JPS63260133A - Dry etching method - Google Patents

Dry etching method

Info

Publication number
JPS63260133A
JPS63260133A JP9484387A JP9484387A JPS63260133A JP S63260133 A JPS63260133 A JP S63260133A JP 9484387 A JP9484387 A JP 9484387A JP 9484387 A JP9484387 A JP 9484387A JP S63260133 A JPS63260133 A JP S63260133A
Authority
JP
Japan
Prior art keywords
etching
plasma
magnetic field
etched
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9484387A
Other languages
Japanese (ja)
Inventor
Yasuhiro Suzuki
康浩 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP9484387A priority Critical patent/JPS63260133A/en
Publication of JPS63260133A publication Critical patent/JPS63260133A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To control the cross-sectional shape of polycrystalline silicon in etching as a desired shape with good reproducibility, when the polycrystalline silicon is etched in ECR discharge plasma, by further mixing nitriding gas with chlorine and sufur hexafluoride. CONSTITUTION:A gas, which is introduced through a gas introducing system 6, is made to be ECR plasma with a magnetic field, which is produced by a magnetic field producing coil 5 that is provided at the outer surface of a plasma chamber 1 and a microwave electric field. The plasma is guided by the divergent magnetic field produced by the magnetic field producing coil 5 and inputted into a sample 9 through a plasma-stream lead-out window 8. Then the surface of the sample 9 is etched. Here, in addition to chlorine with a specified flow rate and sulfur hexafluoride, nitrogen is introduced at a specified flow rate. When etching is performed at a specified pressure, an anisotropic shape is readily obtained. The cross-sectional shape in etching can be adjusted by changing the mixing ratio of nitrogen gas. When nitrogen gas is added by 10-20%, polycrystalline silicon having the desirable etching cross-sectional shape with a forward taper angle of 80-90 degrees can be etched.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体素子、半導体装置等の製造工程におけ
るECR放電プラズマエツチング方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an ECR discharge plasma etching method in the manufacturing process of semiconductor elements, semiconductor devices, etc.

(従来の技術)。(Conventional technology).

ECR放電プラズマを用いるドライエツチング方法は、
微細なパターンを高精度で加工できる方法として周知で
あり、近年半導体集積回路の製造加工に採用されつつあ
る。
The dry etching method using ECR discharge plasma is as follows:
It is well known as a method that can process fine patterns with high precision, and has recently been adopted in the manufacturing process of semiconductor integrated circuits.

この方法は10−2〜10iPa台程度の低圧の反応性
ガスを真空室に導入し、磁界とマイクロ波(2,45G
Hz)電界を印加することでECRプラズマ化させ、ガ
ス分子から解離生成する反応性イオンやラジカルによフ
て試料をエツチングする方法である。
This method introduces a low-pressure reactive gas on the order of 10-2 to 10 iPa into a vacuum chamber, and a magnetic field and microwave (2,45G
In this method, an ECR plasma is created by applying an electric field (Hz), and the sample is etched by reactive ions and radicals that are dissociated and generated from gas molecules.

(発明が解決しようとする問題点) このドライエツチング方法により形成される多結晶シリ
コンなど薄膜パターンのエツチング断面形状(第2図a
、b、c)はおおくの場合矩形の形状をもつものとなる
。しかしこのような矩形エツチング断面形状の薄膜パタ
ーンの側壁(第2図の14)は鋭い段差を作るためこの
パターンに交差させて金属配線などを被着形成する場合
にとかく断線事故を起こすという問題を生ずる。
(Problems to be Solved by the Invention) The etched cross-sectional shape of a thin film pattern such as polycrystalline silicon formed by this dry etching method (Fig. 2a)
, b, c) have a rectangular shape in most cases. However, since the side wall of such a thin film pattern (14 in Fig. 2) with a rectangular etched cross section forms a sharp step, there is a problem of disconnection when metal wiring is deposited across this pattern. arise.

この問題を解決するためには、薄膜パターンのエツチン
グ断面形状を所望のものに調整する必要がある。
In order to solve this problem, it is necessary to adjust the etched cross-sectional shape of the thin film pattern to a desired shape.

従来のECR放電によるエツチング加工では、この形状
調整のために六フッ化硫黄を主体とする各種ガスを用い
ているが、第2図aのようにサイドエッチングを生じ易
く形状の制御が困難であった。
In conventional etching processing using ECR discharge, various gases mainly containing sulfur hexafluoride are used to adjust the shape, but as shown in Figure 2a, side etching tends to occur and shape control is difficult. Ta.

(発明の目的) 本発明は、上記の問題を解決し、多結晶シリコンのエツ
チング断面形状を再現性よく新星のものに制御出来るド
ライエツチング方法の提供を目的とする。
(Object of the Invention) An object of the present invention is to provide a dry etching method that solves the above-mentioned problems and can control the etched cross-sectional shape of polycrystalline silicon to a nova shape with good reproducibility.

(問題を解決するための手段) 本発明は、ECR放電プラズマ中で多結晶シリコンをエ
ツチングする方法において、塩素、六フッ化硫黄に対し
、更に窒素ガスを混合する方法によって前記エツチング
断面形状を制御したものである。
(Means for Solving the Problems) The present invention provides a method for etching polycrystalline silicon in ECR discharge plasma, in which the etched cross-sectional shape is controlled by a method in which nitrogen gas is further mixed with chlorine and sulfur hexafluoride. This is what I did.

(作用) この発明の方法によって多結晶シリコンのエツチング断
面形状の側壁の立ち上がりを、任意角度に、例えば、垂
直から僅かに順テーパーに傾けることが出来る。この順
テーパーのエツチング断面形状は半導体基板の微細加工
にて極めて好ましい形状である。
(Function) By the method of the present invention, the rise of the side wall of the etched cross-sectional shape of polycrystalline silicon can be tilted at any angle, for example, from vertical to slightly tapered. This forward tapered etched cross-sectional shape is an extremely preferable shape for microfabrication of semiconductor substrates.

(実施材) 以下、本発明を図を用いて詳しく説明する。(Implemented materials) Hereinafter, the present invention will be explained in detail using the drawings.

第1図は本発明に用いたECR放電プラズマ流エツチン
グ装置の概略を示したものである。
FIG. 1 schematically shows an ECR discharge plasma flow etching apparatus used in the present invention.

第1図において、3は側波数2.45GHzのマイクロ
波を伝播するための矩形導波管である。
In FIG. 1, 3 is a rectangular waveguide for propagating microwaves with a side wave number of 2.45 GHz.

1はプラズマ室で、マイクロ波導入窓4を倫える。プラ
ズマ室1はエツチング室2とともに真空に保持されてい
る。試料9は水冷される基板ホルダー10の上に載置さ
れる。排気系11は、プラズマ室1とエツチング室20
両室の真空度を所定の値に保持する。プラズマ室1の外
周に設けられた磁場発生コイル5で発生した磁界とマイ
クロ波電界とにより、ガス導入系6から導入されたガス
がECRプラズマ化される。発生したプラズマは磁場発
生コイル5の作る発散磁界に導かれてプラズマ流引出し
窓8を通って試料9に入射し、試料90表面をエツチン
グする。また、本装置はグリッドを用いない方式で、図
のようにプラズマ室に直流電圧12を印加することも可
能である。
1 is a plasma chamber, which has a microwave introduction window 4. The plasma chamber 1 and the etching chamber 2 are kept in vacuum. The sample 9 is placed on a water-cooled substrate holder 10. The exhaust system 11 includes a plasma chamber 1 and an etching chamber 20.
The degree of vacuum in both chambers is maintained at a predetermined value. The gas introduced from the gas introduction system 6 is converted into ECR plasma by a magnetic field and a microwave electric field generated by a magnetic field generating coil 5 provided on the outer periphery of the plasma chamber 1. The generated plasma is guided by the diverging magnetic field created by the magnetic field generating coil 5 and enters the sample 9 through the plasma flow extraction window 8, etching the surface of the sample 90. Furthermore, this apparatus does not use a grid, and it is also possible to apply a DC voltage 12 to the plasma chamber as shown in the figure.

第2図で、13はエツチングマスク、14は被エツチン
グ物質の側壁、15はゲート酸化膜、16はシリコン基
板であるが、第2図aは、上述した装置において六フッ
化硫黄を8secm、  窒素を2secmの流量で導
入し、0.13Paの圧力で多結晶シリコンをエツチン
グしたときのエツチング断面形状である。この場合はエ
ツチング速度が速い反面、図のようにサイドエツチング
が入フた形状となる。
In FIG. 2, 13 is an etching mask, 14 is a side wall of the material to be etched, 15 is a gate oxide film, and 16 is a silicon substrate. This is an etched cross-sectional shape when polycrystalline silicon is etched at a pressure of 0.13 Pa by introducing the polycrystalline silicon at a flow rate of 2 seconds. In this case, although the etching speed is high, the shape has side etching as shown in the figure.

一方、第2図すは、塩素を9.5secm、 六フッ化
硫黄を0. 5 s c Cm、  に加えて、窒素を
5secmの流量で導入し、同じ<0.13Paの圧力
でエツチングしたときの多結晶シリコンのエツチング断
面形状である。この場合は、第2図aに比べ異方性形状
が容易に得られ、細かくエツチング断面形状を制御出来
るメリットがある。塩素ガスによる試料表面上のシリコ
ン残渣は、六フッ化硫黄の添加で解消出来、エツチング
速度は増加する。
On the other hand, Figure 2 shows 9.5 seconds of chlorine and 0.0 seconds of sulfur hexafluoride. This is the etched cross-sectional shape of polycrystalline silicon when etching was performed at the same pressure of <0.13 Pa by introducing nitrogen at a flow rate of 5 sec in addition to 5 s c Cm. In this case, an anisotropic shape can be obtained more easily than in FIG. 2a, and there is an advantage that the etched cross-sectional shape can be finely controlled. Silicon residue on the sample surface caused by chlorine gas can be eliminated by adding sulfur hexafluoride, increasing the etching rate.

さてここでは、窒素ガスの混合比を変えることでエツチ
ング断面形状を調整することが出来る。
Here, the etching cross-sectional shape can be adjusted by changing the mixing ratio of nitrogen gas.

第2図Cは、第2図すの導入ガスの窒素ガスの混合を1
0105eとした場合のエラチン断面形状であって、完
全に逆テーパー形状(逆台形形状)にエツチングされて
いる。窒素ガスの混合比を徐々に減らすと、逆テーパー
形状から第2図すの垂直形状、次いで、第2図aの順テ
ーパー形状へと変化する。
Figure 2C shows the mixture of nitrogen gas in the introduced gas in Figure 2.
0105e, which is etched into a completely inverted tapered shape (inverted trapezoidal shape). When the mixing ratio of nitrogen gas is gradually reduced, the shape changes from a reverse tapered shape to a vertical shape as shown in FIG. 2, and then to a forward tapered shape as shown in FIG. 2a.

実用的な順テーパー角の85度前後を得るのは、゛窒素
ガスの混合比が10〜20%の時であることが判明した
。窒素ガスの添加は、プラズマ中で生成されるNラジカ
ルがレジストマスクに起因して生成すると考えられてい
る炭化物や酸化物の残渣のCやOを、CNやONに転化
させて除去するメリットもある。
It has been found that a practical forward taper angle of around 85 degrees can be obtained when the nitrogen gas mixing ratio is 10 to 20%. The addition of nitrogen gas also has the advantage that the N radicals generated in the plasma convert C and O in carbide and oxide residues, which are thought to be generated due to the resist mask, into CN and ON, thereby removing them. be.

一方、窒素ガスの添加によるエツチング速度の低下は、
プラズマ室に前述の直流電圧を印加することで補うこと
が可能であることも判っている。
On the other hand, the etching rate decreases due to the addition of nitrogen gas.
It has also been found that it is possible to compensate by applying the aforementioned DC voltage to the plasma chamber.

(発明の効果) 本発明は、以上の通りであフて窒素ガスを10〜20%
添加することにより断面の順テーパー角が80〜90度
という望ましいエツチング断面形状のの多結晶シリコン
のエツチングが出来る。
(Effects of the Invention) The present invention is as described above, and the nitrogen gas is reduced to 10 to 20%.
By adding this, it is possible to etch polycrystalline silicon with a desirable etching cross-sectional shape in which the forward taper angle of the cross-section is 80 to 90 degrees.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の方法の実施例を説明するために用い
たECR放電プラズマ流エツチング装置の概略図。 第2図a −Cは、各種のエツチング形状を示す断面図
。 1・・・プラズマ室、2・・・エツチング室、3・・・
矩形導波管、4・・・マイクロ波導入窓、5・・・磁場
発生コイル、6・・・ガス導入系、7・・・絶縁体、8
・・・プラズマ流引出し窓、9・・・試料、10・・・
基板ホルダー、11・・・排気系、12・・・直流電源
、13・・・エツチングマスク、14・・・被エツチン
グ物質の側壁、15・・・ゲート酸化膜、16・・−シ
リコン基板。
FIG. 1 is a schematic diagram of an ECR discharge plasma stream etching apparatus used to explain an embodiment of the method of the present invention. Figures 2a-C are cross-sectional views showing various etching shapes. 1... plasma chamber, 2... etching chamber, 3...
Rectangular waveguide, 4...Microwave introduction window, 5...Magnetic field generation coil, 6...Gas introduction system, 7...Insulator, 8
...Plasma flow drawer window, 9...Sample, 10...
Substrate holder, 11... Exhaust system, 12... DC power supply, 13... Etching mask, 14... Side wall of material to be etched, 15... Gate oxide film, 16...-Silicon substrate.

Claims (1)

【特許請求の範囲】[Claims] (1)ECR放電プラズマ中で多結晶シリコンをエッチ
ングする方法において、塩素、六フッ化硫黄に更に窒素
ガスを混合することでエッチング断面形状を制御するこ
とを特徴とするドライエッチング方法。
(1) A dry etching method for etching polycrystalline silicon in ECR discharge plasma, which is characterized by controlling the etching cross-sectional shape by further mixing nitrogen gas with chlorine and sulfur hexafluoride.
JP9484387A 1987-04-17 1987-04-17 Dry etching method Pending JPS63260133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9484387A JPS63260133A (en) 1987-04-17 1987-04-17 Dry etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9484387A JPS63260133A (en) 1987-04-17 1987-04-17 Dry etching method

Publications (1)

Publication Number Publication Date
JPS63260133A true JPS63260133A (en) 1988-10-27

Family

ID=14121318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9484387A Pending JPS63260133A (en) 1987-04-17 1987-04-17 Dry etching method

Country Status (1)

Country Link
JP (1) JPS63260133A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5520770A (en) * 1990-09-28 1996-05-28 Seiko Epson Corporation Method of fabricating semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637310A (en) * 1979-08-30 1981-04-11 Toray Ind Inc Direct spin-draw process for polyamide multiple yarns
JPS61113778A (en) * 1984-11-07 1986-05-31 Hitachi Ltd Surface treating device
JPS62249421A (en) * 1986-04-23 1987-10-30 Hitachi Ltd Method and apparatus for etching

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637310A (en) * 1979-08-30 1981-04-11 Toray Ind Inc Direct spin-draw process for polyamide multiple yarns
JPS61113778A (en) * 1984-11-07 1986-05-31 Hitachi Ltd Surface treating device
JPS62249421A (en) * 1986-04-23 1987-10-30 Hitachi Ltd Method and apparatus for etching

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5520770A (en) * 1990-09-28 1996-05-28 Seiko Epson Corporation Method of fabricating semiconductor device

Similar Documents

Publication Publication Date Title
EP1620876B1 (en) Rf pulsing of a narrow gap capacitively coupled reactor
JPH0473287B2 (en)
JP2002083799A (en) Semiconductor etching device, and etching method for semiconductor device utilizing the same
JPH11195641A (en) Plasma treatment
WO2003056617A1 (en) Etching method and plasma etching device
JP3350973B2 (en) Plasma processing method and plasma processing apparatus
JPH0794130A (en) Control method and control device for radical
JPS63260133A (en) Dry etching method
JPS6044825B2 (en) Etching method
JPS60126835A (en) Plasma etching device
JPS60120525A (en) Method for reactive ion etching
JP4360065B2 (en) Plasma processing method
JPH113879A (en) Surface processor and its driving method
JP2734748B2 (en) Reactive dry etching method
JP3830560B2 (en) Dry etching method
JPH0414822A (en) Microwave plasma etching method
JPS61256725A (en) Dry etching method
JPH06104217A (en) Etching method
JPH08172081A (en) Plasma surface treater
JPH05251406A (en) Dry etching method
JPS61222132A (en) Production unit for semiconductor
JPH0223619A (en) Manufacture of semiconductor device
JPS62154730A (en) Etching method
JPS5887278A (en) Plasma etching device
JPH0794482A (en) Dry etching method