JPS63259363A - Condenser for heat pump - Google Patents

Condenser for heat pump

Info

Publication number
JPS63259363A
JPS63259363A JP9483987A JP9483987A JPS63259363A JP S63259363 A JPS63259363 A JP S63259363A JP 9483987 A JP9483987 A JP 9483987A JP 9483987 A JP9483987 A JP 9483987A JP S63259363 A JPS63259363 A JP S63259363A
Authority
JP
Japan
Prior art keywords
refrigerant
passage
liquid
supercooling
liquid storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9483987A
Other languages
Japanese (ja)
Other versions
JPH0461265B2 (en
Inventor
平嶋 雅雄
川部 末信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Research and Development Co Ltd
Original Assignee
Takuma Research and Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Research and Development Co Ltd filed Critical Takuma Research and Development Co Ltd
Priority to JP9483987A priority Critical patent/JPS63259363A/en
Publication of JPS63259363A publication Critical patent/JPS63259363A/en
Publication of JPH0461265B2 publication Critical patent/JPH0461265B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers

Landscapes

  • Central Heating Systems (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、主に高沸点冷媒と低沸点冷媒を混合した非共
沸混合冷媒を使用するヒートポンプに利用されるシェル
チューブ式のヒートポンプ用凝縮器に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is directed to a shell-tube heat pump condenser mainly used in heat pumps that use a non-azeotropic mixed refrigerant that is a mixture of a high-boiling point refrigerant and a low-boiling point refrigerant. Concerning vessels.

(従来の技術〕 一般に、冷媒に単一冷媒(例えばR−12或はR−11
4)を使用するヒートポンプは、第4図に示す如く、圧
縮機(資)、凝縮器31、膨張弁32及び蒸発器お等か
ら構成されて居り、圧研機30により圧喘されて高温、
高圧となった冷媒ガスGは、α縮型31内で冷却剤34
(例えば水)により冷却されて液化した後、膨張弁32
で減圧されて蒸発器33に入り、ここで外部より吸熱し
て蒸発し、再び圧縮機30 +こより圧縮され、上述の
サイクルを繰り返す。
(Prior Art) Generally, a single refrigerant (for example, R-12 or R-11) is used as a refrigerant.
As shown in Fig. 4, the heat pump using 4) is composed of a compressor, a condenser 31, an expansion valve 32, an evaporator, etc., and is compressed by a pressing machine 30 to generate high temperature,
The high-pressure refrigerant gas G is transferred to the refrigerant 34 in the α compression mold 31.
After being cooled and liquefied by water (for example, water), the expansion valve 32
It is depressurized and enters the evaporator 33, where it absorbs heat from the outside and evaporates, and is again compressed by the compressor 30, repeating the above-mentioned cycle.

尚、第4図に於いて、35は凝縮器31の本体、36は
冷却剤用入口、37は冷却剤用出口、38は湾板、39
は伝熱管、40は冷媒用入口、41は冷媒用出口、42
は通路、43は熱媒である。
In FIG. 4, 35 is the main body of the condenser 31, 36 is a coolant inlet, 37 is a coolant outlet, 38 is a bay plate, and 39 is a coolant outlet.
is a heat exchanger tube, 40 is a refrigerant inlet, 41 is a refrigerant outlet, 42
is a passage, and 43 is a heat medium.

一方、近年高沸点冷媒(例えばR−114)と低沸点冷
媒(例えばR−12)とを混合した非共沸混合冷媒を使
用するヒートポンプが提案されて居り、これは単一冷媒
を使用するものに比校して出力、耐圧、サイクル効率を
改善できることが知られている。
On the other hand, in recent years, heat pumps that use a non-azeotropic refrigerant mixture of a high boiling point refrigerant (e.g. R-114) and a low boiling point refrigerant (e.g. R-12) have been proposed; It is known that output, withstand voltage, and cycle efficiency can be improved in comparison to

而して、単一冷媒を使用したヒートポンプのサイクルと
非共沸混合冷媒を使用したヒートポンプのサイクルを夫
々TS線図(縦1抽が力対温度T1嘆1柚がエントロピ
S)で表わすと、第5図に示す如くなる。
Therefore, if the cycle of a heat pump using a single refrigerant and the cycle of a heat pump using a non-azeotropic mixed refrigerant are represented by TS diagrams (vertical 1 is power versus temperature T1 and 1 is entropy S), The result is as shown in FIG.

即ち、単一冷媒を使用するヒートポンプのサイクルはa
 b c d、又、非共沸混合冷媒を使用するヒートポ
ンプのサイクルはabedとなり、後者の蒸発及び凝縮
工程は等圧下に於いて前者の等温変化(点線bc、cl
a)に対して実線bc、daの如く傾斜して居り、凝縮
に際しては高沸点冷媒から順次櫻縮を始め、冷却剤によ
って冷却されながら通路の柊喘部に於いて低沸点冷媒が
凝縮を終了するようになっている。
That is, the cycle of a heat pump using a single refrigerant is a
b c d, and the heat pump cycle using a non-azeotropic mixed refrigerant is abed, and the evaporation and condensation steps of the latter are the isothermal changes of the former under equal pressure (dotted lines bc, cl
It is inclined as shown by solid lines bc and da with respect to a), and when condensing, the high boiling point refrigerant starts to condense in sequence, and the low boiling point refrigerant finishes condensing in the condensation part of the passage while being cooled by the refrigerant. It is supposed to be done.

一方、前記工程を温度組成平衡線図(縦軸が温度、槌軸
が高沸点冷媒と低沸点冷媒の混合比)で表わすと、第6
図に示す如くなる。
On the other hand, if the above process is represented by a temperature composition equilibrium diagram (the vertical axis is the temperature and the hammer axis is the mixing ratio of high boiling point refrigerant and low boiling point refrigerant), the sixth
The result will be as shown in the figure.

今、高沸点冷媒がXA%、低沸点冷媒が)(n%の気相
混合冷媒(温度TO1状態■)を冷却すれば、T。
Now, if the high boiling point refrigerant is XA% and the low boiling point refrigerant is ) (n%) vapor phase mixed refrigerant (temperature TO1 state ■) is cooled, T.

より温度が降下し、気相線Aとの交点■に於いて高沸点
冷媒が凝縮を始め、気液混合相状態■を経て液相線Bと
の交点■に於いて低沸点冷媒の凝縮を終了する。
As the temperature decreases further, the high boiling point refrigerant begins to condense at the point of intersection (■) with the vapor line A, and after passing through the gas-liquid mixed phase state (■), the low boiling point refrigerant begins to condense at the point of intersection (■) with the liquidus line B. finish.

従って、混合冷媒の凝縮温度は、凝縮工程中、第5図に
於けるTbからTe、第6図に於けるT+からT3のよ
うに変化し、冷媒ガスGを冷却剤の流れに対して対向流
とすることによって、冷却剤の凝縮器内に於ける温度降
下が第5図に示すようにefとなって、熱交換温度差を
小さくすることができる。
Therefore, the condensation temperature of the mixed refrigerant changes from Tb to Te in FIG. 5 and from T+ to T3 in FIG. By making it a flow, the temperature drop of the coolant in the condenser becomes ef as shown in FIG. 5, and the heat exchange temperature difference can be reduced.

而して、熱交換温度差を小さくする場合には、第7図に
示す如く、凝縮器31の通路42を、冷媒ガスGが冷却
剤34の流れに対して対向流となって通過すべく複数枚
の仕切板材で仕切れば良い。従つて、冷媒ガスGは、一
点鎖線で示すように冷却剤34の流れに対向する状態で
通路42内を通過し、通路42内で凝縮した冷媒液りは
、底部側の仕切板材;こ設けたり欠45を通って順次出
口41側へ流れるようになっている。尚、第7図に於い
て、第4図に示す部材と同じ部材には同じ符号を付して
いる0ところで、前記溝造の凝縮器31に於いても、種
々の不都合を生じることになる。
In order to reduce the heat exchange temperature difference, as shown in FIG. It is sufficient to partition with multiple partition plates. Therefore, the refrigerant gas G passes through the passage 42 in a state opposite to the flow of the refrigerant 34 as shown by the dashed line, and the refrigerant liquid condensed in the passage 42 flows through the partition plate material on the bottom side; The water passes through the outlet 45 and sequentially flows toward the outlet 41 side. Incidentally, in FIG. 7, the same members as those shown in FIG. .

即ち、プ席の最終工程に於いて、理論的には胞和混合凝
縮液(温度Ts )となるべきところ、非共沸混合冷媒
では低沸点冷媒が遊離し易く、冷媒ガス(温度T3、状
態■)と冷媒液(温度Tべ状態■)に分、雅することに
なる。この未凝縮ガスを処理するには凝縮器31の伝熱
面偵を大きくしなければならないと云う難点がある。
That is, in the final process of heating, the low boiling point refrigerant is likely to be liberated in the non-azeotropic mixed refrigerant, which should theoretically become a sulfated mixed condensate (temperature Ts), and the refrigerant gas (temperature T3, state ■) and refrigerant liquid (temperature T). There is a drawback in that the heat transfer surface of the condenser 31 must be increased in order to process this uncondensed gas.

又、遊!雅した低沸点冷媒ガスは、通路42に蓄積され
て不凝縮ガスの如く働き、凝(1器31の能力を低下さ
せることになる。特に、通路42の底部に滞留する冷媒
液りの液面が高い場合には未凝縮ガスを出口41から配
管へ吸引し1准くなるので、未凝縮ガスが通路42内に
多量に滞留し、未凝縮のガス量がより一層多くなる。
Also, play! The low boiling point refrigerant gas accumulates in the passage 42 and acts like a non-condensable gas, reducing the condensation capacity of the unit 31. In particular, the liquid level of the refrigerant liquid remaining at the bottom of the passage 42 decreases. When the amount of uncondensed gas is high, the amount of uncondensed gas is sucked into the pipe from the outlet 41, and the amount of uncondensed gas remains in the passage 42, and the amount of uncondensed gas becomes even larger.

更に、冷媒液りは、仕切仮封の切欠45を通って入口切
側から出口41側へ流れるが、流路抵抗により入口切側
に近い通路42程液面が高くなり、伝熱管39が冷媒液
りに浸漬することになる。その結果、伝熱面積が減少し
て出力が低下すると云う問題がある。
Further, the refrigerant liquid flows from the inlet cut side to the outlet 41 side through the notch 45 of the partition temporary seal, but due to flow path resistance, the liquid level becomes higher in the passage 42 closer to the inlet cut side, and the refrigerant It will be immersed in liquid. As a result, there is a problem that the heat transfer area decreases and the output decreases.

尚、未凝縮ガスを処理するには第7図に示すようにヒー
トポンプの配管中に過冷却用熱交換器46を介設しても
良い。このようにすると、凝縮器31を出た冷媒液りの
顕熱が蒸発器33出口の冷媒ガスGに与えられ、凝縮器
31の冷媒液りが冷却されて冷媒液り中の未凝縮ガスが
凝縮されることになる。
Incidentally, in order to treat the uncondensed gas, a supercooling heat exchanger 46 may be interposed in the piping of the heat pump as shown in FIG. In this way, the sensible heat of the refrigerant liquid coming out of the condenser 31 is given to the refrigerant gas G at the outlet of the evaporator 33, the refrigerant liquid in the condenser 31 is cooled, and the uncondensed gas in the refrigerant liquid is It will be condensed.

ところが、この場合には蒸発器33を出た冷媒ガス温度
が上昇して圧縮機30人口のガス過熱度を高めその結果
圧縮後の吐出ガス温度を高める為、冷媒や潤滑油に悪影
響を与えるので好ましくない。
However, in this case, the temperature of the refrigerant gas leaving the evaporator 33 rises, increasing the degree of superheating of the gas in the compressor 30 and increasing the temperature of the discharged gas after compression, which adversely affects the refrigerant and lubricating oil. Undesirable.

(発明が解決しようとする問題点) 本発明は、上記の問題点を解消する為に則案されたもの
であり、その目的は未凝信ガスの凝縮及び冷媒液の過冷
却を良好且つ確実に行えると共に冷媒液への伝熱管の浸
漬や)m路内への未凝縮ガスの滞留を防止できて能力の
向上を図、れるヒートポンプ用?lFi器を提供するに
ある。
(Problems to be Solved by the Invention) The present invention has been devised to solve the above-mentioned problems, and its purpose is to efficiently and reliably condense uncondensed gas and subcool refrigerant liquid. For heat pumps that can improve performance by preventing immersion of heat transfer tubes in refrigerant liquid and retention of uncondensed gas in the (m) path. We provide IFi equipment.

(問題点を屏決する為の手段) 本発明のヒートポンプ用、賽縮器は、冷却剤用の出入口
及び冷媒用の出入口を748えた筒状の本体内に、複数
の伝熱管をその両端が冷却剤用の出入口;こ裏通すべく
軸芯方向に沿って配設し、本体内に形成された通路を冷
媒ガスが、又、伝熱管内を冷却剤が通過して熱交換を行
うようにしたシェルチューブ式のン′解縮器に於いて、
前記通路を冷媒ガスが冷却剤の流れに対して対向流とな
って通過すべく嵐数枚の仕切板で仕(男り、該通路の終
端部を水密仕切壁で密封状に仕切って過冷却兼液貯溜室
を形成し、前記過冷却兼液貯溜室を、本体底部から最上
方位置の伝熱管までの高さを有し且つ下部に小孔を穿設
した仕切壁で分割し、一方の室を逆止弁を介して通路の
終端部へ、又、他方の室を膨張弁に至る配管に夫々接続
したことに特徴がある。
(Means for determining the problem) The condenser for a heat pump of the present invention has a plurality of heat transfer tubes, both ends of which are cooled, in a cylindrical body having 748 inlets and outlets for coolant and 748 inlets and outlets for refrigerant. Inlet/outlet for refrigerant: This is arranged along the axial direction so that the refrigerant gas passes through the passage formed in the main body, and the refrigerant passes through the heat exchanger tube to exchange heat. In the shell tube type decompressor,
The passage is partitioned with several partition plates so that the refrigerant gas passes in a countercurrent flow to the flow of the refrigerant. A liquid storage chamber is formed, and the supercooled liquid storage chamber is divided by a partition wall having a height from the bottom of the main body to the heat transfer tube at the uppermost position and having a small hole in the lower part. It is characterized in that one chamber is connected to the terminal end of the passage via a check valve, and the other chamber is connected to piping leading to the expansion valve.

(作用) 圧縮機を出た高温、高圧の冷媒ガスは、凝縮器の通路に
入り、該通路内を伝熱管内の冷却剤の流れに対して対向
流となって通過し、冷却剤で冷却されて凝縮する。
(Function) The high-temperature, high-pressure refrigerant gas that exits the compressor enters the condenser passage, passes through the passage in a counterflow to the flow of coolant in the heat transfer tubes, and is cooled by the coolant. be condensed.

通路内で凝縮した冷媒液と凝縮しきれなかった未凝縮ガ
スは、通路の終端部から過冷却兼液貯溜室に流入する。
The refrigerant liquid condensed in the passage and the uncondensed gas that has not been completely condensed flow into the supercooling/liquid storage chamber from the end of the passage.

尚、通路内の圧力は、常用時過冷却兼液貯溜室の圧力よ
りも高い為、通路内の冷媒液は圧力差によって確実に排
出される。これにより、通路内の冷媒液の液面が低くな
るので、通路内の未凝縮ガスが過冷却兼液貯溜室へ吸引
され易くなる。その結果、冷媒液への伝熱管の浸漬や通
路内への未凝縮ガスの滞留を防止でき、能力低下を来す
こともない。
Note that since the pressure in the passage is higher than the pressure in the subcooling/liquid storage chamber during normal use, the refrigerant liquid in the passage is reliably discharged due to the pressure difference. As a result, the liquid level of the refrigerant liquid in the passage is lowered, so that uncondensed gas in the passage is easily drawn into the supercooling/liquid storage chamber. As a result, it is possible to prevent the heat transfer tubes from being immersed in the refrigerant liquid and to prevent uncondensed gas from remaining in the passages, and there is no reduction in performance.

そして、過冷却兼液貯溜室に流入した冷媒液と未凝縮ガ
スは、混合冷却されながら伝熱管に直交して過冷却兼液
貯溜室を通過し、外部へ排出される。尚、過冷却兼液貯
溜室内の未凝縮ガスを含む冷媒液は、入口側の低温の冷
却剤で冷却される\未凝縮ガスの凝縮と冷媒液の過冷却
が促進され、凝縮器の能力が向上する。
The refrigerant liquid and uncondensed gas that have flowed into the supercooling/liquid storage chamber are mixed and cooled while passing through the supercooling/liquid storage chamber orthogonally to the heat transfer tubes, and are discharged to the outside. The refrigerant liquid containing uncondensed gas in the supercooling/liquid storage chamber is cooled by the low-temperature refrigerant on the inlet side.Condensation of the uncondensed gas and supercooling of the refrigerant liquid are promoted, increasing the capacity of the condenser. improves.

(実施例) 以下、本発明の実施例を図面に基づいて詳細に説明する
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図は本発明の実施例に係る凝縮器を使用したヒート
ポンプの概略系統図であって、1は凝縮器、2は膨張弁
、3は蒸発器、4は圧縮機である。
FIG. 1 is a schematic system diagram of a heat pump using a condenser according to an embodiment of the present invention, in which 1 is a condenser, 2 is an expansion valve, 3 is an evaporator, and 4 is a compressor.

尚、ヒートポンプの冷媒には高沸点冷媒(例えばR−1
14)と低沸点冷媒(例えばR−12)を混合した非共
沸混合冷媒が使用されて居り、この非共沸混合冷媒は皐
−冷媒(例えばR−12或はR−114)と異なり、等
圧蒸発及び等圧凝縮中に蒸発、凝縮温度が変化し、気相
及び液相中の冷媒の組成が変化するものである。
Note that the heat pump refrigerant is a high boiling point refrigerant (for example, R-1
14) and a low boiling point refrigerant (e.g. R-12) is used, and this non-azeotropic refrigerant mixture is different from a phosphor refrigerant (e.g. R-12 or R-114). During isobaric evaporation and isobaric condensation, the evaporation and condensation temperatures change, and the composition of the refrigerant in the gas phase and liquid phase changes.

前記凝櫂器1は、本体5、管板6、伝熱管7、通路8、
仕切板9、過冷却兼液貯溜室10、水密仕切壁11、仕
切壁12及び逆止弁13等から溝成されている。
The condenser 1 includes a main body 5, a tube plate 6, a heat exchanger tube 7, a passage 8,
The groove is composed of a partition plate 9, a subcooling/liquid storage chamber 10, a watertight partition wall 11, a partition wall 12, a check valve 13, and the like.

即ち、本体5は、頂部に冷媒用の入口14を、底部に冷
媒用の出口15を夫々備えた胴部16と、胴部16の一
端に固設されて冷却剤用の入口17を備えた入口側蓋部
18と、胴部16の他端に固設されて冷却剤用の出口1
9を備えた出口側蓋部20とから成る。
That is, the main body 5 includes a body 16 having a refrigerant inlet 14 at the top and a refrigerant outlet 15 at the bottom, and a coolant inlet 17 fixedly attached to one end of the body 16. An inlet side lid part 18 and an outlet 1 for coolant fixedly attached to the other end of the body part 16.
9 and an outlet side lid part 20.

前記管板6は、冷媒用の出入口15,14と冷却剤用の
出入口19.17とを不連通状態にすべく本体5の胴部
16と各蓋部18,20との間に介設されている。
The tube plate 6 is interposed between the body portion 16 of the main body 5 and each lid portion 18, 20 so as to disconnect the refrigerant inlet/outlet 15, 14 and the coolant inlet/outlet 19,17. ing.

これにより、胴部16内に冷媒通過用の通路8が形成さ
れる。
As a result, a passage 8 for refrigerant passage is formed within the body 16.

前記伝熱管7は、管板6に貫通支持されて居り、本体5
内にその軸芯方向に沿って複数本配設されている。又、
各伝熱管7の両端開口は、本体5の冷却剤用の入口14
及び出口15に夫々連通されている0 前記通路8は、該通路8内を冷媒ガスGが伝熱管7内の
冷却剤21の流れに対して対向流となって通過するよう
に複数枚の仕切板9により仕切られている。本実施例で
は、仕切板9は、胴部16の長手方向で且つ旧都16の
頂部及び底部に交互に配設されて居り、底部側の仕切板
9には冷媒液り通過用の切欠22が形成されている。
The heat exchanger tube 7 is supported through the tube plate 6, and is supported by the main body 5.
A plurality of them are arranged along the axial direction within the shaft. or,
Openings at both ends of each heat transfer tube 7 form a coolant inlet 14 of the main body 5.
and the outlet 15. The passage 8 has a plurality of partitions so that the refrigerant gas G passes through the passage 8 in a counterflow to the flow of the coolant 21 in the heat transfer tubes 7. It is partitioned by a board 9. In this embodiment, the partition plates 9 are arranged alternately at the top and bottom of the old capital 16 in the longitudinal direction of the body 16, and the partition plates 9 on the bottom side have cutouts 22 for passage of refrigerant liquid. is formed.

前記過冷却兼液貯溜室10は、通路8の終端部に形成さ
れて居り、第1過冷却兼液貯溜室10 aと第2過冷却
兼液貯溜室to bとに二分割されている。
The supercooling/liquid storage chamber 10 is formed at the end of the passage 8, and is divided into a first subcooling/liquid storage chamber 10a and a second supercooling/liquid storage chamber tob.

即ち、本実施例では、過冷却兼液貯溜室10は、通路8
の終端部で且つ胴部16内周壁に水密仕切壁11を密着
して配設することにより形成されて居り1該過冷却兼液
貯溜室10は第2図に示す如(、その内部が伝熱管7の
軸芯に沿って前設された仕切壁12により第1過冷却兼
液貯溜室tOaと第2過冷却兼液貯溜室10bとに二分
割されている。この仕切壁12は、本体5底部から最上
方位での伝熱管7までの高さを有し且つ下部に小孔23
が穿設されている。又、第1過冷却兼液貯溜室10 a
の底部は弁24及び逆止弁13を介設した配管25によ
り洞部16の出口15へ接読され、第2過冷却兼液貯溜
室to bの底部は配管26により膨張弁2に接続され
ている。
That is, in this embodiment, the supercooling/liquid storage chamber 10 is connected to the passage 8.
It is formed by disposing a watertight partition wall 11 in close contact with the inner circumferential wall of the body part 16 at the terminal end of the body part 16. The heat tube 7 is divided into two by a partition wall 12 provided along the axis thereof into a first subcooling/liquid storage chamber tOa and a second subcooling/liquid storage chamber 10b. 5 has a height from the bottom to the heat transfer tube 7 in the uppermost direction, and has a small hole 23 at the bottom.
is drilled. Also, the first supercooling/liquid storage chamber 10a
The bottom of the second supercooling/liquid storage chamber TOB is connected to the expansion valve 2 by a pipe 26, and the bottom of the second supercooling/liquid storage chamber TOB is connected to the expansion valve 2 by a pipe 25 with a valve 24 and a check valve 13 interposed therebetween. ing.

而して、圧3宿機4により圧縮されて高温、高圧となっ
た冷媒ガスGは、冷媒用の入口14から凝縮器1の通路
8内に入り、該通路8内を伝熱管7内の冷却剤21の流
れに対して対向流となって通過し、冷却剤21で冷却さ
れて凝縮する。
The refrigerant gas G, which has become high temperature and high pressure after being compressed by the compressor 3 storage unit 4, enters the passage 8 of the condenser 1 from the refrigerant inlet 14, and passes through the passage 8 inside the heat transfer tube 7. It passes in a counterflow to the flow of the coolant 21, is cooled by the coolant 21, and is condensed.

通路8内で凝縮した冷媒液りと凝5略しきれなかった未
凝縮ガスは、冷媒用の出口15からII M 25及び
入口27を経て第1過冷却兼液貯溜室10 aに流入す
る。尚、通路8内の圧力は、常用時過冷却兼液貯溜室1
0の圧力よりも高い為、通路8底部の冷好液りは圧力差
によって第1過冷却兼液貯溜室10 a側へ良好且つ確
実に排出される。又、lk管25には逆止弁13を介設
している為、第1過冷却兼液貯溜室10 aから通路8
への冷媒液りの逆流が防止される。その結果、通路8の
底部には冷媒液りがあまり溜らず、冷媒液りの液面が低
くなる為、伝熱管7が冷媒液りへ浸漬することもなく、
能力低下を防止できる。然も、冷媒液りの液面が低くな
ると、通路8内の未凝縮ガスも配管25中へ吸引され易
くなり、通路8内の未凝縮ガスの滞留が少なくなって凝
縮が活発になる。
The refrigerant liquid condensed in the passage 8 and the uncondensed gas that has not been completely condensed flow from the refrigerant outlet 15 through II M 25 and the inlet 27 into the first supercooling/liquid storage chamber 10a. Note that the pressure inside the passage 8 is the same as that of the supercooling/liquid storage chamber 1 during normal use.
Since the pressure is higher than 0, the cold lyophilic liquid at the bottom of the passage 8 is smoothly and reliably discharged to the first supercooling/liquid storage chamber 10a side due to the pressure difference. In addition, since the check valve 13 is interposed in the lk pipe 25, the passage 8 is
This prevents the refrigerant liquid from flowing back into the tank. As a result, not much refrigerant liquid accumulates at the bottom of the passage 8, and the liquid level of the refrigerant liquid becomes low, so that the heat transfer tubes 7 are not immersed in the refrigerant liquid.
Capability can be prevented from decreasing. However, when the liquid level of the refrigerant liquid becomes low, the uncondensed gas in the passage 8 is also easily drawn into the pipe 25, and the amount of uncondensed gas retained in the passage 8 decreases, making condensation more active.

そして、第1過冷却兼液貯溜室10 aの下部に流入し
た冷媒液りと未凝縮ガスは、混合冷却されながら伝熱管
7に直交して上向きに流れ、仕切壁12をオーバーフロ
ーして第2過冷却兼液貯溜室to bに入り、ここを下
向きに流れて出口28から配管26を経て膨張弁2に至
る。尚、過冷却兼液貯溜室10内の未凝縮ガスを含む冷
媒液りは、入口17側の低温の冷却剤21で冷却される
為、未凝縮ガスの凝縮と冷媒液りの過冷却が促進され、
凝縮器の能力が向上する。又、未凝縮ガスを含む冷媒液
りの一部は、仕切壁12の小孔23をバイパスするが、
大部分の冷媒液りは上述の如く流れる為、全体の流れが
阻害されることもない。更に、過冷却兼液貯溜室10に
於いて、標準運転時には仕切壁12の頂部が液面となり
、負荷変化により冷媒液りが増えたときには過冷却兼液
貯溜室10の気相部が圧縮されて液貯溜効果を持ち、冷
媒液■、が減少したときには第2過冷却兼液貯溜室10
 bより液面が下がるが、仕切壁12の小孔23から除
去に第1過冷却兼液貯溜箪10 aから第2過冷却兼液
貯溜室10 bへ冷媒液りが流入し、両者は同一液面に
なる。
The refrigerant liquid and the uncondensed gas that have flowed into the lower part of the first supercooling/liquid storage chamber 10a flow upward perpendicularly to the heat transfer tubes 7 while being mixed and cooled, overflow the partition wall 12, and flow into the second subcooling/liquid storage chamber 10a. The liquid enters the supercooling/liquid storage chamber TOB, flows downward therefrom, and reaches the expansion valve 2 via the outlet 28 and the piping 26. Note that the refrigerant liquid containing uncondensed gas in the supercooled liquid storage chamber 10 is cooled by the low-temperature coolant 21 on the inlet 17 side, so that condensation of the uncondensed gas and supercooling of the refrigerant liquid are promoted. is,
The capacity of the condenser is improved. Also, a part of the refrigerant liquid containing uncondensed gas bypasses the small holes 23 of the partition wall 12;
Since most of the refrigerant liquid flows as described above, the overall flow is not obstructed. Furthermore, in the supercooling/liquid storage chamber 10, during standard operation, the top of the partition wall 12 becomes the liquid level, and when the refrigerant liquid increases due to a load change, the gas phase portion of the supercooling/liquid storage chamber 10 is compressed. has a liquid storage effect, and when the refrigerant liquid decreases, the second supercooling and liquid storage chamber 10
Although the liquid level is lower than b, the refrigerant liquid flows from the first supercooling/liquid storage chamber 10a to the second supercooling/liquid storage chamber 10b through the small hole 23 of the partition wall 12, and both are the same. It becomes liquid level.

尚、前記過冷却兼液貯溜室10は、過冷却と液溜め作用
を兼ねる。又、過冷却兼液貯溜室10は、過冷却冷却面
の大きさでその容積が決定されるので、冷媒液りの貯溜
能力が不足する場合には11 晋26143に液溜め2
9を介設するようにしても良い。
Incidentally, the supercooling/liquid storage chamber 10 serves both supercooling and liquid storage functions. In addition, the volume of the supercooling/liquid storage chamber 10 is determined by the size of the supercooling cooling surface, so if the storage capacity of the refrigerant liquid is insufficient, the liquid storage chamber 10 is installed at 11 Jin 26143.
9 may be interposed.

(発明の効采) 上述の通り、本発明のヒートポンプ用”> 63器は、
冷媒ガスが通過する通路の終端部を水密仕切壁で仕切2
て過冷却兼液貯溜室を形成し、該過冷却兼液貯溜室を仕
切壁で二分割し、一方の室を通路の終端部へ、又、他方
の室を膨張弁に至るF1把管に接続する構成とした為、
通路内の冷媒液と未凝縮がスとは一旦過冷却兼液貯溜室
へ導入されて混合され、ここで低温の冷却剤で冷却され
ることになる。
(Effects of the invention) As mentioned above, the heat pump device of the present invention is
Separate the end of the passage through which the refrigerant gas passes with a watertight partition wall 2
to form a supercooling/liquid storage chamber, and dividing the supercooling/liquid storage chamber into two with a partition wall, one chamber is connected to the end of the passage, and the other chamber is connected to the F1 pipe leading to the expansion valve. Because it is configured to connect,
The refrigerant liquid and uncondensed gas in the passage are once introduced into the supercooling/liquid storage chamber and mixed, where they are cooled with low-temperature refrigerant.

その結果、未凝縮ガスの鵡嬶と冷媒液の過冷却が促進さ
れ、良好且つ確実な凝縮を行えるうえ、従来の凝縮器で
は完全な凝縮が不可能な非共沸混合冷媒に於ける低沸点
冷媒ガスを過冷却された高沸点冷媒液と混合冷却させて
凝縮することができる。
As a result, the condensation of uncondensed gas and the supercooling of the refrigerant liquid are promoted, resulting in good and reliable condensation. The refrigerant gas can be mixed and cooled with a supercooled high-boiling refrigerant liquid to be condensed.

又、過冷却兼液貯溜室を形成し、ここへ冷媒液を流入さ
せている為、通路内には冷媒液があまり溜ることがない
。その結果、通路内の冷媒液の液面が低くなって伝熱管
が冷媒液に浸漬すると云うこともなく、能力低下を防止
できる。然も、冷媒液の液面が低くなると、通路内の未
凝縮ガスが過冷却兼液貯溜室へ吸引され易くなり、通路
内の未凝♀、宿ガスの滞留が少なくなって凝縮が活発に
なる。
Furthermore, since a subcooling/liquid storage chamber is formed and the refrigerant liquid is allowed to flow into this chamber, the refrigerant liquid does not accumulate much in the passage. As a result, the liquid level of the refrigerant liquid in the passage does not become low and the heat transfer tubes are not immersed in the refrigerant liquid, thereby preventing a decrease in performance. However, when the liquid level of the refrigerant becomes low, uncondensed gas in the passage is easily sucked into the supercooling/liquid storage chamber, and the retention of uncondensed and trapped gas in the passage decreases, resulting in active condensation. Become.

更に、過冷却兼液貯溜室内の冷媒液を冷却剤で冷却する
為、従来のように凝縮器からの冷媒液を紫発器から出た
冷媒ガスで冷却する場合に比較して圧縮機からの吐出ガ
スを低温に(呆つことができ、冷媒や潤滑油の、高温化
による悪影響が生じない。
Furthermore, since the refrigerant liquid in the supercooling/liquid storage chamber is cooled with refrigerant, the amount of water from the compressor is reduced compared to the conventional case where the refrigerant liquid from the condenser is cooled with refrigerant gas from the purple generator. The discharge gas can be kept at a low temperature, and there will be no adverse effects due to high temperatures of the refrigerant or lubricating oil.

加えて、凝縮器内に過冷却用の過冷却兼液貯溜室を投げ
た為、従来のように過冷却用の熱交換器を使用する場合
に比較して装置自身の溝造や配管が簡単になり、メンテ
ナンスも容易になる。
In addition, since a supercooling/liquid storage chamber for supercooling is provided inside the condenser, the groove construction and piping of the equipment itself are easier than when using a conventional heat exchanger for supercooling. This makes maintenance easier.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る凝縮器を使用したヒート
ポンプの(概略系統図、第2図は第1図の■−■礫断面
断面図3因は第1図の■−■線断面図、第4図は単一冷
媒と従来の濃、縮型を部用したヒートポンプの概略系統
図、第5図は単一冷媒を使用したヒートポンプのサイク
ルと非共沸混合冷媒を使用したヒートポンプのサイクル
のT 559図、第6図は非共沸混合冷媒に於ける温度
組成平衡2腺図、第7図は非共沸混合冷媒と従来の凝縮
器を使用したヒートポンプの概略系読図である。 1は凝縮器、2は膨張弁、5は本体、7は伝熱管、8は
通路、9は仕切板、10は過冷却兼液貯溜室、11は水
密仕切壁、12は沈切壁、13は逆止弁、14は冷媒用
の入口、15は冷媒用の出口、17は冷却剤用の入口、
19は冷却剤用の出口、21は冷却剤、26は配管、G
は冷媒ガス。
Fig. 1 is a schematic system diagram of a heat pump using a condenser according to an embodiment of the present invention, Fig. 2 is a cross-sectional view taken along the line ■-■ in Fig. Figure 4 is a schematic system diagram of a heat pump using a single refrigerant and a conventional concentrated/condensing type, and Figure 5 shows a heat pump cycle using a single refrigerant and a heat pump using a non-azeotropic mixed refrigerant. T559 diagram of the cycle, FIG. 6 is a two-gland diagram of temperature composition equilibrium in a non-azeotropic mixed refrigerant, and FIG. 7 is a schematic system diagram of a heat pump using a non-azeotropic mixed refrigerant and a conventional condenser. 1 is a condenser, 2 is an expansion valve, 5 is a main body, 7 is a heat exchanger tube, 8 is a passage, 9 is a partition plate, 10 is a subcooling/liquid storage chamber, 11 is a watertight partition wall, 12 is a sinking wall, 13 is a check valve, 14 is a refrigerant inlet, 15 is a refrigerant outlet, 17 is a coolant inlet,
19 is a coolant outlet, 21 is a coolant, 26 is a pipe, G
is a refrigerant gas.

Claims (1)

【特許請求の範囲】[Claims] 冷却剤用の出入口(19)、(17)及び冷媒用の出入
口(15)、(14)を備えた筒状の本体(5)内に、
複数の伝熱管(7)をその両端が冷却剤用の出入口(1
9)、(17)に連通すべく軸芯方向に沿つて配設し、
本体(5)内に形成された通路(8)を冷媒ガス(G)
が、又、伝熱管(7)内を冷却剤(21)が通過して熱
交換を行うようにしたシェルチューブ式の凝縮器に於い
て、前記通路(8)を冷媒ガス(G)が冷却剤(21)
の流れに対して対向流となつて通過すべく複数枚の仕切
板(9)で仕切り、該通路(8)の終端部を水密仕切壁
(11)で密閉状に仕切つて過冷却兼液貯溜室(10)
を形成し、前記過冷却兼液貯溜室(10)を、本体(5
)底部から最上方位置の伝熱管(7)までの高さを有し
且つ下部に小孔(23)を穿設した仕切壁(12)で二
分割し、一方の室を逆止弁(13)を介して通路(8)
の終端部へ、又、他方の室を膨張弁(2)に至る配管(
26)に夫々接続したことを特徴とするヒートポンプ用
凝縮器。
In a cylindrical body (5) with inlets and outlets (19), (17) for coolant and inlets and outlets (15), (14) for refrigerant,
A plurality of heat transfer tubes (7) are connected at both ends to coolant inlets and outlets (1).
9), disposed along the axial direction to communicate with (17),
The passage (8) formed in the main body (5) is filled with refrigerant gas (G).
However, in a shell tube type condenser in which the refrigerant (21) passes through the heat transfer tube (7) to perform heat exchange, the refrigerant gas (G) cools the passage (8). agent (21)
The passageway (8) is partitioned with a plurality of partition plates (9) so that the flow passes as a counterflow, and the terminal end of the passageway (8) is hermetically partitioned with a watertight partition wall (11) to serve as a supercooling and liquid storage area. Room (10)
The supercooling/liquid storage chamber (10) is formed into a main body (5).
) The partition wall (12) has a height from the bottom to the heat transfer tube (7) at the uppermost position, and is divided into two by a partition wall (12) with a small hole (23) in the lower part, and one chamber is equipped with a check valve (13). ) through passage (8)
and the other chamber to the expansion valve (2).
26) A condenser for a heat pump, characterized in that it is connected to a condenser.
JP9483987A 1987-04-17 1987-04-17 Condenser for heat pump Granted JPS63259363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9483987A JPS63259363A (en) 1987-04-17 1987-04-17 Condenser for heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9483987A JPS63259363A (en) 1987-04-17 1987-04-17 Condenser for heat pump

Publications (2)

Publication Number Publication Date
JPS63259363A true JPS63259363A (en) 1988-10-26
JPH0461265B2 JPH0461265B2 (en) 1992-09-30

Family

ID=14121212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9483987A Granted JPS63259363A (en) 1987-04-17 1987-04-17 Condenser for heat pump

Country Status (1)

Country Link
JP (1) JPS63259363A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108369043A (en) * 2015-12-21 2018-08-03 江森自控科技公司 Heat exchanger with water tank
US11441826B2 (en) 2015-12-21 2022-09-13 Johnson Controls Tyco IP Holdings LLP Condenser with external subcooler
WO2024034151A1 (en) * 2022-08-10 2024-02-15 三菱重工サーマルシステムズ株式会社 Condenser and turbo refrigerator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108369043A (en) * 2015-12-21 2018-08-03 江森自控科技公司 Heat exchanger with water tank
US10508843B2 (en) 2015-12-21 2019-12-17 Johnson Controls Technology Company Heat exchanger with water box
US10830510B2 (en) 2015-12-21 2020-11-10 Johnson Controls Technology Company Heat exchanger for a vapor compression system
US11441826B2 (en) 2015-12-21 2022-09-13 Johnson Controls Tyco IP Holdings LLP Condenser with external subcooler
WO2024034151A1 (en) * 2022-08-10 2024-02-15 三菱重工サーマルシステムズ株式会社 Condenser and turbo refrigerator

Also Published As

Publication number Publication date
JPH0461265B2 (en) 1992-09-30

Similar Documents

Publication Publication Date Title
KR101054784B1 (en) Carbon dioxide cooling system
US4481783A (en) Hybrid heat pump
KR20060108680A (en) Suction line heat exchanger for co2 cooling system
JP2003056930A (en) Air heat source type heat pump apparatus, water-cooled heat pump apparatus, air-cooled refrigerating apparatus and water-cooled refrigerating apparatus
JPS63259363A (en) Condenser for heat pump
JPS59157446A (en) Refrigeration cycle device
JPH07332810A (en) Oil mist separator for refrigerator
US20120137723A1 (en) Air conditioner
CN112041621B (en) Heat exchanger for refrigerating device
JPS6022250B2 (en) vapor compression refrigeration equipment
US20050138957A1 (en) Refrigerant cycle system
JP3468634B2 (en) Refrigeration equipment and water-cooled refrigeration equipment
CN206291540U (en) Condenser and handpiece Water Chilling Units
JPH08327181A (en) Heat exchanger and freezer with heat exchanger
JP4238434B2 (en) Refrigeration cycle equipment
JP2002364936A (en) Refrigeration unit
JPS5818061A (en) Refrigerator
CN220229629U (en) Evaporator and refrigeration cycle system
US2715819A (en) Absorption refrigeration
JP3437302B2 (en) Vertical shell and tube heat exchanger
JP2615491B2 (en) Cooling / heating hot water supply system
JP2787111B2 (en) Absorption heat pump
JPH05126420A (en) Liquid cooler for refrigerating apparatus
RU2047057C1 (en) Sorption cooling machine
KR100473272B1 (en) Automotive Cooling System