeding control device 4a, 4b, 4c, 4d, 4e, 4f, 4g: Welding electrode 5: Base material 6: Welding speed control device 7: Groove shape detector 8: Δ/D converter 9: D /A conversion converter type number of poles PI! l: Complete penetration depth JP
: Penetration depth tolerance range Jk: Groove shape tolerance range I (1 to n): Each electrode welding current value T: (1 to mouth): Each electrode welding voltage value Y (1”n): Each electrode wire diameter L ) d (1-n-1) : Distance between each electrode V: Welding speed, : Groove width d: Groove depth T
h (1 to n): Welding current distribution for each electrode I sum: Total welding current P (J): Penetration depth of each electrode Prnax: Maximum weight penetration depth J: Counter Lx
: Temporary groove width W (J): Each electrode gouging width Sm (J): Cross-sectional area for determining arc form: Arc toe in groove Sθ: Groove cross-sectional area or gouging cross-sectional area that affects penetration depth dl: Vertical distance from the base metal surface to the arc toe of the groove surface 0: Arc spread angle

Claims (1)

【特許請求の範囲】[Claims] 直線状に配列され、2本以上7本以下の電極を用いる多
電極サブマージアーク溶接において、各電極毎の母材溶
融量、溶接速度、アークでガウジングされる幅、及び第
1電極では開先断面積、第2電極以降ではその一つ前の
電極でのガウジング断面積を変数とする関数から各電極
毎の溶け込み深さを演算で求め、該溶け込み深さの最大
値を所定値と比較し、所定値となるべき各電極溶接電流
値を演算によって求め、該溶接電流値となるように各電
極溶接電源を自動制御することを特徴とする多電極サブ
マージアーク溶接方法。
In multi-electrode submerged arc welding using 2 to 7 electrodes arranged in a straight line, the amount of base metal melted for each electrode, the welding speed, the width gouged by the arc, and the groove cut for the first electrode. Calculate the penetration depth for each electrode from a function that uses as variables the area and the gouging cross-sectional area of the previous electrode after the second electrode, and compare the maximum value of the penetration depth with a predetermined value, A multi-electrode submerged arc welding method, characterized in that each electrode welding current value that should be a predetermined value is determined by calculation, and each electrode welding power source is automatically controlled so as to achieve the welding current value.
JP9385487A 1987-04-16 1987-04-16 Multi-electrode submerged arc welding method Pending JPS63260676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9385487A JPS63260676A (en) 1987-04-16 1987-04-16 Multi-electrode submerged arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9385487A JPS63260676A (en) 1987-04-16 1987-04-16 Multi-electrode submerged arc welding method

Publications (1)

Publication Number Publication Date
JPS63260676A true JPS63260676A (en) 1988-10-27

Family

ID=14094003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9385487A Pending JPS63260676A (en) 1987-04-16 1987-04-16 Multi-electrode submerged arc welding method

Country Status (1)

Country Link
JP (1) JPS63260676A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0775876A (en) * 1993-09-03 1995-03-20 Sumitomo Metal Ind Ltd Tube manufacturing welding method
JP2005349422A (en) * 2004-06-09 2005-12-22 Ishikawajima Harima Heavy Ind Co Ltd Welding method, welding equipment, and database system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0775876A (en) * 1993-09-03 1995-03-20 Sumitomo Metal Ind Ltd Tube manufacturing welding method
JP2005349422A (en) * 2004-06-09 2005-12-22 Ishikawajima Harima Heavy Ind Co Ltd Welding method, welding equipment, and database system

Similar Documents

Publication Publication Date Title
CN108213659B (en) Cross structural member GTA filler wire additive manufacturing forming control method
CN104334305A (en) Improved process for surface tension transfer short circuit welding
CA2287111C (en) Resistance welding machine control method
JP5987737B2 (en) Narrow groove welding method for steel
Nakamura et al. Ultranarrow GMAW process with newly developed wire melting control system
JPS63260676A (en) Multi-electrode submerged arc welding method
Bagger et al. Comparison of plasma, metal inactive gas (MIG) and tungsten inactive gas (TIG) processes for laser hybrid welding
CN103128424A (en) Method for controlling single-point globular transfer thermal balance digital intelligent electrical arc welding
JPH02205267A (en) Consumable electrode arc welding method
JPS6219266B2 (en)
CN107498177A (en) A kind of non-penetration laser welding method and system
JP6010988B2 (en) Narrow groove submerged arc welding method for steel
CN203592236U (en) Laser welding clamp of stainless steel sheet fillet weld
JP2002224829A (en) Method and equipment for welding narrow groove with peak pulse tig
SU1320030A1 (en) Current-conducting nozzle
CN112222568A (en) Robot welding process of high-strength structural steel Q390GJ for building
KR20120053704A (en) Resistance spot welding method
CN109693016A (en) Arc-welding apparatus and arc-welding method
JPS63104782A (en) Control method for penetration of arc welding
Batta et al. Optimization of submerged arc welding process: a review
CN108067733A (en) Laser electrical arc complex welding method
CN106425024B (en) A kind of determination method of gas shield welding heat input
JPS60210368A (en) Three o'clock welding method
GB1506621A (en) Electric arc welding
CN116209535A (en) Submerged arc welding method and submerged arc welding device for extremely narrow groove