JPS63259004A - Method for operating energy in iron making plant - Google Patents

Method for operating energy in iron making plant

Info

Publication number
JPS63259004A
JPS63259004A JP9421187A JP9421187A JPS63259004A JP S63259004 A JPS63259004 A JP S63259004A JP 9421187 A JP9421187 A JP 9421187A JP 9421187 A JP9421187 A JP 9421187A JP S63259004 A JPS63259004 A JP S63259004A
Authority
JP
Japan
Prior art keywords
gas
power plant
energy
byproducing
steelworks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9421187A
Other languages
Japanese (ja)
Inventor
Keiichi Akimoto
秋本 圭一
Nanao Ishida
石田 七雄
Toru Nagarei
永礼 透
Takao Yashima
八島 高雄
So Tsuda
津田 宗
Akio Egami
江上 彰雄
Iichi Nishikawa
西川 ▲い▼一
Nobuo Sannomiya
三宮 信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Kawasaki Steel Corp filed Critical Fuji Electric Co Ltd
Priority to JP9421187A priority Critical patent/JPS63259004A/en
Publication of JPS63259004A publication Critical patent/JPS63259004A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/006Automatically controlling the process

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Control Of Heat Treatment Processes (AREA)

Abstract

PURPOSE:To effectively adjust consumption of many kinds of byproducing gases by calculating supplying rate of the byproducing gas for supplying to an electric power plant by mixed integer programming based on many kinds of conditions in an informa tion processor. CONSTITUTION:In the information processor 30, an energy planning ion an iron making plant in the prescribed time from now expressed by unit time based on a production control and production planning in the iron making plant, is executed by calculating the supplying rate of the byproducing gas for supplying to the electric power plant 14 by using integer programming while using restricting condition for energy consump tion in the power plant 14, permissible variation to gas holders 16A, 16B, 16C storing and discharging the many kinds of byproducing gases, and the min. purchasing fuel in the power plant 14, the min. number of exchanging time of exclusive burning of the byproducing gas and mixed burning of the byproducing gas and purchased fuel and the min. excess/shortage of the excess gas of the byproducing gas in the iron making plant under restricting condition of the power plant operation and the purchas ing energy use, as objective functions. Next, in accordance with this supplying pattern, the supply of the byproducing gas to the power plant 14 is controlled, and the demand operation for the gas energy is executed.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、製鉄所のエネルギ運用方法に係り、特に、コ
ークス炉、高炉及び転炉等のガス発生設備を備えた製銑
・製鋼−貫製鉄所における、製鉄所内で発生する副生ガ
スを燃焼させて発電する、例えば電力会社との間に設立
されている共同火力発電所や自家発電所と、製鉄所内で
消費するガスエネルギ使用工場との間のエネルギ運用の
効率化及びi辿運用を図る際に用いるのに好適な、製鉄
所のエネルギ運用方法に関する。
The present invention relates to an energy management method for a steelworks, and in particular, the present invention relates to an energy management method for a steelworks, and in particular, the combustion of by-product gas generated within the steelworks in an ironmaking/steelmaking steelworks equipped with gas generation equipment such as a coke oven, a blast furnace, and a converter. For example, we aim to improve the efficiency of energy operation and i-tracing operation between a joint thermal power plant or private power plant established with an electric power company and a factory that uses gas energy consumed within a steelworks. This invention relates to an energy management method suitable for use in steel works.

【従来の技術】[Conventional technology]

一般に、製銑・製鋼−貫製鉄所においては、エネルギセ
ンタで各種のエネルギの監視・管理を行うことにより、
該製鉄所内のエネルギ使用の合理化を図っている。特に
、大規模な発電所を有する製鉄所においては、コークス
炉ガス、高炉ガスや転炉ガスなどの各種の副生ガスの消
費調整を大規模発電所において行うようにしている。 ところで、前記の如きWl跣所内の各工場においては、
それぞれの生産スケジュールに合せてエネルギの発生、
iPf費が行なわれるため、該エネルギの全体的な把握
が難しく、副生ガスの放散あるいは賀電契約員以上の電
力量の購入によってエネルギ損失や経済的な負担が増大
するという問題がある。 これら問題に対処し、エネルギ使用の合理化、効率化を
図るべく、先に本願出願人は特開昭61−217689
号において製鉄所のエネルギ運用制御方法を提案してい
る。このvIpH方法においては、生産計画情報に基づ
き、単位時間毎の前記エネルギ利用計画を所定時間毎に
作成すると共に、この長期計画を今までの運用実績に応
じて数分単位で71fi整する短期エネルギ利用計画を
伴成し、長短前計画に基づいて屑入電力量及び屑入ガス
量が最小となるように、各種ガスを備蓄するためのガス
ホルダーのレベル推移及び自家発電電力是を決めて運用
することを特徴としている。 又、特開昭52−184165において、鉄鋼−貫プロ
セスにおけるエネルギ制御方法が開示されている。この
制御方法においては長期的(1″f4間〜1ヶ月)な損
業計両を立案するための高炉操業パターンの決定を主課
題としている。そして、製鉄所内の使用エネルギ最小及
び、若しくは特定エネルギ使用量の最小を目的関数とし
て、銑m −貫プロセスにおけるエネルギ適正配分パタ
ーンを算定し、予め設定した選択基準によって、算定さ
れたエネルギ適正配分パターンの中から最適なエネルギ
配分パターンを選択し、該パターンに従って鉄鋼−貫プ
ロセスにエネルギを配分し、エネルギ需給制御を行うこ
とを特徴としている。この制御方法は、主として高炉を
中心とした製鉄所内の使用エネルギの最小、最適化又は
特定エネルギ使用量最小を目的としている。 ところで、製鉄所で発生する副生ガスと購入燃料例えば
重油(以下、購入燃料の例として重油を挙げて説明する
)の混焼が可能なボイラを使用している大規模発電所例
えば共同火力発電所においては、発電コストを下げるた
めに高価な重油の使用量を極力減らし、上記の如き製鉄
所で発生する各種の副生ガスのみの燃焼で所定の出力を
得るようにすることが望ましい、一般に、このようなボ
イラは重油の量をいくらでも小さくできる訳ではなく、
重油を焚く場合はある最低流量(以下、ミニマム重油と
言う)の重油を流す必要がある。又、ガスのみの燃焼(
以下、ガス専焼と言う)と、ガスと重油との燃焼(以下
、混焼と言う)の2つの燃焼モードを切換える際には、
重油用のバーナを取付けなり取外したりする作業が必要
となり、多大の工数や作業時間を要するため、一旦ガス
専焼を開始した場合、できる限り長時間同一の燃焼モー
ドを継続することが望ましい、従って、燃焼する重油を
削減し、究極的にはその夕°を零とするのが望ましい訳
であるが、そのためには重油の発熱量に相当する量の副
生ガスをボイラ内に余分に送り込まなければならない。 即ち、ミニマム重油に相当するガス(一般に製鉄所に附
随する大規模発電所では特にカロリーの高いコークス炉
ガス(COG)が特定的に重油に代替し得る資格を有し
ている)が確保できれば、重油の流入を停止してガス専
焼が可能となり、確保できなければ混焼しなければなら
ない、従って、大規模発電所へのガス供給量を決定する
場合には、前記ミニマム重油に代替し得るコークス炉ガ
スCOGが確保できるか否か、又その量が何時間継続し
て確保できるかが最大の条件となる。この場合、前記ガ
ス供給量を決定をするための判断の基礎となるのは、製
鉄所内で発生する各ガスのバランス即ち6炉において発
生し各工場において使用される各ガス量が事後どのよう
に推移するかというデータである。
Generally, in ironmaking and steelmaking plants, energy centers monitor and manage various types of energy.
Efforts are being made to rationalize energy use within the steelworks. In particular, in ironworks that have large-scale power plants, the consumption of various by-product gases such as coke oven gas, blast furnace gas, and converter gas is adjusted at the large-scale power plants. By the way, at each factory in the WL area as mentioned above,
Energy generation according to each production schedule,
Since iPf costs are used, it is difficult to grasp the overall amount of energy, and there is a problem that energy loss and economic burden increase due to the dissipation of by-product gas or the purchase of more electricity than the customer's contract. In order to deal with these problems and to rationalize and improve the efficiency of energy use, the applicant of the present application previously published Japanese Patent Application Laid-Open No. 61-217689.
In this issue, we propose an energy operation control method for steelworks. In this vIpH method, the energy usage plan for each unit time is created at predetermined time intervals based on production plan information, and the short-term energy usage plan is adjusted by 71fi in units of several minutes according to past operational results. In conjunction with the utilization plan, determine and operate the level transition of gas holders for stockpiling various gases and the principle of in-house power generation so that the amount of waste electricity and waste gas is minimized based on the long-term and short-term advance plan. It is characterized by Furthermore, Japanese Patent Laid-Open No. 52-184165 discloses an energy control method in a steel penetrating process. In this control method, the main task is to determine the blast furnace operation pattern in order to plan a long-term (1″f4 period to 1 month) loss and loss plan. Using the minimum amount of consumption as an objective function, calculate the appropriate energy distribution pattern in the pig metal hole process, select the optimal energy distribution pattern from the calculated appropriate energy distribution patterns according to the preset selection criteria, and It is characterized by allocating energy to the steel-through process according to patterns and controlling energy supply and demand.This control method is mainly used to minimize or optimize the energy used in the steelworks, mainly in the blast furnace, or to minimize the amount of specific energy used. By the way, large-scale power plants that use boilers that are capable of co-firing by-product gas generated at steel plants and purchased fuel, such as heavy oil (hereinafter, heavy oil will be explained using heavy oil as an example of purchased fuel). For example, in a joint thermal power plant, in order to reduce power generation costs, the amount of expensive heavy oil used is reduced as much as possible, and the specified output is obtained by burning only the various by-product gases generated in the steel works as described above. Generally speaking, it is not possible to reduce the amount of heavy oil in such boilers as much as possible;
When burning heavy oil, it is necessary to flow the heavy oil at a certain minimum flow rate (hereinafter referred to as minimum heavy oil). Also, combustion of gas only (
When switching between two combustion modes: gas-only combustion (hereinafter referred to as gas-only combustion) and combustion with gas and heavy oil (hereinafter referred to as mixed combustion),
It is necessary to install and remove burners for heavy oil, which requires a large amount of man-hours and time, so once gas-only combustion has started, it is desirable to continue the same combustion mode for as long as possible. It is desirable to reduce the amount of heavy oil that is burned and ultimately reduce the amount of combustion to zero, but in order to do so, it is necessary to send an extra amount of by-product gas into the boiler that corresponds to the calorific value of the heavy oil. No. In other words, if gas equivalent to minimum heavy oil can be secured (in general, in large-scale power plants attached to steelworks, coke oven gas (COG), which has a particularly high calorie content, is qualified to specifically replace heavy oil), Gas-only combustion becomes possible by stopping the inflow of heavy oil, and if this cannot be ensured, co-fired gas must be used. Therefore, when determining the amount of gas supplied to a large-scale power plant, a coke oven that can replace the above-mentioned minimum heavy oil is recommended. The most important conditions are whether gas COG can be secured and how long the amount can be secured continuously. In this case, the basis for determining the gas supply amount is the balance of each gas generated within the steelworks, that is, how the amounts of each gas generated in the six furnaces and used in each factory will be after the fact. This is data to see how things will change.

【発明が解決しようとするI?TIQ点】しかしながら
、製鉄所内の各工場はそれぞれの生産スケジュールに合
せてエネルギの発生、消費を行うため、仝体的なガスバ
ランスの把握は難しい、従って、発電所へのガス供給量
の計画値を決定する際に、過少な値を計画したなめに、
本来購入燃料の供給を停止することができなにもかかわ
らす混焼を行ったり、過大に計画したためにガスホルダ
のレベルを不用念に変動させたり、又、一旦開始したガ
ス専焼を直に解除して切換作業に伴う多大な作業時間を
費やしたり効率低下を起こしたりするといった問題があ
った。 なお、本発明に関連する技術として特開昭54−133
401で提案された、ガスホルダ内のガス員レベルを一
定にするように発電所へのガス供給量を調整するガス需
給[fillシステムがある。これに対し、本発明は、
ガスホルダのレベルを一定にすることを考慮しておらず
、むしろ一定のflill約内のレベルでガスホルダを
有効に使用するものであり、ガスホルダのレベル変動を
許容している。 即ち、発電所へ供給するガス量を含めた系全体を最適化
し、ガスホルダのレベルはその結果で決定されるように
しているという点で異なり、前記ガス需給ff1l制御
システムよりも広い立場で最適化するものである。
[What does the invention try to solve? TIQ point] However, since each factory within a steelworks generates and consumes energy according to its own production schedule, it is difficult to grasp the overall gas balance. Therefore, it is difficult to grasp the overall gas balance. In order to determine the undervalued value,
If you are unable to stop the supply of purchased fuel, you may start co-firing, or you may unnecessarily change the level of the gas holder due to over-planning, or you may immediately cancel gas-only combustion once started. There are problems in that the switching work requires a large amount of work time and reduces efficiency. In addition, as a technology related to the present invention, Japanese Patent Application Laid-Open No. 54-133
There is a gas supply and demand system proposed in 401 that adjusts the amount of gas supplied to the power plant so as to keep the gas level in the gas holder constant. In contrast, the present invention
This method does not take into consideration the level of the gas holder to be constant, but rather uses the gas holder effectively at a level within a certain flill, and allows for fluctuations in the level of the gas holder. In other words, the system is different in that the entire system including the amount of gas supplied to the power plant is optimized, and the level of the gas holder is determined by the result, and optimization is performed from a broader standpoint than the gas supply/demand control system. It is something to do.

【発明の目的] 本発明は、前記従来の問題点を解消するべくなされたも
のであって、製鉄所内の各工場の生産情報から算出され
たガスバランスに基づいて、ガスホルダを有効に利用し
て副生ガスのエネル゛ギ運用を行うことにより、副生ガ
スの放散、1は入燃料の使用量の削減、ガス専焼と混焼
の切換頻度の減少を図ることができる製鉄所のエネルギ
運用方法を提供することを目的とする。 【問題点を解決するための手段】 本発明は、各ガス発生設儂からの副生ガス及び購入燃料
のうち少なくとも一つを燃焼させて電力を得る発電所と
、前記副生ガスの有効利用を図るべく副生ガスに余裕が
あるときは該副生ガスを備蓄し、余裕のない時は備蓄さ
れた副生ガスの払出しを行う各種ガスホルダと、後記製
鉄所内の生産管理及び生産計画に基づいて精報処理を行
う+W報処理装置とを備えた製鉄所で、前記発電所への
副生ガスの供給を制御する製鉄所のエネルギ運用方法に
おいて、前記情報処理装置で、前記生産管理及び生産計
画鞘層に基づいて時間単位で表わされる所定時間先まで
の製鉄所内エネルギ需給計画を、前記発電所のエネルギ
使用制約条件、前記ガスホルダに許容される変動、発電
所運用制約条件及び購入エネルギ使用制約条件の下で発
電所の購入燃料が最小、副生ガスの専焼と副生ガス及び
購入燃料の混焼の切換回数が最小、及び製鉄所内の副生
ガスの余剰ガスの過不足が最小を目的関数として、混合
整数計画法を用いて前記発電所に対する副生ガス供給量
を算定することにより行い、算定された副生ガス供給量
の供給パターンに従って前記発電所への副生ガスの供給
を制御してエネルギ需給運用を行うことにより、前記目
的を達成するものである。
[Object of the Invention] The present invention has been made to solve the above-mentioned conventional problems, and is to effectively utilize gas holders based on the gas balance calculated from the production information of each factory in the steelworks. By managing the energy of by-product gas, we have developed an energy management method for steelworks that can reduce by-product gas dissipation, reduce the amount of input fuel used, and reduce the frequency of switching between gas-only combustion and mixed combustion. The purpose is to provide. [Means for Solving the Problems] The present invention provides a power plant that obtains electric power by burning at least one of by-product gas and purchased fuel from each gas generation facility, and an effective use of the by-product gas. In order to achieve this, various gas holders are used to stockpile by-product gas when there is surplus, and to release the stored by-product gas when there is no surplus, and based on the production management and production plan within the steelworks described below. In the steelworks energy operation method, the steelworks is equipped with a W information processing device that performs detailed information processing, and the information processing device controls the supply of byproduct gas to the power plant. The energy supply and demand plan within the steelworks up to a predetermined time expressed in units of time based on the planning sheath layer is calculated based on the energy usage constraints of the power plant, fluctuations allowed in the gas holder, power plant operation constraints, and purchased energy usage constraints. Under the conditions, the objective function is to minimize the amount of purchased fuel at the power plant, the minimum number of switching between exclusive combustion of byproduct gas and mixed combustion of byproduct gas and purchased fuel, and the minimum excess or deficiency of surplus byproduct gas in the steelworks. , by calculating the amount of by-product gas supplied to the power plant using mixed integer programming, and controlling the supply of by-product gas to the power plant according to the supply pattern of the calculated amount of by-product gas supplied. The above objectives are achieved by managing energy supply and demand.

【作用】[Effect]

以下、本発明を、例えば第1図に示されるような概略構
成の製銑・製鋼−貫製鉄所に基づき説明する。なお、必
要な記号は図中に記載する。 図において、コークス炉10から発生したコークス炉ガ
ス(図中COGと記す)は、使用工場12Aで使用され
、この余剰分のガスFCRが共同火力発電所14に供給
される。この送給ラインの途中には、コークス炉ガスの
発生、使用及び送給とのバランスを取るためのバッファ
としてガスホルダ16Aが設けられている。なお、高炉
18からの高炉ガス(図中BFGと記す)、転炉20か
らの転炉ガス(図中LDGと記す)も前記コークス炉ガ
スと同様に各使用工場12B、12Cで使用され、ガス
ホルダ16B、16Cを介して前記大規模発電所14に
供給される。 又、転炉ガスについては、単独のガス(単味)で使用さ
れることもあるが、むしろコークス炉ガスと混合した混
合ガス(図中MGと記す)として使用されることが多く
、前記製鉄所でも図に示すように管路でコークス炉ガス
と混合して前記混合ガスを供給するようにしている。 更に、各々の炉から発生して使用され、余剰のガス量(
単位はNn3/H)をFCR,FBR5FMR1各々の
余剰のガスがガスホルダ16A〜16Cに流入する量(
単位はNra’/H)をFCH,FBH,FMH1各々
の余剰のガスの大規模発電所供給量(単位はNra3/
H)をFCK、FBK、FMK、各々のガスホルダ16
A〜16Cルベル(単位はN11)をVC,VB、VM
とする。これら各ガス量は発生、使用、供給の変化によ
り時々刻々とその値を変化する変数であるため、本来時
間tを用いてFOR(t >、FBR〈
Hereinafter, the present invention will be explained based on, for example, an ironmaking/steelmaking-through steel mill having a schematic configuration as shown in FIG. 1, for example. In addition, necessary symbols are written in the figure. In the figure, coke oven gas (denoted as COG in the figure) generated from a coke oven 10 is used in a factory 12A, and this surplus gas FCR is supplied to a communal thermal power plant 14. A gas holder 16A is provided in the middle of this feed line as a buffer for balancing the generation, use, and feed of coke oven gas. Incidentally, the blast furnace gas from the blast furnace 18 (denoted as BFG in the diagram) and the converter gas from the converter 20 (denoted as LDG in the diagram) are also used in the respective usage factories 12B and 12C in the same way as the coke oven gas. It is supplied to the large-scale power plant 14 via 16B and 16C. In addition, although converter gas is sometimes used as a single gas (single gas), it is often used as a mixed gas (denoted as MG in the figure) mixed with coke oven gas, and the above-mentioned steel manufacturing In some places, as shown in the figure, the mixed gas is mixed with coke oven gas in a pipe and supplied. Furthermore, the amount of surplus gas generated and used by each furnace (
The unit is Nn3/H) is the amount of surplus gas flowing into the gas holders 16A to 16C from each of FCR, FBR5 and FMR1 (
The unit is Nra'/H) and the large-scale power plant supply amount of surplus gas for each of FCH, FBH, and FMH1 (the unit is Nra3/H).
H) for FCK, FBK, FMK, each gas holder 16
A to 16C rubel (unit: N11) to VC, VB, VM
shall be. Since the amount of each of these gases is a variable whose value changes from moment to moment due to changes in generation, use, and supply, originally, time t is used to calculate FOR(t >, FBR <

【)、・・・の
ように記す必要があるが、図中では省略した。なお、以
下の記述においては、ある一つの供給量の通告時間単位
ΔTを「期」と呼び、例えばFOR(t)とは第を期の
時間帯におけるコークス炉余剰ガス1FcRを意味する
ものとする。又、この時間帯の間、流量に関する各変数
は一定であるとし、一定でない場合はこの時間帯での平
均値を用いたと解釈する。更に、ホルダレヘルVc (
t ) 、VB (t ) 、VM (t )は第を期
の最終時刻における値を示すものとする。又、各ガスは
管路中を図中の矢印方向に供給される。 以上の前提に基づいて、上記各ガスに関する変数の関係
を数式で記述し、記述された数式に基づいて混合整数計
画法を適用し、最終的な大規模発電所14へ通告される
各期毎のガス供給量FCK(t )、FBK (t >
、FMK (t ) 、t =1゜2、・・・、Tを解
として得ることを、以下の如く考えていく、なお、Tは
考慮される期の数である。 まず、各ガスホルダ16A
〜16Cのガス保有量に関して次式(1)〜(3)が成
立する。 VC(t ) =VC(t −1> +ΔT−FCH(t)・・・(1) VB (t ) =VB (t −1)十ΔT−FBH
(t)・・・(2) VM (t ) =VM (t −1)+ΔT−FMH
(t )・・・(3) 但し、t=1.2.  ・′・・、Tの値をとる。 又、初期条件及び終端条件は次式(4)、(5)%式% 更に、ガスホルダ16A〜16Cの上下限°制約は、次
式(6)〜(8)で与えられる。 竺ニーVC−(t )≦VC(t ) ≦vc+vc◆(t)     −(6)竺旦−VB−
(t )≦VB (t )≦VB+VB令(t)   
  −(7)yヱーVM−(t )≦VM(t) ≦VM+VM◆(t)     ・ (8)但し、t 
=1.2.  ・・・、Tの値をとる。又、竺旦、竺旦
、竺ヱ;各ガスホルダの運用下限値、VC,VB、VM
;各ガスホルダの運用上限値、VC−、VB−、VM″
″:各ガスの運用下限値を下回る一量、 VC+、VB+、VM+ :各ガスの運用上限値を上回
る量(放ri!1 t )である。 一方、各ガス供給量FCK (t ) 、FBK (t
 )、FMK (t )は、図のような配管の関係から
次式(9)〜(11)式で表わされる。 FCK (t ) =FCR<t ) −FCH<t 
)・・・(9) FBK (t ) =FBR(t ) −FBH(t 
)・−(10) FMK (t ”) =FMR(t ) −FMH(t
 )・−(11) 但し、t=1.2.  ・・・、Tの値をとる。 又、上記各ガス供給量FCK (t )、FBK(t 
>、FMK (t )の上下限の制約は、次式%式% 但し、tは1.2、・・・、Tの値をとる。又、FCK
、FBK、FMK、各ガスの供給量の下限値、 限値である。 次に、大規模発電所14のボイラにおけるガス専焼によ
る効果を表現するため、各ガス供給量FCK (t )
、FBK (t )、FMK (t )の定式化を行う
。この場合、ボイラの倍数はいくつでもよいが、以下に
おいては表記の複雑さを避けるために、例えば3缶とし
て記述する。そして、O又は1の値だけを取り得る変数
(0−1変数)nl(j )、rl 2 (i )、r
l 3 (j )を、次式(15)〜(20)のように
定義する。 FCK (t )≧FCK’ −*n +  (j )
 =1・・・(15) FCK N )<FCK’ −n + (j )=0・
・・(16) FCK (t ) =FCK2−n 2 (t ) =
1・・・(17) FCK (t ) <FCK2−=n 2 (t ) 
=0・・・(18) FCK (t )≧FCK3−n 3 N )=1・・
・(19) FCK (t ) <FCK3−=n 3 (t ) 
=0・・・ (20) 但し、t =1.2.  ・・・、Tの値をとる。又、
FCK’ 、FCK2 、FCK3 、それぞれボイラ
の1缶、2缶、3缶をガス専焼させるために必要なコー
クス炉ガスの見である。当然にFCK’<FCK2 <
FCK3となる。 又、第を期におけるガス専焼倍数n(t)を、次式〈2
1)の如く定義する。 n  (t)=nt (t)+12(t)+n3(t)
    ・・・(21) 但し、t =1.2.  ・・・、Tの値をとる。 更に、前記ガス専焼倍数n(t)の時間変化を記述する
ために、次式(22)を導入する。 n    (t   )=n    (t−1)+n 
  中  (1)−m −(t )     ・・・(
22)但し、t=1.2.  ・・・、Tの値をとる。 又、m會(t);非負整数であり、n(t)>n(t−
1)のときの増分、 1− (t ) ;非fL整数であり、n(t)<n(
t−1>のときの減少分である。 以上の数式から、各ガス送給1FcK (t )、FB
K (t )、FMK (t )を最大にすべき目的関
数2丁は、次式(23)のように与えられる。 Z7=r、ΔTΣn(t) 町l +r4±VM令(t)) f呟を −(r5ΣVC−<t ) +r 、正VB−(t ) (cl +r ) ΣVM −(t  )  )イー1 −r 、Σμ(t)l−(t)  ・・・(23)f、
1 ここで、(23)式中の各係数の意味は次の通りである
。 rl;ガス専焼による1缶当りの利益、r2、r3−r
l;各ガスCOG、BFG、MGの放散による損失、 r5、r6、「7;各ガスCOG、BFG、MGのガス
不足による損失、 ra;ガス専焼を最低2期以」二継続できずに専焼を打
切る場合の損失、 μ(t):次式(24)が成立するとき1でその他のと
きOとなる関数である。 m中(t−1>>O又はrm −(t−1)>0・・・
・・・(24) 又、先の(9)〜(11)式を各ガスホルダ16A〜1
6Cへのガス流人員FCH(t>、FBH(t l F
MH(t )についてそれぞれ解き、(1)〜(3)式
に代入することにより、これら各ガスホルダ流入量FC
H(t ) 、FBI (t )、FMH(t )を消
去することができる。 以上の問題の演算結果の理解を容易とするために、以下
に対象としている系の状態ベクトルを定義する。この場
合、ガスホルダのレベルとしてy(t)、ガス専焼変更
倍数としてv(t)、ボイラ運転台数としてη(t)、
大規模発電所へのガス供給量としてμ(t)、ガスホル
ダのガス不足放散量としてξ(1)を定義する。 従って、以上の問題は次のように表わせる。即ち、目的
関数2丁を最大にするには次式(26)が成立すればよ
い。 max Z丁= Σ[a −v  (t−1>’ ・v(t)十〇ξ′・
ξ(t)+cη′・77(t)]・・・(26) 但し、a、Cξ、Cηは(23)、(24)式で決まる
定数ベクトルであり、これらベクトル等に付されたr′
」記号はベクトルの転置を表わしている。又、tは1,
2.・・・、Tの値を取る。 又、(1)〜(3)式、(22)式を(25A)〜(2
5E)式の表記方法で表わすと、状態遷移方程式は次式
(27)の如くとなる。この状B iTl移方程式は、
t、−1期の状態V(t−1)と1期の状態y(t)と
の関係を表わしている。 V  (t  )=l  (t−1>  十BtJ  
(t  )+、AV  (t )+S  (t )−(
27)但し、 A、B;(1)〜(3)、(22)式から決まる定数行
列、 で表わされる行列である。 ス、(6)〜(8)、(12)〜(14)式によって決
まる実行可lrg領域Ftの集合は、次式%式% 但し、tは1,2.・・・、Tの値をとる。 更に、ガスホルダレベルy(t)の初期値y(0)及び
終端値y  (T)は次式(29)、(30)式の如く
表わせる。 V(0)=V’         ・・・(29)V(
T)=yT         ・・・(30)上記問題
(26)〜(30)式は、連続変数と整数変数とが並存
し且つ(27)式によって隣接する2期の状態ベクトル
が関連し合っている冬期間意志決定問題であると言える
。このような種類の問題に対しては、既にその解法が用
意されており、例えば昭和57年12月に発行された計
測自動制御学会論文集第18巻、第12号中の、「連続
系とi数基が結合した系の最適化」において記述されて
いる方法を用いることによって解くことができる。 以上説明した通り、本発明によれば、製鉄所内の各工場
の生産情報からガスバランスを演算して求めて副生ガス
の放散、屑入燃料使用量の削減、及びガスの専焼と混焼
の切1f!i頻度の減少を確実に図ることができる。従
って、製鉄所と発電所を総合して見た場合、購入燃料の
削減による燃料コストダウン、副生ガスの放散防止、ボ
イラ燃焼モード切換頻度の減少により作業時間の短縮を
図ることができる。 【実施例】 前出第1図に基づき、本発明方法を採用した実施例につ
いて詳細に説明する。この実施例においては、製鉄所と
して、年間11羽生産能力1200万トンの一貫製鉄所
を、大規模火力発電所として共同火力発電所を例に挙げ
る。 図に示すように、前記製鉄所の各ガスホルダ16A〜1
6Cには、各ガスホルダ内のガスレベルVC5VB、V
M (Nn ” )を検出するためのレベル計26A〜
26Cが設けられている。又、各ガスホルダ16A〜1
6Cの下流側には各ガス供給量FCK、FBK、FMK
を検出するための流星計28A〜28Cが設けられてい
る。 更に、図において、30は情報処理装置である。 この情報処理装置30は、各ガスホルダ16A〜16C
内のボルダレベルVC,VB、VM (Nn3)、共同
火力発電所14への各ガスの供給量FCK、FBK、F
MK、プロセス信号、上位の情報処理計算機からのガス
バランスの予測計算結果、ガス発生量、各使用工場にお
けるガス使用量及びガス専焼のボイラ倍数の各信号を入
力し、各ガスホルダ16A〜16Cの下流側に設けられ
た流量制御弁32A〜32Cの開度を、入力信号を演算
処理した結果で制御して、前記共同火力発電所14への
各ガス供給量FCK、FBK、FMKを1t111御す
るものである。 前記情報処理装置30に入力される各ガス発生基COG
、BFG、LDG及びM Gについては各設備毎の生産
量、稼Ω状況、生産能率などより予測され、又、ガス使
用量については、各工場12A〜12Cの生産量、生産
能率などより算出される必要投入熱量より決定され、同
時に、各余剰ガス基FOR,FBR,FMRも算出され
る。これらのガス発生量とガス使用量のガスバランスは
、長期的には製鉄所全体の生産計画を計る上位の情報処
理計算機が該生産計画より予測計算して前記情報処理装
置30へ入力する。一方、廻期的(1〜24時間)には
、予測値と実測値を時々刻々比敦して必要に応じて修正
する。そして、操業工場の必要熱量を単位時間当りのガ
ス使用量、稼任力状況の値より求め、情報処理装置30
へ入力する。 以上のように、該情報処理装置30には、算出あるいは
決定された各ガス発生、tcOG、BFG、MG、各ガ
ス使用量が入力されると同時に、共同火力発電所14へ
の各ガス供給量FcK、FBK、FMKが時々刻々計測
され入力される。又、前記情報処理装置30には、前記
共同火力発電所14の稼例ボイラ倍数、特にガス専焼ボ
イラ倍数が常時入力され、更に各ガスホルダレベルVC
,VB、VMの変動値が現状値とされ、最適化計算の初
期値として利用するため入力される。そして、共同火力
発電所14へのガス供給1FcK、FBK、FMKは、
各種余剰ガスと各種ガスホルダ量との差より前出(9)
〜(11)式の如く求められる。 以上の如き各種入力管理情報を基に、前記情報処理装置
30は、前記混合整数計画法を用いて前出(26)式が
成立するようにエネルギ需給量を決定し、共同火力発電
所14への副生ガス供給量を算定する。そして、前記情
報処理装置30は、該共同火力発電所14へのガス供給
量が算出された供給量となるように、各ガス流量制御弁
32A、32B、32Cで各ガス流量を調整してエネル
ギの最適運用を行う。 次に、本発明を採用して、製銑・製鋼−貫製銑所のエネ
ルギの運用を行った結果について、具体的な数値を挙げ
て説明を加える。 即ち、共同火力発電所14へのガス送給量の決定は2時
間毎に行い、この決定値はコークス炉ガスCOG、高炉
ガスBFG、混合ガスMGの各ガスの1時間先から2時
間分の発生量の値を前記共同火力発電所14に連絡する
ことにより行った。 例えば、12時において13時から15時までの2時間
分の値を連絡する。即ち、演算時間単位ΔT=2であっ
た。 各ガスCOG、BFG、MGが各使用工場12A〜12
Cで消費され、余剰ガスFCR(t )、FBR(t 
) 、FMR(t )を蓄える各ガスホルダ16A 〜
16Cの容量は、各々14万m3.20万II ’、1
0万13であった。更に、重油の代替とするための必要
最低のコークス炉ガスλは1200ONn+3/Hであ
り、ボイラは3缶を使用した。又、計算の対象となる期
間は4期8時間(T=4 )であった。 前記余剰ガスの予定値FCR(t )、FBR(t )
、FMR(t )は、前記上位の情報処理計算機で1時
間単位に作成されたものを受取り、受取つた予定値を演
算eI間帯の2時間平均値に直したものを使用した。 上記のような前提により、前記ガス供給量の計算は、2
時間毎の通告時刻に、最新の計M値に基づき該通告時刻
から先4期分までの供給値の系列を算出することにより
行った。そして、算出された系列の中の直近期の結果の
みを前記演算時刻におけるガス供給量の決定値とし共同
火力発電所14に連絡するという方法を行った。 以上のようにして算出されたガス送給量の決定値の時間
的な系列の例を第2図に示ず、なお、図のt=i〜4は
各期を表わす。 又、第2図に示した決定値で各ガスを、共同火力発電所
14に供給したときの各期毎に推移する各ガスホルダ1
6A〜16CのレベルVC,VB、VM (Nlll 
” )を第3図に示す。 第3図から、4期8時間においてガスホルダ16Aのレ
ベルVCが36000 (Nn ” )を越えており、
従って、重油の使用の必要がなく、又放散もないことが
理解される。 更に、本発明方法と従来方法を用いて製鉄所及び共同火
力発電所を1ケ月間挽業した結果の例を次表に示す、こ
の表からも重油混焼の切換頻度が少なくなって、切換作
業時間が減り、重油使用量比も減少し、更にガス放散量
も減少することから、高効率で適正なエネルギ運用が図
れることが理解される。なお、このようなエネルギ運用
の適正化による総合的な効果は、年間数億円が見込まれ
る。 第   1   表 なお、前記実施例においては、本発明に係る発電所の例
として大規模な共同火力発電所を示しな。 しかしながら、発電所が大規模か否かはWIa所からの
副生ガス発生量と発電所で消費される副生ガスlとの相
対関係で決定づけられるものである。 従って、前記発電所は大規模な共同火力発電所に限定さ
れず、通常の共同火力発電所や他の発電所、例えば製鉄
所における大型自家発電所やガスタービン発電所などを
包含できる。 又、前記実施例においては購入燃料として重油を例示し
たが、該購入燃料は重油に限定されず、他の燃料例えば
液化天然ガス(LNGガス)、LPGガス、ナフサなど
を用いることができ、又、それらガスを副生ガスと混焼
することができる。 更に、前記実施例においては、第1図に示されるような
構成の製銑・製鋼−貫製鉄所において本発明方法を実施
した例を説明したが、本発明方法が実施される製鉄所は
図に示される構成の製銑・製鋼−貫製鉄所に限定されず
、他の構成又は各種ガス発生設儂及び火力発電所を備え
た他の製鉄所で本発明方法を実施できる。
[), ... should be written, but they are omitted in the figure. In the following description, the notification time unit ΔT of one supply amount is referred to as a "period", and for example, FOR(t) means coke oven surplus gas 1FcR in the time period of the period. . Also, it is assumed that each variable related to the flow rate is constant during this time period, and if it is not constant, it is interpreted that the average value for this time period is used. Furthermore, Holderehel Vc (
t ), VB (t ), and VM (t ) indicate the values at the final time of the second period. Further, each gas is supplied through the pipe in the direction of the arrow in the figure. Based on the above premise, the relationship between the variables related to each gas mentioned above is described in a mathematical formula, and the mixed integer programming method is applied based on the described formula, and each period is notified to the final large-scale power plant 14. Gas supply amount FCK (t), FBK (t >
, FMK (t), t = 1°2, . . . Obtaining T as a solution is considered as follows, where T is the number of periods considered. First, each gas holder 16A
The following equations (1) to (3) hold regarding the gas holding amount of ~16C. VC(t) = VC(t-1> +ΔT-FCH(t)...(1) VB(t) =VB(t-1)+ΔT-FBH
(t)...(2) VM (t) = VM (t-1)+ΔT-FMH
(t)...(3) However, t=1.2.・'..., takes the value of T. In addition, the initial condition and the terminal condition are the following equations (4) and (5)%.Furthermore, the upper and lower limit degree constraints of the gas holders 16A to 16C are given by the following equations (6) to (8). Zhuknee VC-(t)≦VC(t) ≦vc+vc◆(t) -(6) Zhudan-VB-
(t)≦VB (t)≦VB+VB order (t)
-(7)yヱVM-(t)≦VM(t)≦VM+VM◆(t) ・ (8) However, t
=1.2. ..., takes the value of T. Also, 纺dan, 纺dan, 竺ヱ; lower operating limit value of each gas holder, VC, VB, VM
; Operational upper limit value of each gas holder, VC-, VB-, VM''
″: An amount below the operating lower limit value of each gas, VC+, VB+, VM+: An amount exceeding the operating upper limit value of each gas (ruri!1 t). On the other hand, each gas supply amount FCK (t), FBK (t
) and FMK (t) are expressed by the following equations (9) to (11) from the relationship of the piping as shown in the figure. FCK (t) =FCR<t) -FCH<t
)...(9) FBK (t) =FBR(t) -FBH(t
)・−(10) FMK (t”) = FMR(t) −FMH(t
)・−(11) However, t=1.2. ..., takes the value of T. In addition, each of the above gas supply amounts FCK (t), FBK (t
>, the upper and lower limits of FMK (t) are expressed by the following formula (%). However, t takes a value of 1.2, . . . , T. Also, FCK
, FBK, FMK, the lower limit and limit value of the supply amount of each gas. Next, in order to express the effect of gas-only combustion in the boiler of the large-scale power plant 14, we will explain the amount of each gas supplied FCK (t)
, FBK (t), and FMK (t) are formulated. In this case, the number of boilers may be any number, but in order to avoid complication in notation, the number of boilers will be described as, for example, three boilers below. Then, variables that can take only the value O or 1 (0-1 variables) nl(j), rl2(i), r
l 3 (j) is defined as in the following equations (15) to (20). FCK (t)≧FCK' −*n + (j)
=1...(15)FCKN)<FCK'-n+(j)=0・
...(16) FCK (t) = FCK2-n 2 (t) =
1...(17) FCK (t) <FCK2-=n 2 (t)
=0...(18) FCK(t)≧FCK3-n3N)=1...
・(19) FCK (t) <FCK3-=n 3 (t)
=0... (20) However, t =1.2. ..., takes the value of T. or,
FCK', FCK2, and FCK3 are the coke oven gases required to burn boilers 1, 2, and 3, respectively. Naturally, FCK'<FCK2<
It becomes FCK3. In addition, the gas-only combustion multiple n(t) in the second period can be calculated using the following formula 〈2
Define as in 1). n (t)=nt (t)+12(t)+n3(t)
...(21) However, t = 1.2. ..., takes the value of T. Furthermore, the following equation (22) is introduced in order to describe the time change of the gas exclusive combustion multiple n(t). n(t)=n(t-1)+n
Medium (1)-m-(t)...(
22) However, t=1.2. ..., takes the value of T. Also, m(t) is a non-negative integer, and n(t)>n(t-
1), the increment when 1-(t) is a non-fL integer and n(t)<n(
This is the decrease when t-1>. From the above formula, each gas supply 1FcK (t), FB
Two objective functions that should maximize K (t ) and FMK (t ) are given as in the following equation (23). Z7=r, ΔTΣn(t) Town l +r4±VM order (t)) f mur - (r5ΣVC-<t) +r, positive VB-(t) (cl +r) ΣVM -(t)) E1 -r ,Σμ(t)l−(t)...(23)f,
1 Here, the meaning of each coefficient in equation (23) is as follows. rl; Profit per can from gas-only combustion, r2, r3-r
l: Loss due to dissipation of each gas COG, BFG, MG, r5, r6, ``7: Loss due to gas shortage of each gas COG, BFG, MG, ra: Gas exclusive combustion could not be continued for at least 2 periods'' Loss when truncating, μ(t): is a function that is 1 when the following equation (24) holds and is O otherwise. In m (t-1>>O or rm-(t-1)>0...
...(24) Also, the previous equations (9) to (11) are applied to each gas holder 16A to 1.
Gas flow personnel to 6C FCH(t>, FBH(t l F
By solving for each of MH(t) and substituting into equations (1) to (3), the inflow amount FC for each of these gas holders can be calculated.
H(t), FBI(t), and FMH(t) can be eliminated. In order to facilitate understanding of the calculation results of the above problem, the state vector of the target system is defined below. In this case, y(t) is the gas holder level, v(t) is the gas-only combustion change multiple, η(t) is the number of boilers in operation,
μ(t) is defined as the amount of gas supplied to the large-scale power plant, and ξ(1) is defined as the amount of gas shortage released by the gas holder. Therefore, the above problem can be expressed as follows. That is, in order to maximize the two objective functions, the following equation (26) should hold true. max Z = Σ[a −v (t−1>' ・v(t) 10ξ′・
ξ(t)+cη'・77(t)]...(26) However, a, Cξ, and Cη are constant vectors determined by formulas (23) and (24), and r' attached to these vectors etc.
” symbol represents the transposition of a vector. Also, t is 1,
2. ..., take the value of T. Also, formulas (1) to (3) and formula (22) can be converted to (25A) to (2
When expressed using the notation method of equation 5E), the state transition equation becomes as shown in the following equation (27). This state B iTl transfer equation is
t, represents the relationship between the state V(t-1) in the -1 period and the state y(t) in the 1st period. V (t)=l (t-1> 10 BtJ
(t)+,AV(t)+S(t)−(
27) However, A, B are constant matrices determined from equations (1) to (3) and (22), and are the matrices expressed by. The set of executable lrg regions Ft determined by formulas (6) to (8) and (12) to (14) is expressed by the following formula%, where t is 1, 2, . ..., takes the value of T. Furthermore, the initial value y(0) and the final value y(T) of the gas holder level y(t) can be expressed as in the following equations (29) and (30). V(0)=V'...(29)V(
T)=yT...(30) In the above problems (26) to (30), continuous variables and integer variables coexist, and the state vectors of two adjacent periods are related to each other by equation (27). It can be said that this is a decision-making problem during the winter period. Solutions to these kinds of problems have already been prepared, for example, in the Proceedings of the Society of Instrument and Control Engineers, Vol. 18, No. It can be solved by using the method described in "Optimization of a system in which i number groups are bonded". As explained above, according to the present invention, the gas balance is calculated and determined from the production information of each factory in the steelworks, and the gas balance is calculated and determined to dissipate by-product gas, reduce the amount of scrap fuel used, and switch between single combustion and mixed combustion of gas. 1f! It is possible to reliably reduce the i frequency. Therefore, when looking at the steelworks and the power plant as a whole, it is possible to reduce the fuel cost by reducing the amount of purchased fuel, prevent the dispersion of by-product gases, and reduce the frequency of boiler combustion mode switching, thereby shortening the working time. [Example] An example employing the method of the present invention will be described in detail based on FIG. 1 mentioned above. In this embodiment, the steel plant is an integrated steel plant with an annual production capacity of 12 million tons, and the large-scale thermal power plant is a joint thermal power plant. As shown in the figure, each gas holder 16A to 1 of the steelworks
6C indicates the gas level VC5VB, V in each gas holder.
Level meter 26A~ for detecting M (Nn'')
26C is provided. Moreover, each gas holder 16A-1
Each gas supply amount FCK, FBK, FMK is on the downstream side of 6C.
Meteor meters 28A to 28C are provided for detecting. Furthermore, in the figure, 30 is an information processing device. This information processing device 30 includes each gas holder 16A to 16C.
Boulder level VC, VB, VM (Nn3) within, the supply amount of each gas to the joint thermal power plant 14 FCK, FBK, F
Input the MK, process signals, gas balance prediction calculation results from the host information processing computer, gas generation amount, gas usage amount at each factory, and gas-fired boiler multiple signals, and input the signals downstream of each gas holder 16A to 16C. The opening degree of the flow control valves 32A to 32C provided on the side is controlled by the result of arithmetic processing of the input signal, and each gas supply amount FCK, FBK, and FMK to the communal thermal power plant 14 is controlled by 1t111. It is. Each gas generating group COG input to the information processing device 30
, BFG, LDG, and MG are predicted based on the production volume, operating status, production efficiency, etc. of each facility, and gas consumption is calculated based on the production volume, production efficiency, etc. of each factory 12A to 12C. At the same time, the surplus gas groups FOR, FBR, and FMR are also calculated. The gas balance between the amount of gas generated and the amount of gas used is predicted and calculated from the production plan by a higher-level information processing computer that measures the production plan of the entire steelworks in the long term, and is input to the information processing device 30. On the other hand, periodically (1 to 24 hours), the predicted value and the measured value are compared moment by moment and corrected as necessary. Then, the amount of heat required for the operating factory is determined from the gas usage amount per unit time and the operating capacity status, and the information processing device 30
Enter. As described above, the calculated or determined gas generation, tcOG, BFG, MG, and each gas usage amount are input to the information processing device 30, and at the same time, the amount of each gas supplied to the communal thermal power plant 14 is inputted. FcK, FBK, and FMK are measured and input every moment. Further, the information processing device 30 is constantly inputted with the operational boiler multiple of the communal thermal power plant 14, especially the gas-fired boiler multiple, and further with each gas holder level VC.
, VB, and VM are assumed to be current values and are input to be used as initial values for optimization calculations. And gas supply 1FcK, FBK, FMK to joint thermal power plant 14 is as follows:
From the difference between various surplus gases and various gas holder amounts (9)
~(11) Based on the various input management information as described above, the information processing device 30 determines the energy supply and demand amount using the mixed integer programming method so that the above-mentioned equation (26) holds, and transmits the energy to the communal thermal power plant 14. Calculate the amount of by-product gas supplied. Then, the information processing device 30 adjusts each gas flow rate with each gas flow rate control valve 32A, 32B, and 32C so that the gas supply amount to the communal thermal power plant 14 becomes the calculated supply amount. Optimal operation of Next, the results of energy management in a pig iron making/steel making plant using the present invention will be explained using specific numerical values. That is, the amount of gas to be fed to the communal thermal power plant 14 is determined every two hours, and this determined value is calculated based on the amount of gas to be supplied to the joint thermal power plant 14 for two hours from one hour ahead. This was done by informing the communal thermal power plant 14 of the generated amount. For example, at 12 o'clock, the value for two hours from 13 o'clock to 15 o'clock is communicated. That is, the calculation time unit ΔT=2. Each gas COG, BFG, MG is used at each factory 12A to 12
The surplus gas FCR(t), FBR(t
), each gas holder 16A for storing FMR(t) ~
The capacity of 16C is 140,000 m3200,000 II', 1
It was 0,013. Furthermore, the minimum required coke oven gas λ to replace heavy oil was 1200ONn+3/H, and three boilers were used. Furthermore, the period targeted for calculation was 8 hours for 4 periods (T = 4). The planned values of surplus gas FCR(t), FBR(t)
, FMR(t) was created on an hourly basis by the above-mentioned host information processing computer, and the received scheduled value was converted into a two-hour average value for the period of calculation eI. Based on the above assumptions, the calculation of the gas supply amount is 2
This was done by calculating the series of supply values from the notification time to the previous four periods based on the latest total M value at each notification time. Then, only the most recent result in the calculated series was used as the determined value of the gas supply amount at the calculation time and communicated to the communal thermal power plant 14. An example of the temporal sequence of the determined value of the gas supply amount calculated as described above is not shown in FIG. 2, and t=i to 4 in the figure represent each period. In addition, each gas holder 1 changes in each period when each gas is supplied to the communal thermal power plant 14 at the determined values shown in FIG.
6A to 16C level VC, VB, VM (Nllll
”) is shown in Fig. 3. From Fig. 3, the level VC of the gas holder 16A exceeds 36000 (Nn ”) during the 8 hours of the 4th period.
Therefore, it is understood that there is no need to use heavy oil, and there is no emission. Furthermore, the following table shows an example of the results of one month of saving work at a steelworks and a communal thermal power plant using the method of the present invention and the conventional method.This table also shows that the frequency of switching of heavy oil co-firing has decreased, and the switching work has been reduced. It is understood that highly efficient and appropriate energy management can be achieved because the time is reduced, the ratio of heavy oil usage is reduced, and the amount of gas released is also reduced. The overall effect of such optimization of energy management is expected to be several hundred million yen annually. Table 1 Note that in the above embodiments, a large-scale communal thermal power plant is not shown as an example of a power plant according to the present invention. However, whether a power plant is large-scale or not is determined by the relative relationship between the amount of byproduct gas generated from the WIa plant and the byproduct gas l consumed in the power plant. Therefore, the power plant is not limited to a large-scale communal thermal power plant, but can include a normal communal thermal power plant and other power plants, such as a large private power plant in a steel mill, a gas turbine power plant, and the like. Further, in the above embodiments, heavy oil was exemplified as the purchased fuel, but the purchased fuel is not limited to heavy oil, and other fuels such as liquefied natural gas (LNG gas), LPG gas, naphtha, etc. can be used. , these gases can be co-combusted with by-product gases. Furthermore, in the above embodiments, an example was explained in which the method of the present invention was implemented in a steelworks with a configuration as shown in FIG. The method of the present invention is not limited to the iron-making/steel-making steelworks having the configuration shown in , but can be implemented in other steelworks with other configurations or various gas generation facilities and thermal power plants.

【発明の効果】【Effect of the invention】

以上説明した通り、本発明によれば、製銑所内の各工場
の生産情報から求められたガスバランスで、ガスホルダ
を有効に利用して副生ガスのエネルギ運用を行っている
ため、副生ガスの放散、購入燃料使用量の削減、ガスの
専焼と混焼の切換頻度の減少を確実に図ることができる
。従って、製鉄所と発電所を総合して見た場合、購入燃
料の削減による燃料コストダウン、副生ガスの放散防止
、ボイラ燃焼モード切換頻度の減少により作業時間の短
縮を図ることができる等の優れた効果が得られる。
As explained above, according to the present invention, the gas holder is effectively used to utilize the energy of the by-product gas with the gas balance determined from the production information of each plant in the ironworks. It is possible to reliably reduce the amount of gas used, reduce the amount of purchased fuel used, and reduce the frequency of switching between gas combustion and mixed combustion. Therefore, when looking at steelworks and power plants as a whole, it is possible to reduce fuel costs by reducing purchased fuel, prevent the dissipation of by-product gases, and shorten work time by reducing the frequency of boiler combustion mode switching. Excellent effects can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を説明するための製銑・製鋼−ftM銖
所の例を示す一部ブロック図を含む概略構成図、第2図
は本発明の実施例に係る大規模発電所への各ガス供給量
の決定値の例を示す線図、第3図は同じく、ガスホルダ
のレベル推移の例を示す線図である。 10・・・コークス炉、 12A〜12C・・・使用工場、 14・・・共同火力(大規模)発電所、16A〜16C
・・・ガスホルダ、 18・・・高炉、 20・・・転炉、 26A〜26C・・・レベル計、 28A〜28C・・・流量計、 30・・・情報処理装置、 32A〜32C・・・流量制御弁、 COG・・・コークス炉ガス、 BFG・・・高炉ガス、 MG・・・混合ガス。
Fig. 1 is a schematic configuration diagram including a partial block diagram showing an example of an iron-making/steel-making ftM pigeonhole for explaining the present invention, and Fig. 2 is a schematic configuration diagram including a partial block diagram showing an example of an iron-making/steel-making ftM ironworks. Similarly, FIG. 3 is a diagram showing an example of the determined value of each gas supply amount, and is a diagram showing an example of the level transition of the gas holder. 10... Coke oven, 12A to 12C... Factory used, 14... Community thermal power (large scale) power plant, 16A to 16C
... Gas holder, 18... Blast furnace, 20... Converter, 26A-26C... Level meter, 28A-28C... Flow meter, 30... Information processing device, 32A-32C... Flow rate control valve, COG...Coke oven gas, BFG...Blast furnace gas, MG...Mixed gas.

Claims (1)

【特許請求の範囲】[Claims] (1)各ガス発生設備からの副生ガス及び購入燃料のう
ち少なくとも一つを燃焼させて電力を得る発電所と、前
記副生ガスの有効利用を図るべく副生ガスに余裕がある
ときは該副生ガスを備蓄し、余裕のない時は備蓄された
副生ガスの払出しを行う各種ガスホルダと、後記製鉄所
内の生産管理及び生産計画に基づいて情報処理を行う情
報処理装置とを備えた製鉄所で、前記発電所への副生ガ
スの供給を制御する製鉄所のエネルギ運用方法において
、 前記情報処理装置で、前記生産管理及び生産計画に基づ
いて時間単位で表わされる所定時間先までの製鉄所内エ
ネルギ需給計画を、前記発電所のエネルギ使用制約条件
、前記ガスホルダに許容される変動、発電所運用制約条
件及び購入エネルギ使用制約条件の下で発電所の購入燃
料が最小、副生ガスの専焼と副生ガス及び購入燃料の混
焼の切換回数が最小、及び製鉄所内の副生ガスの余剰ガ
スの過不足が最小を目的関数として、混合整数計画法を
用いて前記発電所に供給する副生ガスの供給量を算定す
ることにより行い、 算定された副生ガス供給量の供給パターンに従つて前記
発電所への副生ガスの供給を制御して、ガスエネルギ需
給運用を行うことを特徴とする製鉄所のエネルギ運用方
法。
(1) A power plant that generates electricity by burning at least one of the by-product gas and purchased fuel from each gas generation facility, and when there is enough by-product gas to effectively utilize the by-product gas. Equipped with various gas holders that store the by-product gas and discharge the stored by-product gas when there is not enough room, and an information processing device that performs information processing based on the production management and production plan in the steelworks described later. In a steelworks energy operation method for controlling the supply of byproduct gas to the power plant in a steelworks, the information processing device is configured to perform the following steps: The energy supply and demand plan within the steelworks is calculated based on the power plant's energy usage constraints, fluctuations allowed in the gas holder, power plant operation constraints, and purchased energy usage constraints, such as minimum purchased fuel for the power plant, minimum amount of by-product gas, etc. The objective function is to minimize the number of switching between exclusive combustion and mixed combustion of by-product gas and purchased fuel, and to minimize the excess or deficiency of surplus by-product gas in the steelworks. The gas energy supply and demand operation is performed by calculating the raw gas supply amount, and controlling the supply of the byproduct gas to the power plant according to the supply pattern of the calculated byproduct gas supply amount. How to use energy at a steelworks.
JP9421187A 1987-04-16 1987-04-16 Method for operating energy in iron making plant Pending JPS63259004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9421187A JPS63259004A (en) 1987-04-16 1987-04-16 Method for operating energy in iron making plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9421187A JPS63259004A (en) 1987-04-16 1987-04-16 Method for operating energy in iron making plant

Publications (1)

Publication Number Publication Date
JPS63259004A true JPS63259004A (en) 1988-10-26

Family

ID=14103979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9421187A Pending JPS63259004A (en) 1987-04-16 1987-04-16 Method for operating energy in iron making plant

Country Status (1)

Country Link
JP (1) JPS63259004A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292344A (en) * 2006-04-21 2007-11-08 Chugoku Electric Power Co Inc:The Operation method of boiler
JP2010196786A (en) * 2009-02-25 2010-09-09 Nippon Steel Corp Operation method of gas holder and gas holder device
JP2014119141A (en) * 2012-12-13 2014-06-30 Jfe Steel Corp Estimation device of quantity of heat of mixed gas and estimation method of quantity of heat of mixed gas
WO2021210290A1 (en) 2020-04-15 2021-10-21 Jfeスチール株式会社 Energy supply/demand operation guidance device and method for energy supply/demand operation in ironworks

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292344A (en) * 2006-04-21 2007-11-08 Chugoku Electric Power Co Inc:The Operation method of boiler
JP2010196786A (en) * 2009-02-25 2010-09-09 Nippon Steel Corp Operation method of gas holder and gas holder device
JP2014119141A (en) * 2012-12-13 2014-06-30 Jfe Steel Corp Estimation device of quantity of heat of mixed gas and estimation method of quantity of heat of mixed gas
WO2021210290A1 (en) 2020-04-15 2021-10-21 Jfeスチール株式会社 Energy supply/demand operation guidance device and method for energy supply/demand operation in ironworks
KR20220132576A (en) 2020-04-15 2022-09-30 제이에프이 스틸 가부시키가이샤 Energy supply and demand operation guidance device and method of energy supply and demand operation in steel mills

Similar Documents

Publication Publication Date Title
WO2017188083A1 (en) Operation planning device and method for microgrid, and regional energy management device and energy management device used by operation planning device for microgrid
JPS63259004A (en) Method for operating energy in iron making plant
JP3498786B2 (en) Power consumption prediction method
Daryanian et al. An experiment in real time pricing for control of electric thermal storage systems
Haendel et al. Economic optima for buffers in direct reduction steelmaking under increasing shares of renewable hydrogen
JP6782916B2 (en) Energy system management equipment, energy system management methods, and energy systems
KR102231347B1 (en) Apparatus and method for controlling power generation output based on prediction of supply of by-product gas
EP4270276A1 (en) Energy operation assistance device, energy operation assistance method, and steel mill operation method
JP2002281667A (en) Power-supplying system
JPH0844403A (en) Method for adjusting energy demand and supply
JP2021005311A (en) Energy operation supporting device and method for supporting operation of energy
JP3550931B2 (en) Gas supply amount control method
JPH02254110A (en) Method for controlling optimum usage of energy in iron mill
Lee et al. Optimization of iron and steel manufacturing plant considering electricity price tariff and electric arc furnace control
Lorestani et al. Modeling and scheduling of an integrated thermal and electrical building microgrid
JPH0522157B2 (en)
Pelser Development of an integrated cost model for steel production planning
Zeelie et al. Reduction in blast furnace operational costs through optimisation of auxiliary systems
Ludick Developing a by-product gas controller to improve on-site electricity generation for iron and steel manufacturing
Harjunkoski Process as Energy Storage
Van Niekerk Improving energy cost performance of steel production mills
Zhao et al. Optimization and Management of On-Site Power Plants Under Time-of-Use Power Price: A Case Study in Steel Mill
JPH0996413A (en) Fuel gas supply control method of ironworks
TW202225880A (en) Energy operation assistance device, energy operation assistance method, and steel mill operation method with which the objective function may asymptotically approach the optimum value to satisfy the constraint condition
Bryant et al. Energy control in an integrated steelworks