JPS6325919Y2 - - Google Patents

Info

Publication number
JPS6325919Y2
JPS6325919Y2 JP1981022986U JP2298681U JPS6325919Y2 JP S6325919 Y2 JPS6325919 Y2 JP S6325919Y2 JP 1981022986 U JP1981022986 U JP 1981022986U JP 2298681 U JP2298681 U JP 2298681U JP S6325919 Y2 JPS6325919 Y2 JP S6325919Y2
Authority
JP
Japan
Prior art keywords
signal
shaft
zero degree
gate
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981022986U
Other languages
Japanese (ja)
Other versions
JPS57135897U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981022986U priority Critical patent/JPS6325919Y2/ja
Publication of JPS57135897U publication Critical patent/JPS57135897U/ja
Application granted granted Critical
Publication of JPS6325919Y2 publication Critical patent/JPS6325919Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は第1の軸の特定の角度位置と第2の軸
の特定の角度位置を等しくして同期回転する装置
例えばレーダの空中線ビームの指向方向とCRT
映像面の輝線の指示角度を同期回転させる場合に
零度を一致させることができる同期回転装置に関
する。 従来は第1の軸側の同期発電機と第2の軸側の
同期電動機とを使用して両軸の回転角度の零度を
合致して同期回転させる場合に同期電動機を第2
の軸からの零度信号で停止させて、第1の軸から
の零度信号で起動させていた。しかしながら同期
電動機を停止するには直流電圧を三相の線間の二
相に加えて停止させるが停止の位置は不定である
から零度で停止させるには零度信号が出る位置の
みで停止位置を決める必要があるにもかかわら
ず、同期電動機は同期発電機の位相によつても起
動する位置が決定される。従つて第2の軸からの
零度信号が出る位置、同期電動機の同期位相の角
度位置および第1の軸からの零度信号が出る位置
を正確に調整しないと同期回転において両軸の零
度を合致させることができないという難点があつ
た。 このような不利な点を解決するために本考案は
従来の同期発電機と同期電動機とを廃して第1の
軸側に進み角、遅れ角および零度の諸信号を発生
する装置を設け、第2の軸側にステツプモータと
零度信号を発生する装置を設け、ステツプモータ
の停止ならびに起動の位置を特定の一点に定めて
第2および第1の軸側からの零度信号によつてそ
れぞれ停止および起動を常に随時行うことのでき
る同期回転装置を提供することを目的とする。 次に図面にもとづいて実施例を説明する。第1
図は従来の同期発電機と同期電動機による同期回
転装置のブロツク図である。第1図において第1
の軸1は駆動モータ4により歯車結合によつて駆
動回転される。また同期発電機3は歯車結合によ
つて第1の軸1により回転され三相の送電線に出
力電圧を発生する。この出力電圧は増巾器9によ
つて増巾されリレー駆動切換器8を介して同期電
動機11に供給される。同期電動機11は歯車結
合によつて第2の軸2を駆動回転する。第1のス
イツチ5はフリツプフロツプゲート6を駆動して
リレー駆動切換器8をOFF動作して三相送電線
を接続して同期電動機1を起動する。第2のスイ
ツチ7はフリツプフロツプゲート6を駆動してリ
レー駆動切換器8をON動作して三相送電線を切
り離なして直流電源10へ接続し同期電動機11
を停止する。第1の軸1と第2の軸2とが一度零
度をそれぞれ合致して同期回転しているときは停
止、起動は第2のスイツチ7および第1のスイツ
チ5において容易に行われるが何等かの原因で第
1の軸1および第2の軸2の零度位置が停止の際
に移動した場合には同期発電機3と同期電動機1
1とのロータの軸の角度位置をそれぞれ第1の軸
1と第2の軸2との零度位置に固定し、同期電動
機11のステータの角度位置を少しづつ移動して
起動操作を繰返えし、位相角度を同期回転の位相
角度位置に合致させるという面倒な作業が必要で
ある。停止の際に両軸の零度位置の移動は第1の
軸1や第2の軸2の負荷の慣性によつて往々発生
し易いものでこれが従来装置の一大難点であつ
た。 第2図は本考案になる同期回転装置の一実施例
を示すブロツク図で、第3図は第2図における要
所信号のタイムチヤートである。第2図において
第1の軸1は駆動モータ4により歯車結合によつ
て、駆動回転される。また角度信号発生器21は
歯車結合によつて第1の軸1により回転され、相
互に進みと遅れ関係にある二相の角度信号を発生
する。この角度信号は第3図のイとロに示され
る。第1の零度信号発生器23は第1の軸1の回
転角度の零度を検出して零度信号を第1のスイツ
チ22によつて発生する。この零度信号は第3図
ハに示される。角度ならびに零度の検出には例え
ばフオトセルが利用され角度信号ならびに零度信
号はシヤフトエンコーダが利用される。第2の軸
2は歯車結合によつてステツプモータ24により
駆動回転される。第2の零度信号発生器25は第
2の軸2の回転角度の零度を検出して零度信号を
第2のスイツチ20によつて発生する。この零度
信号は第3図ホに示される。この零度の検出も例
えばフオトセルが利用される。ステツプモータ2
4は第2の零度信号発生器25の零度信号ホと角
度信号発生器21の角度信号イおよびロが時間軸
上で示す特定の一点で停止され、第1の零度信号
発生器23の零度信号ハと角度信号イおよびロが
時間軸上で示す上記特定の一点で起動するように
駆動回路26によつて駆動される。次に駆動回路
26は、二つのNANDゲートよりなるFF(フリ
ツプフロツプ)ゲート29と、第1の零度信号ハ
及び二相の角度信号イとロを入力して出力信号ニ
をFFゲート29Sの端子に出力するNANDゲー
トAであるNANDゲート27と、FFゲート29
のQ端子の出力信号トと二相の角度信号イとロを
それぞれ入力して、出力信号チとリをそれぞれ二
分岐して増巾器34,35,36および37へ出
力するNANDゲートB及びCであるNANDゲー
ト30及び31と、NANDゲート30及び31
からの出力信号チとリをそれぞれ二分岐し、その
一方をNOTゲート32及び33を介して相互に
逆相関係にして入力し、増巾してステツプモータ
24の駆動コイルへ出力する増巾器34と35及
び増巾器36と37と、NOTゲート32及び3
3から、角度信号イとロとそれぞれ同相の別の二
相の角度信号ヌとルを入力し、更に第2の零度信
号ホを入力して、出力信号ヘをFFゲート29の
R端子へ出力するNANDゲートDであるNAND
ゲート28とより構成される。二相の角度信号イ
とロは角度信号発生器21からそれぞれ2分岐し
て出力され1つは共にNANDゲート27に入力
する。他の1つはそれぞれNANDゲート30と
31とに入力する。NANDゲート30の出力信
号チは2分岐し、1つは増巾器35を介してステ
ツプモータ24の駆動コイルの入力信号ワとな
り、他の1つはNOTゲート32に入力して出力
信号ヌを出力し、2分岐して1つは増巾器34を
介して駆動コイルの入力信号オとなり、他の1つ
はNANDゲート28に入力する。またNANDゲ
ート31の出力信号リは2分岐し、1つは増巾器
36を介してステツプモータ24の駆動コイルの
入力信号カとなり、他の1つはNOTゲート33
に入力して出力信号ルを出力し、2分岐して1つ
は増巾器37を介して駆動コイルの入力信号ヨと
なり、他の1つはNANDゲート28に入力する。 次に動作について説明する。第3図aは第1の
軸1と第2の軸2とが同期回転中の主要点の信号
タイミングチヤートである。第1のスイツチ22
と第2のスイツチ20とは共にOFFであるから
零度信号ハと零度信号ホとは共に“0”信号で、
FFゲート29のS端子とR端子における出力信
号ニと出力信号ヘとは共に“1”信号でQ端子は
前の状態すなわち起動の状態“1”信号を保持す
る。従つて角度信号イは出力信号チを生じ、角度
信号ロは出力信号リを生ずる。またさらに、ステ
ツプモータ24の駆動コイルの入力信号オ,ワ,
カ及びヨを生じ、ステツプモータ24を回転駆動
する。第3図aに示す点a,b,c及びdはステ
ツプモータ24に入力する信号のタイミングを示
すもので、入力信号オ,ワ,カ及びヨの相互関係
にある時間軸上の特定の点である。第3図bは第
1のスイツチ22はOFFの状態で、第2のスイ
ツチ20をONにし、第2の零度信号発生器25
が動作し、第2の軸2の回転角度の零度を検出し
て零度信号ホを発生し、同期回転を中止するとき
の要所信号のタイミングチヤートである。
NANDゲート28への零度信号ホが入力すると
出力信号ヘは信号ヘ−1から信号ヘ−0に変り、
“0”信号となる。FFゲート29のS端子は
“1”、R端子は“0”でリセツト状態となり、Q
端子の出力信号トは信号ト−0から信号ト−1に
変り、“0”となる。従つてNAND30と31と
の出力信号チとリとはいずれも信号チ−1とリ−
1から信号チ−0とリ−0に変り、“1”となり、
直流電圧が駆動コイルの入力信号オとヨに加わ
り、ステツプモータ24は回転を停止する。この
回転を停止する角度位置は二相の角度信号の特定
点である点bである。第3図Cはステツプモータ
24が特定点の点bで停止しており、第2のスイ
ツチ20はOFFの状態で、第1のスイツチ22
をONにして、第1の零度信号発生器23が動作
し、第1の軸1の回転角度の零度を検出し、零度
信号ハを発生して同期回転を起動するときの要所
信号のタイミングチヤートである。NANDゲー
ト27への零度信号ハが入力すると出力信号ニは
信号ニ−1から信号ニ−0に変り、“0”信号と
なる。FFゲート29のS端子は“0”,R端子は
“1”でセツト状態となり、Q端子の出力信号ト
は信号ト−1から信号ト−0に変り、“1”とな
る。従つてNAND30と31との出力信号チと
リとはいずれも信号チ−2と信号リ−2のように
角度信号イとロと全く同一パターンの角度信号と
なり、特定点の点bにおいてステツプモータ24
は同期回転を再開する。すなわち、例えば二相の
角度信号の特定点である点bにおいて同期回転は
起動する。このように停止のとき第2の軸2の零
度位置がステツプモータ24の二相電圧の時間軸
上の例えば点bに一致し、第1の軸1の零度位置
がこの点に一致して起動する。従つて両軸は零度
を正確に一致させることができる。零度信号の期
間が多少不同でも点aから次の点aまでの間であ
れば、確実に零度に一致した同期回転が第2のス
イツチ20と第1のスイツチ22により、常に随
時それぞれ停止と起動を連続して行うことができ
る。また同期回転が停止の際に、第1の軸1の零
度や第2の軸2の零度に移動があつても簡単なス
イツチ操作によつてかならず特定の一点でステツ
プモータ24は起動するので、従来のような面倒
な作業は不要となり、価格もまた従来の装置と同
等で、その実用効果は甚だ大きいものがある。 なお駆動回路26のゲートを全てNANDゲー
トで構成したがNORゲートで構成しても同様の
動作をおこなうことはいうまでもない。
[Detailed description of the invention] The present invention is a device that rotates synchronously with a specific angular position of a first axis and a specific angular position of a second axis being made equal, for example, the pointing direction of an antenna beam of a radar and a CRT.
The present invention relates to a synchronous rotation device that can match zero degrees when synchronously rotating the designated angles of bright lines on an image plane. Conventionally, when using a synchronous generator on the first shaft side and a synchronous motor on the second shaft side to synchronize the rotation angles of both shafts and rotate them synchronously, the synchronous motor is
It was stopped by a zero degree signal from the first axis, and started by a zero degree signal from the first axis. However, to stop a synchronous motor, DC voltage is applied to the two phases between the three-phase lines to stop the motor, but the stopping position is uncertain, so to stop the motor at zero, the stopping position is determined only by the position where the zero temperature signal appears. Although necessary, the starting position of the synchronous motor is also determined by the phase of the synchronous generator. Therefore, unless the position where the zero degree signal from the second axis is output, the angular position of the synchronous phase of the synchronous motor, and the position where the zero degree signal is output from the first axis are accurately adjusted, the zero degrees of both axes will match during synchronous rotation. The problem was that I couldn't do it. In order to solve these disadvantages, the present invention eliminates the conventional synchronous generator and synchronous motor, and installs a device on the first shaft side that generates various signals of advance angle, delay angle, and zero degree. A step motor and a device that generates a zero signal are installed on the second shaft side, and the stop and start positions of the step motor are set at a specific point, and the stop and start positions of the step motor are determined by the zero signal from the second and first shaft sides, respectively. An object of the present invention is to provide a synchronous rotation device that can be started at any time. Next, embodiments will be described based on the drawings. 1st
The figure is a block diagram of a conventional synchronous rotation device using a synchronous generator and a synchronous motor. In Figure 1, the first
The shaft 1 is driven and rotated by a drive motor 4 through gear coupling. Further, the synchronous generator 3 is rotated by the first shaft 1 through gear coupling and generates an output voltage to the three-phase power transmission line. This output voltage is amplified by an amplifier 9 and supplied to a synchronous motor 11 via a relay drive switch 8 . The synchronous motor 11 drives and rotates the second shaft 2 through gear coupling. The first switch 5 drives the flip-flop gate 6, turns off the relay drive switch 8, connects the three-phase power transmission line, and starts the synchronous motor 1. The second switch 7 drives the flip-flop gate 6 and turns on the relay drive switch 8 to disconnect the three-phase power line and connect it to the DC power supply 10, which connects the synchronous motor 11.
stop. Once the first shaft 1 and the second shaft 2 are rotating synchronously with each other at the same zero degree, stopping and starting are easily performed by the second switch 7 and the first switch 5, but what does this mean? If the zero degree positions of the first shaft 1 and the second shaft 2 move during the stop due to this, the synchronous generator 3 and synchronous motor 1
The angular positions of the rotor shafts 1 and 11 are fixed at the zero degree position of the first shaft 1 and the second shaft 2, respectively, and the angular position of the stator of the synchronous motor 11 is moved little by little and the starting operation is repeated. However, the troublesome work of matching the phase angle to the phase angle position of synchronous rotation is required. When stopped, the zero degree position of both shafts often shifts due to the inertia of the loads on the first shaft 1 and the second shaft 2, and this has been a major drawback of conventional devices. FIG. 2 is a block diagram showing an embodiment of the synchronous rotation device according to the present invention, and FIG. 3 is a time chart of important signals in FIG. In FIG. 2, the first shaft 1 is driven and rotated by a drive motor 4 through gear coupling. Further, the angle signal generator 21 is rotated by the first shaft 1 through gear coupling, and generates two-phase angle signals having a lead and a lag relationship with each other. This angle signal is shown in A and B of FIG. The first zero degree signal generator 23 detects the zero degree of the rotation angle of the first shaft 1 and generates a zero degree signal by the first switch 22 . This zero degree signal is shown in FIG. 3C. For example, a photocell is used to detect the angle and zero degree, and a shaft encoder is used for the angle signal and zero degree signal. The second shaft 2 is driven and rotated by a step motor 24 through a gear connection. The second zero degree signal generator 25 detects the zero degree of the rotation angle of the second shaft 2 and generates a zero degree signal by the second switch 20. This zero degree signal is shown in FIG. 3E. For example, a photo cell is used to detect this zero temperature. Step motor 2
4, the zero degree signal E of the second zero degree signal generator 25 and the angle signals A and B of the angle signal generator 21 are stopped at a specific point shown on the time axis, and the zero degree signal of the first zero degree signal generator 23 is stopped. The angle signals A and B are driven by the drive circuit 26 so as to start at the specific point indicated on the time axis. Next, the drive circuit 26 inputs the first zero degree signal C and the two-phase angle signals A and B to an FF (flip-flop) gate 29 consisting of two NAND gates, and outputs an output signal D to the terminal of the FF gate 29S. NAND gate 27 which is output NAND gate A and FF gate 29
NAND gates B and B receive the output signal G of the Q terminal of NAND gates 30 and 31 which are C and NAND gates 30 and 31
An amplifier which branches the output signals Chi and Li into two, inputs one of them through NOT gates 32 and 33 in a mutually opposite phase relationship, amplifies it, and outputs it to the drive coil of the step motor 24. 34 and 35, amplifiers 36 and 37, and NOT gates 32 and 3
3, input another two-phase angle signals Nu and Ru that are in phase with the angle signals A and B, respectively, input the second zero degree signal E, and output the output signal to the R terminal of the FF gate 29. NAND which is NAND gate D
It consists of a gate 28. The two-phase angle signals A and B are outputted from the angle signal generator 21 by being branched into two branches, and one of them is input to the NAND gate 27. The other one is input to NAND gates 30 and 31, respectively. The output signal H of the NAND gate 30 is branched into two branches, one becomes the input signal W of the drive coil of the step motor 24 via the amplifier 35, and the other one is input to the NOT gate 32 to provide the output signal N. The signal is outputted and branched into two, one becoming the input signal for the drive coil via the amplifier 34, and the other being input to the NAND gate 28. Further, the output signal of the NAND gate 31 is branched into two branches, one of which becomes the input signal of the drive coil of the step motor 24 via the amplifier 36, and the other one is the input signal of the NOT gate 33.
The input signal is inputted to the output signal line 1 and outputted as an output signal, which is branched into two, one of which becomes the input signal of the drive coil via the amplifier 37, and the other input to the NAND gate 28. Next, the operation will be explained. FIG. 3a is a signal timing chart of key points when the first shaft 1 and the second shaft 2 are rotating synchronously. first switch 22
and the second switch 20 are both OFF, so the zero degree signal C and the zero degree signal H are both "0" signals,
Both the output signal D and the output signal H at the S terminal and the R terminal of the FF gate 29 are "1" signals, and the Q terminal maintains the previous state, that is, the activation state "1" signal. Therefore, angle signal A produces output signal Q, and angle signal B produces output signal R. Furthermore, the input signals of the drive coil of the step motor 24 are
A force and a force are generated, and the step motor 24 is driven to rotate. Points a, b, c, and d shown in FIG. 3a indicate the timing of the signals input to the step motor 24, and are specific points on the time axis that are in the mutual relationship of the input signals O, W, F, and Y. It is. In FIG. 3b, the first switch 22 is OFF, the second switch 20 is turned ON, and the second zero-degree signal generator 25 is turned on.
This is a timing chart of important signals when the rotation angle of the second shaft 2 is detected to generate a zero degree signal E, and the synchronous rotation is stopped.
When the zero degree signal H is input to the NAND gate 28, the output signal H changes from signal H-1 to signal H-0.
It becomes a “0” signal. The S terminal of the FF gate 29 is "1" and the R terminal is "0", which is the reset state, and the Q
The output signal of the terminal changes from signal T-0 to signal T-1 and becomes "0". Therefore, the output signals Chi and Li of NANDs 30 and 31 are the same as the signals Chi-1 and Li.
Changes from 1 to signal Chi-0 and Lee-0, becoming "1",
A DC voltage is applied to the drive coil input signals O and Y, and the step motor 24 stops rotating. The angular position at which this rotation is stopped is point b, which is a specific point of the two-phase angular signal. In FIG. 3C, the step motor 24 is stopped at a specific point b, the second switch 20 is in the OFF state, and the first switch 22 is in the OFF state.
is turned ON, the first zero degree signal generator 23 operates, detects the zero degree of the rotation angle of the first shaft 1, and generates the zero degree signal C to start synchronous rotation. It's a chat. When the zero degree signal C is input to the NAND gate 27, the output signal D changes from the signal Knee-1 to the signal Knee-0, and becomes a "0" signal. The S terminal of the FF gate 29 is set to "0" and the R terminal is set to "1", and the output signal of the Q terminal changes from signal T-1 to signal T-0 and becomes "1". Therefore, the output signals Chi and Li from the NANDs 30 and 31 are angle signals with exactly the same pattern as the angle signals A and B, such as signal Chi-2 and signal Lee-2, and the step motor is output at the specific point b. 24
resumes synchronous rotation. That is, for example, the synchronous rotation starts at point b, which is a specific point of the two-phase angle signal. In this way, when stopped, the zero degree position of the second shaft 2 coincides with, for example, point b on the time axis of the two-phase voltage of the step motor 24, and the zero degree position of the first axis 1 coincides with this point when starting. do. Therefore, the zero degrees of both axes can be precisely matched. Even if the period of the zero temperature signal is slightly different, if it is between point a and the next point a, the second switch 20 and the first switch 22 will always stop and start the synchronous rotation that corresponds to zero at any time. can be performed continuously. Furthermore, when the synchronous rotation is stopped, even if the first axis 1 moves to zero or the second axis 2 moves to zero, the step motor 24 will always start at a specific point with a simple switch operation. The troublesome work required in the past is no longer necessary, the price is the same as conventional equipment, and its practical effects are enormous. Although all the gates of the drive circuit 26 are constructed of NAND gates, it goes without saying that the same operation can be performed even if the gates of the driving circuit 26 are constructed of NOR gates.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の同期回転装置のブロツク図、第
2図は本考案になる同期回転装置の一実施例を示
すブロツク図、第3図は第2図における要所信号
のタイミングチヤートである。 1……第1の軸、2……第2の軸、3……同期
発電機、4……駆動モータ、5と22……第1の
スイツチ、6と29……FFゲート、7と20…
…第2のスイツチ、8……リレー駆動切換器、9
と34と35と36と37……増巾器、10……
直流電源、11……同期電動機、21……角度信
号発生器、23……第1の零度信号発生器、24
……ステツプモータ、25……第2の零度信号発
生器、26……駆動回路、27と28と30と3
1……NANDゲート、29……FFゲート、32
と33……NOTゲート。
FIG. 1 is a block diagram of a conventional synchronous rotation device, FIG. 2 is a block diagram showing an embodiment of the synchronous rotation device according to the present invention, and FIG. 3 is a timing chart of important signals in FIG. 1...First axis, 2...Second axis, 3...Synchronous generator, 4...Drive motor, 5 and 22...First switch, 6 and 29...FF gate, 7 and 20 …
...Second switch, 8...Relay drive changeover, 9
and 34 and 35 and 36 and 37...multiplier, 10...
DC power supply, 11...Synchronous motor, 21...Angle signal generator, 23...First zero degree signal generator, 24
... Step motor, 25 ... Second zero-degree signal generator, 26 ... Drive circuit, 27, 28, 30 and 3
1...NAND gate, 29...FF gate, 32
and 33...NOT gate.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 第1の軸と第2の軸とが同期回転する装置にお
いて、第1の軸を歯車結合により駆動する駆動モ
ータと、第1の軸と別の歯車結合により回転して
相互に進みと遅れ関係にある二相の角度信号を発
生する角度信号発生器と、スイツチ操作により第
1の軸の回転角度の零度を検出して第1の零度信
号を発生する第1の零度信号発生器とを第1の軸
側に設け、第2の軸を他の歯車結合により駆動す
るステツプモータと、別のスイツチ操作により第
2の軸の回転角度の零度を検出して第2の零度信
号を発生する第2の零度信号発生器とを第2の軸
側に設け、二つのNANDゲートよりなるFF(フ
リツプフロツプ)ゲートと、第1の零度信号及び
上記二相の角度信号を入力して出力信号をこの
FFゲートのS端子に出力するNANDゲートA
と、上記FFゲートのQ端子の出力信号と上記二
相の角度信号とをそれぞれ入力して出力信号を二
分岐して増巾器へ出力するNANDゲートB及び
Cと、このゲートB及びCからの出力信号をそれ
ぞれ二分岐しその一方をNOTゲートを介し相互
に逆相関係にしてそれぞれ入力し、増巾して上記
ステツプモータの駆動コイルへ出力する上記増巾
器と、上記NOTゲートそれぞれから上記二相の
角度信号と同相の別の二相の角度信号を入力し、
更に第2の零度信号を入力して出力信号を上記
FFゲートのR端子へ出力するNANDゲートDと
より構成される駆動回路を第1の軸第2の軸側の
中間に接続してなる同期回転装置。
In a device in which a first shaft and a second shaft rotate synchronously, a drive motor that drives the first shaft by a gear coupling, and a drive motor that drives the first shaft by a gear coupling, and a drive motor that rotates the first shaft and another gear coupling, and have a mutual lead and lag relationship. an angle signal generator that generates a two-phase angle signal, and a first zero degree signal generator that detects the zero degree of the rotation angle of the first shaft by operating a switch and generates a first zero degree signal. A step motor is provided on the first shaft side and drives the second shaft by another gear combination, and a step motor is provided on the first shaft side and drives the second shaft by another gear connection, and a second shaft motor detects the zero degree of the rotation angle of the second shaft by operating another switch and generates a second zero degree signal. A second zero degree signal generator is provided on the second axis side, and an FF (flip-flop) gate consisting of two NAND gates, the first zero degree signal and the above two-phase angle signal are input, and the output signal is output from this.
NAND gate A outputs to S terminal of FF gate
and NAND gates B and C which respectively input the output signal of the Q terminal of the FF gate and the two-phase angle signal and branch the output signal into two and output it to the amplifier; The amplifier divides the output signals into two, inputs one of them through a NOT gate in a mutually opposite phase relationship, amplifies the output signal, and outputs it to the drive coil of the step motor, and from each of the NOT gates. Input another two-phase angle signal that is the same phase as the above two-phase angle signal,
Furthermore, input the second zero degree signal and change the output signal to the above.
A synchronous rotation device in which a drive circuit consisting of a NAND gate D that outputs to the R terminal of the FF gate is connected between the first axis and the second axis.
JP1981022986U 1981-02-20 1981-02-20 Expired JPS6325919Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981022986U JPS6325919Y2 (en) 1981-02-20 1981-02-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981022986U JPS6325919Y2 (en) 1981-02-20 1981-02-20

Publications (2)

Publication Number Publication Date
JPS57135897U JPS57135897U (en) 1982-08-24
JPS6325919Y2 true JPS6325919Y2 (en) 1988-07-14

Family

ID=29820756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981022986U Expired JPS6325919Y2 (en) 1981-02-20 1981-02-20

Country Status (1)

Country Link
JP (1) JPS6325919Y2 (en)

Also Published As

Publication number Publication date
JPS57135897U (en) 1982-08-24

Similar Documents

Publication Publication Date Title
US4207504A (en) Spindle control system
GB2185594A (en) Spindle positioning apparatus
JPS6325919Y2 (en)
US4489266A (en) Circuit and a method for processing amplitude and phase variable multiphase signals, which are required as current or voltage reference to drive synchronous motors
US4282955A (en) Rotary shaft control system
CN107992109A (en) Closed-loop positioning control system and method
JP3503894B2 (en) Driving device for stepping motor
JPS6237085A (en) Setting method of zero position of synchronous motor with position detector
JP3357522B2 (en) How to align the mechanical origin of a rotary printing press
JP2548900Y2 (en) Angle indexing device
SU1767637A1 (en) Device for remote transfer of shaft angle of rotation
JPS59117489A (en) Synchronous rotation controller for motor
JPH05236785A (en) Drive circuit for brushless motor
JPH0228464Y2 (en)
SU610072A1 (en) Drive synchronizing device
JPH0614292B2 (en) Control devices for industrial robots, etc.
SU744432A1 (en) Servo system
JPS589356Y2 (en) Torque synchro receiver drive device
JPS6380309A (en) Positioning motor driver
SU119566A1 (en) Synchronous tracking system
SU1410211A1 (en) Multimotor electric drive
RU1804684C (en) Method of tuning high-moment contactless d c motor
JP2578945B2 (en) Multi-axis synchronous drive
JPH03173388A (en) Torque detector for synchronous motor
SU1690110A1 (en) Device for remote transmission of turning angle of master shaft