JPS63260113A - Magnetic field generating element - Google Patents

Magnetic field generating element

Info

Publication number
JPS63260113A
JPS63260113A JP62094442A JP9444287A JPS63260113A JP S63260113 A JPS63260113 A JP S63260113A JP 62094442 A JP62094442 A JP 62094442A JP 9444287 A JP9444287 A JP 9444287A JP S63260113 A JPS63260113 A JP S63260113A
Authority
JP
Japan
Prior art keywords
magnetic field
closed loop
pattern
field generating
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62094442A
Other languages
Japanese (ja)
Inventor
Susumu Ito
伊東 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62094442A priority Critical patent/JPS63260113A/en
Publication of JPS63260113A publication Critical patent/JPS63260113A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a simple magnetic field generating element, which produces an arbitrary magnetic field with small energy consumption, by providing a magnetic field producing pattern having closed loop coils comprising a superconductive material, which are formed on a substrate. CONSTITUTION:Nd is evaporated on an Si substrate 1. Then a photoresist pattern is formed. Thereafter etching is performed by ion milling method, and closed loop coils 2 are formed. SiO2 is sputtered thereon as a protecting film to a thickness of 1mum, and a magnetic field producing pattern is provided. A magnetic field is applied from a permanent magnet at the outside so that magnetic lines of force penetrate vertically through the pattern. This element is put into a Dewar flask containing liquid He under this state. Thereafter the permanent magnet is removed. At this time, a current is induced in each closed loop coil so as to prevent the disappearance of the applied magnetic field. The current continues to flow as a permanent current. As a result, magnetic lines of force are produced from the magnetic field producing pattern. In this way, the very thin magnetic field producing body can be formed. Since this element can be kept at the superconductive state, the magnetic field continues to be formed with a small amount of energy consumption.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は通常の磁性材料に代わる新しい磁場発生素子
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a new magnetic field generating element that replaces ordinary magnetic materials.

(従来の技術と発明が解決しようとする問題点)従来、
磁場の発生素子としては、電流の流れているコイルと強
磁性体が使われてきた。しがし、電流の流れているコイ
ルは、常時電流を流す必要性から発熱が問題となり、か
つ消費電力も大きくなるという欠点があった。一方、強
磁性体は磁場発生体としてエネルギーの消費は無いが、
任意の磁場を発生させるという目的には反磁場の発生を
考慮する必要性から形状が制限されるため不十分であっ
た。
(Problems to be solved by conventional technology and invention) Conventionally,
Coils carrying current and ferromagnetic materials have been used as magnetic field generating elements. However, coils with current flowing through them have the disadvantage of generating heat due to the need for constant current flow, and high power consumption. On the other hand, ferromagnetic materials consume no energy as magnetic field generators, but
This was insufficient for the purpose of generating an arbitrary magnetic field because the shape was limited by the need to consider the generation of a demagnetizing field.

本発明の目的は少エネルギー消費で任意の磁場を発生す
る簡便な磁場発生素子を提供することにある。
An object of the present invention is to provide a simple magnetic field generating element that generates an arbitrary magnetic field with low energy consumption.

(問題点を解決するための手段) 本発明は基板上に形成された超伝導材料から成る閉ルー
プコイルを有する磁場発生パターンを備えたことを特徴
とする磁場発生素子と、基板上に形成された超伝導材料
から成る閉ループコイルを有する磁場発生パターンと該
閉ループコイルに磁場を印加する手段とを備えたことを
特徴とする磁場発生素子である。
(Means for Solving the Problems) The present invention provides a magnetic field generating element characterized by comprising a magnetic field generating pattern having a closed loop coil made of a superconducting material formed on a substrate, and a magnetic field generating element formed on a substrate. A magnetic field generating element characterized by comprising a magnetic field generating pattern having a closed loop coil made of a superconducting material and means for applying a magnetic field to the closed loop coil.

本発明に使用される基板としては、特別の制約は無いが
、表面の平坦なSi単結晶板、ガラス板、石英板、サフ
ァイア板、^Q203や5i02やSiCやTiO□等
を主成分とするセラミックス板、ステンレスやCu等の
合金を含む金属板、ポリエステルやポリイミドやポリ−
カーボネート等のプラスティック板、等非超伝導材料が
適する。
There are no particular restrictions on the substrate used in the present invention, but substrates whose main components are flat-surfaced Si single crystal plates, glass plates, quartz plates, sapphire plates, ^Q203, 5i02, SiC, TiO□, etc. Ceramic plates, metal plates containing alloys such as stainless steel and Cu, polyester, polyimide, and polyester.
Non-superconducting materials such as plastic plates such as carbonate are suitable.

超伝導材料としては、周知のV、Pb、Tc、Nb等の
純金属やV−Ga、 Mo−N 、 Nb−Ge、 N
b−Ga、 Nb−A Q等の合金を含む金属、A2C
uO4で表わされるセラミックス(但しA=Y、La、
等)やB3−、CxCu2O7または82−XCxCu
O4で表わされるセラミックス(但し、B=La、Y、
Sc、Yb。
Superconducting materials include well-known pure metals such as V, Pb, Tc, and Nb, as well as V-Ga, Mo-N, Nb-Ge, and Nb.
Metals including alloys such as b-Ga, Nb-A Q, A2C
Ceramics represented by uO4 (where A=Y, La,
etc.) or B3-, CxCu2O7 or 82-XCxCu
Ceramics represented by O4 (however, B=La, Y,
Sc, Yb.

Er、I(o、Dy、Tm 、Lu、等; C=Ba、
Sr、−等)等が適する。
Er, I(o, Dy, Tm, Lu, etc.; C=Ba,
Sr, -, etc.) are suitable.

本発明の磁場発生素子を動作させるためには温度制御手
段が必要である。この温度制御手段としては、前記超伝
導材料を超伝導状態に保持できるものでなければならな
い。金属系の超伝導材料を用いる場合は液体11eまた
は、He液化器が、セラミックス系の超伝導材料を用い
る場合には前記液体11e、)He液化器、に加え、液
体N2、液体02、液体空気、高圧からの断熱膨張を使
った冷却器、等が適する。
Temperature control means is required to operate the magnetic field generating element of the present invention. This temperature control means must be capable of maintaining the superconducting material in a superconducting state. When a metal-based superconducting material is used, the liquid 11e or the He liquefier is used; when a ceramic-based superconducting material is used, in addition to the liquid 11e,) the He liquefier, liquid N2, liquid 02, and liquid air. , a cooler using adiabatic expansion from high pressure, etc. are suitable.

また閉ループコイルに磁場を印加する手段としては、外
部の永久磁石を用いる場合と、該閉ループコイルに近接
してコイルを形成する場合などがある。
Further, as means for applying a magnetic field to the closed loop coil, there are two methods: using an external permanent magnet, and forming a coil close to the closed loop coil.

(作用) 本発明の磁場発生素子を用いれば、極薄の磁場発生体が
構成でき、超伝導状態に保持されているため少ない消費
エネルギーで磁場を発生し続は得る。また、任意の時点
で、この磁場発生素子の発生している磁場を消滅させる
こともできる。このような効果は従来の手段では不可能
である。
(Function) If the magnetic field generating element of the present invention is used, an ultra-thin magnetic field generating body can be constructed, and since it is maintained in a superconducting state, a magnetic field can be generated with less energy consumption. Furthermore, the magnetic field generated by the magnetic field generating element can be extinguished at any time. Such an effect is not possible with conventional means.

(実施例1) 表面の研磨されたSi基板上にNbを1000λ蒸着し
、次いで、周知のフォトリングラフィ技術を用いて、フ
ォトレジストパターンを形成後、イオンミリング法でエ
ツチングし、第1図で示したような閉ループコイルを形
成した。この上に保護膜と′してSiO□を1μmスパ
ッタし磁場発生パターンとした。このパターンに垂直に
磁力線が通るように外部より永久磁石で磁場を印加した
まま、液体11eの入ったデユワ−ビンに挿入し、その
後、永久磁石を除去した。この時、印加された磁場の消
滅を妨げるように各閉ループコイル内に電流が誘起され
、そのまま永久電流として流れ続けた。この結果、磁場
発生パターンから磁力線が発生した。この場合、この磁
場発生パターンは、極薄の永久磁石と等価となった。こ
れは、従来の永久磁石では反磁場のため達成できなかっ
た薄さと磁場強度を有していた。
(Example 1) Nb was evaporated to a thickness of 1000λ on a Si substrate with a polished surface. Next, a photoresist pattern was formed using a well-known photolithography technique, and then etched using an ion milling method. A closed loop coil was formed as shown. On top of this, SiO□ was sputtered to a thickness of 1 μm as a protective film to form a magnetic field generation pattern. While applying a magnetic field from the outside with a permanent magnet so that lines of magnetic force pass perpendicularly to this pattern, it was inserted into a dewar bottle containing liquid 11e, and then the permanent magnet was removed. At this time, a current was induced in each closed loop coil to prevent the applied magnetic field from disappearing, and continued to flow as a persistent current. As a result, lines of magnetic force were generated from the magnetic field generation pattern. In this case, this magnetic field generation pattern was equivalent to an ultra-thin permanent magnet. It had a thinness and magnetic field strength that could not be achieved with conventional permanent magnets due to the demagnetizing field.

(実施例2) 実施例1と同様に磁場発生パターンを形成した。但し、
ここでは、Nb蒸着膜の代りに、第2図のような形状を
有するY3−、BaxCu207 (但しx;1.5)
セラミックスのスパッタ膜を用いた。
(Example 2) A magnetic field generation pattern was formed in the same manner as in Example 1. however,
Here, instead of the Nb vapor deposited film, Y3-, BaxCu207 having the shape as shown in Fig. 2 (however, x; 1.5)
A sputtered ceramic film was used.

外部より印加する手段として永久磁石を用いた点は、実
施例1と同様であるが、温度制御手段として、液体He
の入ったデユワ−ビンの代りに液体窒素の入ったデユワ
−ビンを用いた。
This is the same as in Example 1 in that a permanent magnet is used as the means for externally applying the voltage, but liquid He is used as the temperature control means.
A dewar bottle containing liquid nitrogen was used instead of a dewar bottle containing liquid nitrogen.

この場合、極薄の永久磁石と等価になったことは、実施
例1と同様であるが、さらに、コイルに電流を流し続け
る従来の磁場発生器に比しエネルギーの消耗量が少くな
った。
In this case, it is equivalent to an ultra-thin permanent magnet, which is the same as in Example 1, but furthermore, the amount of energy consumed is less than that of a conventional magnetic field generator that continues to flow current through the coil.

(実施例3) 実施例1と同様に磁場発生パターンを形成した。但し、
この際、閉ループコイル2と同じ材料でコイル3を形成
した。
(Example 3) A magnetic field generation pattern was formed in the same manner as in Example 1. however,
At this time, the coil 3 was formed from the same material as the closed loop coil 2.

コイル3に電流を流しながら液体11eデユワ−ビンに
挿入し、次いで、コイル3に流れている電流を遮断した
。この時、実施例1と同様の磁場発生素子が形成された
The liquid 11e was inserted into the dewarbin while a current was flowing through the coil 3, and then the current flowing through the coil 3 was cut off. At this time, a magnetic field generating element similar to that in Example 1 was formed.

(実施PA4) 実施例2と同様に磁場発生パターンを形成した。但し、
この際閉ループコイル2゛と同じ材料でコイル3゛を形
成した。
(Execution PA4) A magnetic field generation pattern was formed in the same manner as in Example 2. however,
At this time, coil 3' was formed from the same material as closed loop coil 2'.

コイル3′に電流を流しながら液体N2デユワ−ビンに
挿入し、次いで、コイル3゛に流れている電流を遮断し
た。この時実施例1と同様の磁場発生素子が形成された
The coil 3' was inserted into a liquid N2 dewarbin while a current was flowing through it, and then the current flowing through the coil 3' was cut off. At this time, a magnetic field generating element similar to that in Example 1 was formed.

(発明の効果) 本発明は、以上の実施例で明らかな如く、極薄の永久磁
石として作用するだけでなく、閉ループコイル2又は2
゛の形状及び磁場を印加する手段による磁場の加え方を
調節することにより、任意の磁場を発生することができ
る。また、従来のコイルを用いた磁場発生素子に比し、
消費エネルギーも少くできた。
(Effects of the Invention) As is clear from the above embodiments, the present invention not only functions as an extremely thin permanent magnet, but also functions as a closed loop coil 2 or 2.
Any desired magnetic field can be generated by adjusting the shape of the magnetic field and the way the magnetic field is applied by the means for applying the magnetic field. In addition, compared to magnetic field generating elements using conventional coils,
Energy consumption was also reduced.

なお、前記実施例では、基本として、Si板を、超伝導
材料として、Nb及びYCuOを例として挙げたが、こ
れに限るものでなく、2種以上の材料を併用してもよい
。また、磁場を印加する手段として、永久磁石と、閉ル
ープコイル2又は2゛に隣接並置されたコイル3又は3
°を例に示したが、この例に限るものではない、さらに
、温度制御手段として液体11eおよび液体N2デユワ
−ビンを示したがこれに限るものでもない。また、閉ル
ープコイルの数は単数であってもよく、また大きさ、形
成密度も任意である。
In the above embodiments, a Si plate was used as a basic material, and Nb and YCuO were used as superconducting materials, but the material is not limited to these, and two or more materials may be used in combination. Further, as a means for applying a magnetic field, a permanent magnet and a coil 3 or 3 disposed adjacent to the closed loop coil 2 or 2' are used.
Although the liquid 11e and the liquid N2 dewarbin are shown as temperature control means, the present invention is not limited to this example. Moreover, the number of closed loop coils may be singular, and the size and formation density are also arbitrary.

また、セラミックス膜をスパッタで形成する代わりにス
クリーン印刷で形成することもできる。
Furthermore, instead of forming the ceramic film by sputtering, it can also be formed by screen printing.

要は、先に述べた如く、磁場発生パターンと、磁場を印
加する手段と、温度制御手段を有するものであればよい
In short, as described above, any device may be used as long as it has a magnetic field generation pattern, a means for applying a magnetic field, and a means for controlling temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図および第4図は、本発明の実施
例を示す図で、1は基板、2および2゛は閉ループコイ
ル、3および3゛はコイルをそれ第1図 第2図 第3図 第4図
1, 2, 3, and 4 are diagrams showing embodiments of the present invention, in which 1 is a substrate, 2 and 2'' are closed loop coils, and 3 and 3'' are coils. Figure 2 Figure 3 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)基板上に形成された超伝導材料から成る閉ループ
コイルを有する磁場発生パターンを備えたことを特徴と
する磁場発生素子。
(1) A magnetic field generating element comprising a magnetic field generating pattern having a closed loop coil made of a superconducting material formed on a substrate.
(2)基板上に形成された超伝導材料から成る閉ループ
コイルを有する磁場発生パターンと該閉ループコイルに
磁場を印加する手段とを備えたことを特徴とする磁場発
生素子。
(2) A magnetic field generating element comprising: a magnetic field generating pattern having a closed loop coil made of a superconducting material formed on a substrate; and means for applying a magnetic field to the closed loop coil.
JP62094442A 1987-04-17 1987-04-17 Magnetic field generating element Pending JPS63260113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62094442A JPS63260113A (en) 1987-04-17 1987-04-17 Magnetic field generating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62094442A JPS63260113A (en) 1987-04-17 1987-04-17 Magnetic field generating element

Publications (1)

Publication Number Publication Date
JPS63260113A true JPS63260113A (en) 1988-10-27

Family

ID=14110375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62094442A Pending JPS63260113A (en) 1987-04-17 1987-04-17 Magnetic field generating element

Country Status (1)

Country Link
JP (1) JPS63260113A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489173A (en) * 1987-09-30 1989-04-03 Fujitsu Ltd Connecting method for superconducting component
US5525949A (en) * 1991-06-19 1996-06-11 Oxford Instruments (Uk) Ltd. Energy storage device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489173A (en) * 1987-09-30 1989-04-03 Fujitsu Ltd Connecting method for superconducting component
US5525949A (en) * 1991-06-19 1996-06-11 Oxford Instruments (Uk) Ltd. Energy storage device

Similar Documents

Publication Publication Date Title
Parkin Systematic variation of the strength and oscillation period of indirect magnetic exchange coupling through the 3d, 4d, and 5d transition metals
Terada et al. Synthesis of iron-nitride films by means of ion beam deposition
Coey Magnetism in future
Ahn et al. Relationship between stoichiometry and properties of EuO films
Ziese et al. Step-edge magnetoresistance in La 0.7 Ca 0.3 MnO 3 films
Lommel et al. Rotatable anisotropy in composite films
Naoe et al. Properties of amorphous Co–Ta and Co–W films deposited by rf sputtering
JPS63260113A (en) Magnetic field generating element
Hong et al. Magnetic properties of RNi4B (R= Y, Gd): Magnetic and specific‐heat measurement
US3607698A (en) Epitaxial garnet films
JPH0779050B2 (en) Manufacturing method for small superconducting solenoid
Shimada et al. Sputtering of FeCo-B amorphous films with soft magnetic properties
JPH0997715A (en) Magnetic thin film and thin film magnetic element using the same
Gadetsky et al. Domain wall dynamics in TbFeCo thin films
US3645788A (en) Method of forming multiple-layer structures including magnetic domains
Fuchs et al. Isotropic permalloy films
JPS60171709A (en) Sputtering thermally regulated with high anisotropic magnetic material
Naoe et al. Properties of (Fe, Co)-(Ta, W) amorphous alloy films deposited by rf sputtering
RU1822504C (en) Method for production of magnetostatically bonded films
Koblischka et al. Formation of the low-field peak in magnetization loops of high-Tc superconductors
TW492203B (en) Superconducting coherent electromagnetic wave oscillation device and its manufacturing method
Kim et al. Temperature dependence of coercivity of the two-phase Co/Co2TiSn magnet
Mochizuki Vortex motion studies of superconductors using mechanical oscillators
CN108251799A (en) Magneto-electric coupled heterojunction structure based on amorphous SmCo and its preparation method and application
Cho et al. Preferred orientation and microstructure of Ni-Zn-Cu ferrite thin films deposited by rf magnetron sputtering