JPS63259021A - Manufacture of nonmagnetic steel for drill collar combining high corrosion resistance with high strength - Google Patents

Manufacture of nonmagnetic steel for drill collar combining high corrosion resistance with high strength

Info

Publication number
JPS63259021A
JPS63259021A JP8974887A JP8974887A JPS63259021A JP S63259021 A JPS63259021 A JP S63259021A JP 8974887 A JP8974887 A JP 8974887A JP 8974887 A JP8974887 A JP 8974887A JP S63259021 A JPS63259021 A JP S63259021A
Authority
JP
Japan
Prior art keywords
steel
strength
forging
rolling
drill collars
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8974887A
Other languages
Japanese (ja)
Inventor
Takanori Nakazawa
中澤 崇徳
Toru Suzuki
亨 鈴木
Hidetaka Kimura
英隆 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8974887A priority Critical patent/JPS63259021A/en
Publication of JPS63259021A publication Critical patent/JPS63259021A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To manufacture the titled steel having always stable and superior homogeneity, ductility, and toughness by a simplified method, by specifying respective conditions of the rolling, etc., and also of ageing treatment of a steel having a specific composition which contains sufficient amount of Cr and Ni and in which C and N contents are reduced to minimum, respectively. CONSTITUTION:A steel which has a composition consisting of, by weight, <=2.0%, Si, <=2.0% Mn, 25-40% Ni, 18-30% Cr, 0.1-1.5% Al, 1.5-3.0% Ti, 0.0005-0.020% Ca, <=0.020% C, <=0.010% N, and the balance Fe and containing, if necessary, one or 2 >= kinds among <=3.0% Mo and <=0.5% each of Zr, Nb and V is used. This steel is subjected to (a) rolling or forging at <750 deg.C at >=5% draft and then to ageing treatment treatment at 650-850 deg.C, or to (b) rolling or forging at 750-850 deg.C at 5-10% draft and then to ageing treatment at 650-850 deg.C, or to (c) rolling of forging at 750-850 deg.C at <=10% draft.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐応力腐食割れ性および強度、靭性にすぐれ
たドリルカラー用非磁性鋼の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a non-magnetic steel for drill collars that has excellent stress corrosion cracking resistance, strength, and toughness.

〔従来の技術〕[Conventional technology]

ドリルカラーとはビット(油井掘さく用のきりに相当す
る部品)の直上に取り付けられ、ビットに荷重を加え掘
進効率を高めるための厚肉鋼管で、その寸法の一例は外
径250 m@、肉厚70曹■、長さlOmといったも
ので、一般的なドリルカラー用鋼材としては耐力が60
〜80 kyf/mm!程度、伸びが25%以上程度が
要望されている。
A drill collar is a thick-walled steel pipe that is installed directly above a bit (a part equivalent to a drill bit for oil well drilling) to add load to the bit and increase drilling efficiency.An example of its dimensions is an outer diameter of 250 m@, The wall thickness is 70 mm, the length is 1 Om, and the yield strength is 60 mm as a general steel material for drill collars.
~80kyf/mm! A degree of elongation of 25% or more is desired.

近年石油探査は更に深部にあるいは海底油田等の厳しい
環境条件下に移行しつつあるが、探査環境の苛酷化にと
もない、ドリルカラー用鋼には更に塩素イオンによる応
力腐食割れ性の改善等が要望されるに至っている。
In recent years, oil exploration has been moving deeper into the ocean or under harsh environmental conditions such as offshore oil fields, but as the exploration environment becomes more severe, there is a need for steel for drill collars to further improve its resistance to stress corrosion cracking due to chlorine ions. It has come to be.

特開昭61−130464号は高耐食性高強度ドリルカ
ラー用非磁性鋼の発明である。この綱は、Cr及びNi
、51を十分確保したために耐応力腐食性が解決され、
又Ti、 Cr、 Mot Nb+ V等の炭化物や窒
化物の害を除くためにCとNを極めて低く制限したため
に、十分な延性、靭性や材質の均質性が確保されている
。又この鋼は、圧延あるいは鍛造で丸鋼とした後、溶体
化処理及び時効処理が施されて高強度のドリルカラー用
鋼となる。
JP-A-61-130464 is an invention of a non-magnetic steel for use in drill collars with high corrosion resistance and high strength. This class consists of Cr and Ni
, 51 was sufficiently secured, stress corrosion resistance was solved,
Furthermore, in order to eliminate the harmful effects of carbides and nitrides such as Ti, Cr, Mot Nb+V, etc., C and N are limited to extremely low levels, thereby ensuring sufficient ductility, toughness, and homogeneity of the material. This steel is rolled or forged into a round steel, and then subjected to solution treatment and aging treatment to become a high-strength steel for drill collars.

この時効処理では金属間化合物γ′相(Ni3(AIl
−Ti))が微細に析出するが、この析出相のいわゆる
析出硬化作用で高強度鋼となる。
In this aging treatment, the intermetallic compound γ' phase (Ni3(AIl
-Ti)) is finely precipitated, and the so-called precipitation hardening effect of this precipitated phase results in high-strength steel.

従って特開昭61−130464号で、析出相の種類や
量や分布は材質上極めて重要であり、これらを好ましい
範囲に制御できると、品質が一層安定して好ましい、高
耐食性高強度ドリルカラー用非磁性網が製造できること
となる。
Therefore, in JP-A No. 61-130464, the type, amount, and distribution of precipitated phases are extremely important in terms of material quality, and if these can be controlled within a preferable range, the quality will be more stable and desirable. This means that a non-magnetic mesh can be manufactured.

又特開昭61−130464号では、溶体化熱処理や時
効熱処理を行うが、この熱処理では延性・靭性を損うη
相の析出を完全にさけることができず、より過酷な用途
用として延性・靭性のより優れた材料が望まれている。
In addition, in JP-A No. 61-130464, solution heat treatment and aging heat treatment are performed, but this heat treatment reduces η, which impairs ductility and toughness.
Phase precipitation cannot be completely avoided, and materials with better ductility and toughness are desired for use in more severe applications.

さらに製造工程も煩瑣であり、製造コストを低減するた
め、更に簡易な熱処理方法が望まれるに至っている。
Furthermore, the manufacturing process is also cumbersome, and in order to reduce manufacturing costs, a simpler heat treatment method is desired.

〔発明が解決しようとする問題点〕 本発明は、高耐食性高強度ドリルカラー用非磁性鋼を、
従来よりも簡易な方法で、且常に安定した、より優れた
延性・靭性水準で製造する方法を提供するものである。
[Problems to be solved by the invention] The present invention provides a highly corrosion-resistant and high-strength non-magnetic steel for drill collars.
The present invention provides a method of manufacturing with a simpler method than the conventional method, and with always stable and superior ductility and toughness levels.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は (1)  重量%で、Si≦2.0%、 Mn≦3.0
%、 Ni:25〜40%、 Cr: 18〜30%、
Al:0.l 〜1.5%、Ti:1.5〜3.0%、
 Ca : 0.0005〜0.020χ。
The present invention has (1) weight %, Si≦2.0%, Mn≦3.0
%, Ni: 25-40%, Cr: 18-30%,
Al: 0. l ~1.5%, Ti:1.5~3.0%,
Ca: 0.0005 to 0.020χ.

C50,020%、N≦0.010%で残部がFe及び
不可避的不純物からなる鋼を、750℃未満で加工率5
%以上の圧延あるいは鍛造を行い、しかる後650〜8
50℃で時効処理を行う、高耐食性高強度ドリルカラー
用非磁性鋼の製造方法であり、又 (2)重量%で、Si≦2.0%、 Mn≦3.0%、
 Nl:25〜40%、  Cr:  18〜30%、
Aji!:0.l 〜1.5%、  Ti:  1.5
〜3.0%、  Ca : 0.0005〜0.020
χ。
A steel consisting of C50,020%, N≦0.010% and the balance consisting of Fe and unavoidable impurities was processed at a processing rate of 5 at less than 750°C.
% or more rolling or forging, then 650~8
A method for producing a highly corrosion-resistant, high-strength non-magnetic steel for drill collars, which is subjected to aging treatment at 50°C, and (2) in weight%, Si≦2.0%, Mn≦3.0%,
Nl: 25-40%, Cr: 18-30%,
Aji! :0. l ~1.5%, Ti: 1.5
~3.0%, Ca: 0.0005~0.020
χ.

C50,020%、N≦0.010%で残部がFe及び
不可避的不純物からなる鋼を、750〜850℃で加工
率5%以上10%未満の圧延あるいは鍛造を行い、しか
る後650〜850℃で時効処理を行う、高耐食性高強
度ドリルカラー用非磁性鋼の製造方法であり、又 (3)重量%で、Si≦2.0%、 Mn≦3.0%、
 Ni:25〜40%、 Cr: 18〜30%、Al
:o、t〜1.5%、 Ti : 1.5〜3.0%、
 Ca : O,0O05〜0.020χ。
A steel consisting of C50,020%, N≦0.010% and the balance consisting of Fe and unavoidable impurities is rolled or forged at 750 to 850°C with a processing rate of 5% or more and less than 10%, and then rolled or forged at 650 to 850°C. A method for producing a highly corrosion-resistant, high-strength non-magnetic steel for drill collars, which is subjected to aging treatment, and (3) in weight%, Si≦2.0%, Mn≦3.0%,
Ni: 25-40%, Cr: 18-30%, Al
:o, t~1.5%, Ti: 1.5~3.0%,
Ca: O,0O05~0.020χ.

C50,020%、N≦0.010%で残部がFe及び
不可避的不純物からなる鋼を、750〜850℃で加工
率10%以上の圧延あるいは鍛造を行う、高耐食性高強
度ドリルカラー用非磁性鋼の製造方法であり、又 (4)重量%で、Si≦2.0%、 Mn≦3.0%、
Ni:25〜40%、Cr:18〜30%、Al:0.
1〜1.5%、 Ti : 1.5〜3.0%、 Ca
 : 0.0005〜0.020χ。
Highly corrosion resistant, high strength non-magnetic material for drill collars made by rolling or forging steel consisting of C50,020%, N≦0.010% with the balance being Fe and unavoidable impurities at 750-850°C with a processing rate of 10% or more. A method for producing steel, and (4) in weight%, Si≦2.0%, Mn≦3.0%,
Ni: 25-40%, Cr: 18-30%, Al: 0.
1-1.5%, Ti: 1.5-3.0%, Ca
: 0.0005-0.020χ.

C50,020%、N≦o、oio%で、更にMo≦3
.0%。
C50,020%, N≦o, oio%, and Mo≦3
.. 0%.

Zr≦3.5%、 Nb≦3.5%、750.5%の1
種または2種以上を含有し、残部がFe及び不可避的不
純物からなる鋼を、750℃未満で加工率5%以上の圧
延あるいは鍛造を行い、しかる後650〜850℃で時
効処理を行う、高耐食性高強度ドリルカラー用非磁性鋼
の製造方法であり、又(5)重量%で、Si≦2.0%
、 Mn≦3.0%、 Ni:25〜40%、Cr:1
8〜30%、、l:0.1〜1.5%、 Ti : 1
.5〜3.0%、 Ca : 0.0005〜0.02
0χ。
Zr≦3.5%, Nb≦3.5%, 1 of 750.5%
A high-temperature steel containing one or more of the following, with the balance consisting of Fe and unavoidable impurities, is rolled or forged at a working rate of 5% or more at less than 750°C, and then subjected to aging treatment at 650 to 850°C. A method for producing a corrosion-resistant high-strength non-magnetic steel for drill collars, and (5) Si≦2.0% by weight.
, Mn≦3.0%, Ni:25-40%, Cr:1
8-30%, l: 0.1-1.5%, Ti: 1
.. 5-3.0%, Ca: 0.0005-0.02
0x.

C50,020%、N≦0.010%で、更にMo≦3
.0%。
C50,020%, N≦0.010%, and Mo≦3
.. 0%.

Zr≦3.5%、 Nb≦3.5%、750.5%の1
種または2種以上を含有し、残部がFe及び不可避的不
純物からなる鋼を、750°〜850℃で加工率5%以
上10%未満の圧延あるいは鍛造を行い、しかる後65
0〜850℃で時効処理を行う、高耐食性高強度ドリル
カラー用非磁性鋼の製造方法であり、又 (6)重量%で、Si≦2.0%、 Mn≦3.0%、
 Ni:25〜40%、Cr:18〜30%、All、
1〜1.5%、  Ti :  1.5〜3.0%、 
 Ca : 0.0005〜0.020X。
Zr≦3.5%, Nb≦3.5%, 1 of 750.5%
A steel containing one or more species, with the remainder consisting of Fe and unavoidable impurities, is rolled or forged at 750° to 850°C with a processing rate of 5% or more and less than 10%, and then 65
A method for producing highly corrosion-resistant, high-strength non-magnetic steel for drill collars, which is subjected to aging treatment at 0 to 850°C, and (6) in weight%, Si≦2.0%, Mn≦3.0%,
Ni: 25-40%, Cr: 18-30%, All,
1-1.5%, Ti: 1.5-3.0%,
Ca: 0.0005-0.020X.

C50,020%、N≦0.010%で、更にMoS3
.0%。
C50,020%, N≦0.010%, and MoS3
.. 0%.

Zr≦3.5%、 Nb≦3.5%、750.5%の1
種または2種以上を含有し、残部がFe及び不可避的不
純物からなる綱を、750〜850℃で加工率10%以
上の圧延あるいは鍛造を行う、高耐食性高強度ドリルカ
ラー用非磁性鋼の製造方法である。
Zr≦3.5%, Nb≦3.5%, 1 of 750.5%
Production of highly corrosion-resistant, high-strength, non-magnetic steel for drill collars, by rolling or forging a steel containing one or more species and the remainder consisting of Fe and unavoidable impurities at a processing rate of 10% or more at 750 to 850°C. It's a method.

〔作 用〕[For production]

先づ、特許請求の範囲第(11項、第(2)項、第(3
)項の成分について説明する。
First, claims Nos. (11, (2), (3)
) term will be explained.

Siは脱酸剤として必要であるが過剰に存在すると熱間
加工性を害するために2.0%以下とする。
Si is necessary as a deoxidizing agent, but its presence in excess impairs hot workability, so the content is limited to 2.0% or less.

Mnは脱酸剤として必要であるが、2.0%を超えると
耐応力腐食割れ性を劣化させる ので2.0%以下とす
る。
Mn is necessary as a deoxidizing agent, but if it exceeds 2.0%, stress corrosion cracking resistance deteriorates, so it should be kept at 2.0% or less.

NiはCrと共存して非磁性の前提となる安定オーステ
ナイト相を生成する。又本発明鋼は時効作用により金属
間化合物T′相を析出させ高強度化したいわゆる析出硬
化鋼であるため、Niは強化元素として添加する。更に
深井戸用ドリルカラーで問題となる塩素イオン環境下で
の耐応力腐食割れ性を確保するために25%以−ヒを必
要とする。しかし耐応力腐食割れ性の改善効果は40%
で飽和するため上限を40%とした。
Ni coexists with Cr to generate a stable austenite phase that is a prerequisite for nonmagnetism. Further, since the steel of the present invention is a so-called precipitation hardened steel which is made to have high strength by precipitating the intermetallic compound T' phase by aging, Ni is added as a reinforcing element. Furthermore, in order to ensure stress corrosion cracking resistance in a chlorine ion environment, which is a problem with drill collars for deep wells, a content of 25% or more is required. However, the improvement effect on stress corrosion cracking resistance is 40%.
The upper limit was set at 40% because it was saturated.

Crは耐食性を確保するため18%以上必要である。し
かし、30%を超えると熱加工性を損いオーステナイト
相を不安定にするため上限を30%とする。
18% or more of Cr is required to ensure corrosion resistance. However, if it exceeds 30%, heat workability will be impaired and the austenite phase will become unstable, so the upper limit is set at 30%.

本発明者等が行った、飽和食塩水、沸騰条件下で応力8
0 kgf/mn+”の定荷重型応力腐食割れ試験では
、Crを18%以上及びNiを25%以上とすると応力
腐食破断時間が飛躍的に向上した。なおこの効果はNi
においては40%で飽和するが、Crについては30%
を超えてもその効果はなお増大する。しかし前述の如く
熱間加工性を損うため、Crの上限は30%が適当であ
る。
Stress 8 in saturated saline water under boiling conditions conducted by the present inventors
In a constant load stress corrosion cracking test at 0 kgf/mn+'', the stress corrosion rupture time was dramatically improved when Cr was 18% or more and Ni was 25% or more.
saturates at 40% for Cr, but 30% for Cr
The effect will still increase even if it exceeds. However, as mentioned above, since hot workability is impaired, the upper limit of Cr is suitably 30%.

Alは本発明の析出物、即ち金属間化合物T′相(N1
z(Al・Ti) )を生成させる元素である。又延性
や靭性に存寄な作用を有する粒界反応型析出物であるη
相の析出を抑制する効果をもつ。しかし過剰に添加する
とオーステナイト相とT′との整合歪を減少させるため
析出硬化作用を弱める。
Al is the precipitate of the present invention, that is, the intermetallic compound T' phase (N1
It is an element that generates z(Al・Ti). Also, η is a grain boundary reaction type precipitate that has an effect on ductility and toughness.
It has the effect of suppressing phase precipitation. However, when added in excess, the precipitation hardening effect is weakened because the matching strain between the austenite phase and T' is reduced.

したがってAj!の含有量は0.1%〜1.5%が適当
である。
Therefore Aj! The appropriate content is 0.1% to 1.5%.

Tiは金属間化合物γ’ (N15(Af −Ti) 
)を形成する元素であり、Ti鼠とともに強度は上昇す
る。
Ti is an intermetallic compound γ' (N15(Af -Ti)
), and its strength increases with the addition of Ti.

高強度を確保するためには1.5%以上が必要である。In order to ensure high strength, 1.5% or more is required.

しかし3%を超えると著しく熱間加工性を損う。従って
その含有量は1.5〜3%とする。
However, if it exceeds 3%, hot workability will be significantly impaired. Therefore, its content should be 1.5 to 3%.

Caは熱間加工性を向上させる元素としてo、ooos
%以上を必要とするが、0.020%を超えると逆に熱
間加工性を劣化させる。従ってCaの含有量は0.00
05〜0.020%とする。
Ca is o, ooos as an element that improves hot workability.
% or more, but if it exceeds 0.020%, hot workability will deteriorate. Therefore, the Ca content is 0.00
05 to 0.020%.

Cは鋼の凝固過程でTiと化合し粗大なTi炭化物を形
成するが、この粗大な炭化物はその後の加熱・圧延ある
いは溶体化熱処理工程での固溶が[!I難である。ドリ
ルカラー用鋼は延性・靭性及び材質の均質性が必要であ
るが、前述した未固溶の粗大炭化物は延性・靭性を損う
のみならず材質を不均質化する。このような粗大炭化物
の残留を防止するためにはC1iを0.020%以下に
制限する必要がある。
C combines with Ti during the solidification process of steel to form coarse Ti carbides, but these coarse carbides are dissolved in solid solution during the subsequent heating/rolling or solution heat treatment process [! It's very difficult. Steel for drill collars must have ductility, toughness, and homogeneity of material, but the undissolved coarse carbides mentioned above not only impair ductility and toughness but also make the material inhomogeneous. In order to prevent such coarse carbides from remaining, it is necessary to limit C1i to 0.020% or less.

NはCよりもさらにTiと接合して粗大なTi窒化物を
形成し易い元素であることから、上記のCの場合と同様
ドリルカラー用としての必要特性である延性・靭性及び
均質性を損うため制限する必要がある。NはCよりTi
と化合物を形成し易いことがらCよりも低く上限を0.
010%としなければならない。
Since N is an element that is more likely than C to bond with Ti and form coarse Ti nitrides, it may impair ductility, toughness, and homogeneity, which are necessary properties for drill collars, as in the case of C above. It is necessary to limit the N is more Ti than C
Since it is easy to form compounds with C, the upper limit is set to 0.
It must be set to 010%.

次に、特許請求の範囲第(4)項、第(5)項、第(6
)項の成分について説明する。
Next, claim paragraphs (4), (5), and (6)
) term will be explained.

本発明鋼は前記の特許請求の範囲第(1)〜(3)項を
基本成分系とするが、さらに高強度のドリルカラー用と
して耐力の向上をはかるために、Mo、 Zr。
The steel of the present invention has the above-mentioned claims (1) to (3) as basic components, and further contains Mo and Zr in order to improve the yield strength for use in high-strength drill collars.

Nb、  Vの1種または2種以上を所定の範囲内で含
有せしめることが有効である。
It is effective to contain one or more of Nb and V within a predetermined range.

Moは固溶強化作用のある元素であり、耐力を高めるた
めに有効な元素であるが、3%以上添加すると熱間変形
砥抗を著しく高めるために圧延あるいは鍛造が困難にな
る。したがって含有量は3.0%以下とする。
Mo is an element that has a solid solution strengthening effect and is an effective element for increasing yield strength, but if it is added in an amount of 3% or more, the hot deformation abrasion resistance will be significantly increased, making rolling or forging difficult. Therefore, the content should be 3.0% or less.

Zr、 Nb、及びVは析出強化をもたらす金属間化合
物T′の中に固溶するため、これらの元素の添加はT′
の析出量を増加させることになり、結果として耐力を高
めることになる。しかし過剰の添加は延性、靭性を損う
ことから上限をそれぞれ0.5%とした。
Since Zr, Nb, and V are dissolved in the intermetallic compound T' that causes precipitation strengthening, the addition of these elements increases T'
This results in an increase in the amount of precipitation, resulting in an increase in yield strength. However, since excessive addition impairs ductility and toughness, the upper limit was set at 0.5% for each.

尚本発明においては、C及びNの景を制限した事によっ
て、Ti、 Cr、 Mo、 Nb、 Zr、 V等の
炭化物あるいは窒化物の発生が抑制され、これによって
ドリルカラー用鋼材として必要な、延性・靭性及び均質
性が確保されている。
In addition, in the present invention, by restricting the content of C and N, the generation of carbides or nitrides such as Ti, Cr, Mo, Nb, Zr, V, etc. is suppressed. Ductility, toughness and homogeneity are ensured.

次に本発明の加工と熱処理について説明する。Next, processing and heat treatment of the present invention will be explained.

本発明者等は、前記の鋼について、熱間加工や溶体化処
理や時効処理を研究したが、新に下記の知見を得るに至
った。
The present inventors have studied hot working, solution treatment, and aging treatment for the above-mentioned steel, and have newly obtained the following knowledge.

■ 溶体化処理後に時効処理を行うと、金属間化合物γ
′相(旧(Aj −Ti) )が析出して鋼材は強化さ
れるが、γ′相は中間相であり、時効処理中に平衡相η
への変態が部分的に進行する。このη相は主さして結晶
粒界へ析出し延性や靭性の低下をもたらす。
■ When aging treatment is performed after solution treatment, intermetallic compound γ
' phase (old (Aj -Ti)) precipitates and strengthens the steel, but the γ' phase is an intermediate phase and the equilibrium phase η changes during aging treatment.
The metamorphosis to progresses partially. This η phase mainly precipitates at grain boundaries and causes a decrease in ductility and toughness.

■ 比較的低温で加工率で5%以上の圧延あるいは鍛造
を行い、その後溶体化処理を行うことなく時効処理を行
うと、γ′相の析出が促進されるため、溶体化材を時効
するよりも低温・短時間の時効処理で所定の強度が達成
できる。したがって結果として延性・靭性を損うη相の
析出を抑制でき、良好な延性・靭性を有する高強度鋼が
製造できることになる。
■ Rolling or forging at a working rate of 5% or more at a relatively low temperature and then aging treatment without solution treatment will promote the precipitation of the γ' phase, so it is better to age the solution treated material. The specified strength can also be achieved through low-temperature, short-time aging treatment. Therefore, as a result, precipitation of the η phase that impairs ductility and toughness can be suppressed, and high-strength steel with good ductility and toughness can be manufactured.

■ γ′相の析出の生じる温度域で加工率で10%以上
の圧延あるいは鍛造を行うと、γ′相の析出が促進され
るため、延性・靭性を損うη相の析出を抑制でき、良好
な延性・靭性を有する高強度鋼が製造でき°ることにな
る。
■ If rolling or forging is performed at a working rate of 10% or more in the temperature range where γ' phase precipitation occurs, the γ' phase precipitation will be promoted, and the η phase precipitation, which impairs ductility and toughness, can be suppressed. High strength steel with good ductility and toughness can be manufactured.

■ γ′相の析出の生じる温度域で、加工率で5%以上
lO%未満の圧延あるいは鍛造を行うと、そのままでは
γ′相の析出は少ないが、その後溶体化処理を行うこと
なく時効処理を行うと、γ′相の析出が促進されるため
、溶体化材を時効するよりも低温・短時間の時効処理で
所定の強度が達成できる。したがって結果として延性・
靭性を損うη相の析出が抑制でき、良好な延性・靭性を
有する高強度鋼が製造できることになる。
■ If rolling or forging is performed at a working rate of 5% or more but less than 1O% in the temperature range where γ' phase precipitation occurs, γ' phase precipitation will be small if it is left as is, but aging treatment without subsequent solution treatment will result in less γ' phase precipitation. When this is performed, the precipitation of the γ' phase is promoted, so that the predetermined strength can be achieved by aging treatment at a lower temperature and in a shorter time than by aging the solution-treated material. Therefore, as a result, ductility
Precipitation of the η phase that impairs toughness can be suppressed, and high-strength steel with good ductility and toughness can be manufactured.

本発明の加工や熱処理はこれらの新な知見に基づく。The processing and heat treatment of the present invention are based on these new findings.

特許請求の範囲第1項および第4項の加工や熱処理を説
明する。この方法は前記の新な知見■を具体化したもの
で、第1図はその実施例である。
Processing and heat treatment according to claims 1 and 4 will be explained. This method embodies the above-mentioned new knowledge (1), and FIG. 1 shows an example thereof.

即ち第1図は第1表に示す本発明の成分の鋼を、図に示
す各温度で加工率で5%の圧延を行い、その後750℃
×4時間の時効を施した鋼材の耐力と全伸びを示す図で
ある。第1図にみられる如く、750℃以下の加工温度
で加工率で5%の圧延を行い、その後750℃で時効処
理を行うと、延性・靭性の低下がなく高強度の鋼材が得
られる。第2図はこの加工や熱処理の他の実施例を示す
図である。即ち第2図は第1表に示す本発明の成分の鋼
を、700℃で図に示す加工率の圧延を行い、その後7
50″cx4時間の時効を施した鋼材の耐力と全伸びを
示す図である。第2図にみられる如く、この加工率が5
%以下では 耐力、全伸び共に低い値であるが、5%以
上では 延性・靭性に優れ且高強度の鋼材が得られる。
That is, in Figure 1, the steel of the present invention shown in Table 1 is rolled at a working rate of 5% at each temperature shown in the figure, and then rolled at 750°C.
It is a diagram showing the yield strength and total elongation of a steel material subjected to aging for ×4 hours. As shown in FIG. 1, if rolling is performed at a working rate of 5% at a processing temperature of 750° C. or lower, and then aging treatment is performed at 750° C., a high-strength steel material can be obtained without deterioration in ductility and toughness. FIG. 2 is a diagram showing another example of this processing and heat treatment. That is, in Fig. 2, the steel of the present invention shown in Table 1 is rolled at 700°C and at the working rate shown in the figure, and then rolled at 700°C.
This is a diagram showing the yield strength and total elongation of steel material aged for 50"c x 4 hours. As seen in Figure 2, this working rate is 5
% or less, both yield strength and total elongation are low, but when it is 5% or more, a steel material with excellent ductility, toughness, and high strength can be obtained.

時効処理温度を650〜850℃に限定したが、650
℃ではγ′相の析出が遅く、又850℃を超えて高温に
なり過ぎるとγ′相が析出し難くなるためである。
Although the aging treatment temperature was limited to 650 to 850°C,
This is because the precipitation of the γ' phase is slow at 850° C., and it becomes difficult for the γ' phase to precipitate if the temperature is too high, exceeding 850°C.

本発明は、低温で5%以上の加工を行うために、大型の
ドリルカラー用材には実施し難いが、例えば小型のドリ
ルカラー用材や部品に適当な、加工と熱処理方法である
The present invention is a processing and heat treatment method suitable for small drill collar materials and parts, for example, although it is difficult to implement on large drill collar materials because the processing is performed at low temperatures to a degree of 5% or more.

次に特許請求の範囲第3項および第6項の加工を説明す
る。この方法は前記の新規な知見■を具体化したもので
、第3図はその実施例である。即ち第3図は第1表に示
す本発明の成分の鋼を、図に示す各温度で加工率で15
%の圧延を行った鋼材の耐力を示す図である。第3図に
みられる如(,750〜850℃で15%の圧延を行う
と、以後溶体化熱処理や時効熱処理を行わないで、高強
度の鋼材かえられる。750℃以下で15%の加工を行
っても、温度が低過ぎるため圧延のままではγ′相の析
出は少なく、又850℃以上の高温になり過ぎるとγ′
相の析出温度以上となるため高強度化は達成できない。
Next, the processing according to claims 3 and 6 will be explained. This method embodies the above-mentioned novel finding (2), and FIG. 3 is an example thereof. That is, Fig. 3 shows the steel of the present invention shown in Table 1 at a processing rate of 15 at each temperature shown in the figure.
It is a figure showing proof strength of the steel material which rolled %. As shown in Figure 3 (15% rolling at 750 to 850°C, high strength steel can be obtained without subsequent solution heat treatment or aging heat treatment. 15% rolling at 750 to 850°C) Even if the temperature is too low, precipitation of the γ′ phase is small if the rolling process is performed, and if the temperature is too high (850°C or higher), the γ′ phase will not precipitate.
Since the temperature exceeds the phase precipitation temperature, high strength cannot be achieved.

第4図はこの加工方法の他の実施例を示す図である。即
し第4図は第1表に示す本発明の成分の鋼を、800℃
で図に示す加工率の圧延を行った鋼材の耐力を示す図で
ある。
FIG. 4 is a diagram showing another embodiment of this processing method. Therefore, Fig. 4 shows that the steel of the present invention shown in Table 1 was heated to 800°C.
FIG. 2 is a diagram showing the yield strength of a steel material that has been rolled at the working rate shown in the figure.

第4図にみられる如く、この加ゴー率が10%以下では
圧延のままでは高強度化は達成されないが、10%以−
ヒでは十分な耐力が得られる。尚第3図及び第4図には
全伸びは記載しなかったが、この方法で得られた鋼材の
延性、靭性は十分な水準にある。この方法は、750〜
850℃の高温で10%以上の加工を行うため、汎用サ
イズのドリルカラーには適用が容易であり、又圧延後に
熱処理を行わないために工程も簡易でコスト低減の効果
も大きい。
As shown in Fig. 4, if the addition rate is less than 10%, high strength cannot be achieved by rolling as is, but if the addition rate is less than 10%,
Sufficient resistance can be obtained with H. Although the total elongation is not shown in FIGS. 3 and 4, the ductility and toughness of the steel material obtained by this method are at a sufficient level. This method uses 750~
Since 10% or more processing is performed at a high temperature of 850°C, it is easy to apply to general-purpose drill collars, and since no heat treatment is performed after rolling, the process is simple and has a large cost reduction effect.

次に特許請求の範囲第2項および第5項の加工や熱処理
を説明する。この方法は前記の新な知見■を具体化した
もので、大型のドリルカラー用鋼材に通した方法である
。即ち鋼材が大型になると750℃以下では5%以上の
加工を施す事が困難であり、又750〜850℃におい
ても5〜lO%の加工は行えるが10%以上の加工が困
難となる。この方法では750〜850℃で5〜10%
の加工を行う。加工のままでは第4図にみられる如く耐
力が低い。しかしその後650〜850℃で時効処理を
行う七、歪に誘起されてT′相の析出が促進され、高強
度化が達成できる。
Next, processing and heat treatment according to claims 2 and 5 will be explained. This method embodies the above-mentioned new knowledge (1) and is a method that applies it to steel materials for large drill collars. That is, when the steel material becomes large, it is difficult to perform processing of 5% or more at temperatures below 750°C, and processing of 5 to 10% is possible at 750 to 850°C, but processing of 10% or more is difficult. In this method, 5-10% at 750-850℃
processing. As shown in Figure 4, the yield strength is low if left as is. However, if the steel is then subjected to aging treatment at 650 to 850° C., precipitation of the T' phase induced by strain is promoted, and high strength can be achieved.

〔発明の効果〕〔Effect of the invention〕

本発明により、材質の均質性、延性や靭性、および強度
が常に安定して優れた、高耐食性高強度ドリルカラー用
非磁性鋼を製造することがで、きる。
According to the present invention, it is possible to manufacture a highly corrosion-resistant, high-strength non-magnetic steel for drill collars that has consistently excellent material homogeneity, ductility, toughness, and strength.

又本発明は従来の方法に比べて、熱処理が簡易化あるい
は省略できるため節易な工程であり、製造コストの低減
にも有効である。
Furthermore, compared to conventional methods, the present invention is a simpler process because heat treatment can be simplified or omitted, and is also effective in reducing manufacturing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は特許請求の範囲第1項および第4項の発明の加
工温度と耐力や全伸びの関係を示す図、第2、特許請求
の範囲第1項および第4項の発明の加工率と耐力や全伸
びの関係を示す図、第3図は特許請求の範囲第3項およ
び第6項の発明の加工温度と耐力の関係を示す図、第4
図は特許請求の範囲第3項および第6項の発明の加工率
と耐力の関係を示す図である。
Fig. 1 is a diagram showing the relationship between processing temperature, yield strength, and total elongation in the inventions claimed in claims 1 and 4; Fig. 2 is a diagram showing the processing rate of the inventions in claims 1 and 4; Figure 3 is a diagram showing the relationship between yield strength and total elongation, Figure 3 is a diagram showing the relationship between processing temperature and yield strength in the inventions of claims 3 and 6,
The figure is a diagram showing the relationship between processing rate and proof stress in the inventions of claims 3 and 6.

Claims (6)

【特許請求の範囲】[Claims] (1)重量%で、Si≦2.0%、Mn≦2.0%、N
i:25〜40%、Cr:18〜30%、Al:0.1
〜1.5%、Ti:1.5〜3.0%、Ca:0.00
05〜0.020%、C≦0.020%、N≦0.01
0%で残部がFe及び不可避的不純物からなる鋼を、7
50℃未満で加工率5%以上の圧延あるいは鍛造を行い
、しかる後650〜850℃で時効処理を行うことを特
徴とする、高耐食性高強度ドリルカラー用非磁性鋼の製
造方法。
(1) In weight%, Si≦2.0%, Mn≦2.0%, N
i: 25-40%, Cr: 18-30%, Al: 0.1
~1.5%, Ti: 1.5-3.0%, Ca: 0.00
05-0.020%, C≦0.020%, N≦0.01
0% steel with the balance consisting of Fe and unavoidable impurities, 7
A method for manufacturing a highly corrosion-resistant, high-strength nonmagnetic steel for drill collars, which comprises rolling or forging at a processing rate of 5% or more at less than 50°C, and then aging treatment at 650 to 850°C.
(2)重量%で、Si≦2.0%、Mn≦2.0%、N
i:25〜40%、Cr:18〜30%、Al:0.1
〜1.5%、Ti:1.5〜3.0%、Ca:0.00
05〜0.020%、C≦0.020%、N≦0.01
0%で残部がFe及び不可避的不純物からなる鋼を、7
50〜850℃で加工率5%以上10%未満の圧延ある
いは鍛造を行い、しかる後650〜850℃で時効処理
を行うことを特徴とする、高耐食性高強度ドリルカラー
用非磁性鋼の製造方法。
(2) In weight%, Si≦2.0%, Mn≦2.0%, N
i: 25-40%, Cr: 18-30%, Al: 0.1
~1.5%, Ti: 1.5-3.0%, Ca: 0.00
05-0.020%, C≦0.020%, N≦0.01
0% steel with the balance consisting of Fe and unavoidable impurities, 7
A method for producing highly corrosion-resistant, high-strength non-magnetic steel for drill collars, which comprises rolling or forging at 50 to 850°C with a processing rate of 5% to less than 10%, and then aging treatment at 650 to 850°C. .
(3)重量%で、Si≦2.0%、Mn≦2.0%、N
i:25〜40%、Cr:18〜30%、Al:0.1
〜1.5%、Ti:1.5〜3.0%、Ca:0.00
05〜0.020%、C≦0.020%、N≦0.01
0%で残部がFe及び不可避的不純物からなる鋼を、7
50〜850℃で加工率10%以上の圧延あるいは鍛造
を行うことを特徴とする、高耐食性高強度ドリルカラー
用非磁性鋼の製造方法。
(3) In weight%, Si≦2.0%, Mn≦2.0%, N
i: 25-40%, Cr: 18-30%, Al: 0.1
~1.5%, Ti: 1.5-3.0%, Ca: 0.00
05-0.020%, C≦0.020%, N≦0.01
0% steel with the balance consisting of Fe and unavoidable impurities, 7
A method for producing a highly corrosion-resistant, high-strength nonmagnetic steel for drill collars, which comprises rolling or forging at 50 to 850°C with a processing rate of 10% or more.
(4)重量%で、Si≦2.0%、Mn≦2.0%、N
i:25〜40%、Cr:18〜30%、Al:0.1
〜1.5%、Ti:1.5〜3.0%、Ca:0.00
05〜0.020%、C≦0.020%、N≦0.01
0%で、更にMo≦3.0%、Zr≦0.5%、Nb≦
0.5%、V≦0.5%の1種または2種以上を含有し
、残部がFe及び不可避的不純物からなる鋼を、750
℃未満で加工率5%以上の圧延あるいは鍛造を行い、し
かる後650〜850℃で時効処理を行うことを特徴と
する、高耐食性高強度ドリルカラー用非磁性鋼の製造方
法。
(4) In weight%, Si≦2.0%, Mn≦2.0%, N
i: 25-40%, Cr: 18-30%, Al: 0.1
~1.5%, Ti: 1.5-3.0%, Ca: 0.00
05-0.020%, C≦0.020%, N≦0.01
0%, further Mo≦3.0%, Zr≦0.5%, Nb≦
0.5%, V≦0.5%, one or more kinds, and the balance is Fe and unavoidable impurities.
A method for manufacturing a highly corrosion-resistant, high-strength nonmagnetic steel for drill collars, which comprises rolling or forging at a processing rate of 5% or more at temperatures below 0.degree. C., followed by aging treatment at 650 to 850.degree.
(5)重量%で、Si≦2.0%、Mn≦2.0%、N
i:25〜40%、Cr:18〜30%、Al:0.1
〜1.5%、Ti:1.5〜3.0%、Ca:0.00
05〜0.020%、C≦0.020%、N≦0.01
0%で、更にMo≦3.0%、Zr≦0.5%、Nb≦
0.5%、V≦0.5%の1種または2種以上を含有し
、残部がFe及び不可避的不純物からなる鋼を、750
°〜850℃で加工率5%以上10%未満の圧延あるい
は鍛造を行い、しかる後650〜850℃で時効処理を
行うことを特徴とする、高耐食性高強度ドリルカラー用
非磁性鋼の製造方法。
(5) In weight%, Si≦2.0%, Mn≦2.0%, N
i: 25-40%, Cr: 18-30%, Al: 0.1
~1.5%, Ti: 1.5-3.0%, Ca: 0.00
05-0.020%, C≦0.020%, N≦0.01
0%, further Mo≦3.0%, Zr≦0.5%, Nb≦
0.5%, V≦0.5%, one or more kinds, and the balance is Fe and unavoidable impurities.
A method for producing highly corrosion-resistant, high-strength non-magnetic steel for drill collars, which comprises rolling or forging at a temperature of 5% to 850°C with a working ratio of 5% to less than 10%, followed by aging treatment at 650 to 850°C. .
(6)重量%で、Si≦2.0%、Mn≦2.0%、N
i:25〜40%、Cr:18〜30%、Al:0.1
〜1.5%、Ti:1.5〜3.0%、Ca:0.00
05〜0.020%、C≦0.020%、N≦0.01
0%で、更にMo≦3.0%、Zr≦0.5%、Nb≦
0.5%、V≦0.5%の1種または2種以上を含有し
、残部がFe及び不可避的不純物からなる鋼を、750
〜850℃で加工率10%以上の圧延あるいは鍛造を行
うことを特徴とする、高耐食性高強度ドリルカラー用非
磁性鋼の製造方法。
(6) In weight%, Si≦2.0%, Mn≦2.0%, N
i: 25-40%, Cr: 18-30%, Al: 0.1
~1.5%, Ti: 1.5-3.0%, Ca: 0.00
05-0.020%, C≦0.020%, N≦0.01
0%, further Mo≦3.0%, Zr≦0.5%, Nb≦
0.5%, V≦0.5%, one or more kinds, and the balance is Fe and unavoidable impurities.
A method for producing highly corrosion resistant, high strength non-magnetic steel for drill collars, which comprises rolling or forging at ~850°C with a processing rate of 10% or more.
JP8974887A 1987-04-14 1987-04-14 Manufacture of nonmagnetic steel for drill collar combining high corrosion resistance with high strength Pending JPS63259021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8974887A JPS63259021A (en) 1987-04-14 1987-04-14 Manufacture of nonmagnetic steel for drill collar combining high corrosion resistance with high strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8974887A JPS63259021A (en) 1987-04-14 1987-04-14 Manufacture of nonmagnetic steel for drill collar combining high corrosion resistance with high strength

Publications (1)

Publication Number Publication Date
JPS63259021A true JPS63259021A (en) 1988-10-26

Family

ID=13979372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8974887A Pending JPS63259021A (en) 1987-04-14 1987-04-14 Manufacture of nonmagnetic steel for drill collar combining high corrosion resistance with high strength

Country Status (1)

Country Link
JP (1) JPS63259021A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102021486A (en) * 2011-01-13 2011-04-20 南昌硬质合金有限责任公司 High temperature resistant boat for reducing tungsten powder impurities

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102021486A (en) * 2011-01-13 2011-04-20 南昌硬质合金有限责任公司 High temperature resistant boat for reducing tungsten powder impurities

Similar Documents

Publication Publication Date Title
JP4427012B2 (en) High strength bolt excellent in delayed fracture resistance and method for producing the same
EP1862561B9 (en) Oil well seamless pipe having excellent sulfide stress cracking resistance and method for manufacturing an oil well seamless steel pipe
CN109642282B (en) Duplex stainless steel and method for producing same
AU2014294080B2 (en) High-strength steel material for oil well and oil well pipes
EP2927337B1 (en) Precipitation hardening type martensitic steel and process for producing same
JP2018513917A (en) Manufacturing method of duplex stainless steel pipe
CN106795603A (en) High-strength oil well steel and oil well pipe
CN107923022A (en) Novel martensitic stainless steel
JPS61270355A (en) High strength steel excelling in resistance to delayed fracture
JPH05287381A (en) Manufacture of high strength corrosion resistant steel pipe
JPH01259124A (en) Manufacture of high-strength oil well tube excellent in corrosion resistance
JPS63230847A (en) Low-alloy steel for oil well pipe excellent in corrosion resistance
JP2533481B2 (en) Non-magnetic high strength stainless steel and method for producing the same
JPH0218381B2 (en)
JPH09241746A (en) Production of high strength duplex stainless steel tube
WO2016052271A1 (en) Steel material, and oil-well steel pipe for expansion
JP2008156678A (en) High-strength bolt excellent in delayed fracture resistance and corrosion resistance
JP2008057007A (en) Low alloy steel material and manufacturing method therefor
JPS63259021A (en) Manufacture of nonmagnetic steel for drill collar combining high corrosion resistance with high strength
JP6459704B2 (en) Steel for cold forging parts
JPH06100935A (en) Production of martensitic stainless steel type seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JPH11117019A (en) Production of heat resistant parts
JPS63203722A (en) Production of sour gas resistant tubular member for oil well
JP6601140B2 (en) High strength bolt and steel for high strength bolt
JP2020186437A (en) Steel for bolt, bolt, and manufacturing method of bolt