JPS63258039A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63258039A
JPS63258039A JP9265687A JP9265687A JPS63258039A JP S63258039 A JPS63258039 A JP S63258039A JP 9265687 A JP9265687 A JP 9265687A JP 9265687 A JP9265687 A JP 9265687A JP S63258039 A JPS63258039 A JP S63258039A
Authority
JP
Japan
Prior art keywords
film
substrate
recess
insulating film
silicate glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9265687A
Other languages
Japanese (ja)
Inventor
Masafumi Shinpo
新保 雅文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP9265687A priority Critical patent/JPS63258039A/en
Publication of JPS63258039A publication Critical patent/JPS63258039A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To make it possible to provide a flat-surfaced deep isolation region with small stress by a method wherein the recessed part formed on a substrate is filled up by reflowing low melting point silicate glass, and after unnecessary silicate glass has been removed, a cap insulating film is formed on the silicate glass left in the recessed part. CONSTITUTION:A multilayered film, consisting of a nitride film 2 and a polycrystalline semiconductor film 3, is deposited on a semiconductor substrate 1, said multilayered film is selectively etched into the prescribed width, and at the same time, a recessed part 10 of the prescribed width and depth is provided in the substrate 1. Then, a thermally oxided film 51 is formed on the sidewall and the bottom face of the recessed part 10, a low melting point silicate glass 6 is deposited in one half of the prescribed width above-mentioned or in the prescribed depth above-mentioned or more. Then, the silicate glass 6 on the multilayered film is removed by performing overall etching on the silicate glass 6, and at the same time, the silicate glass is left in the recessed part 10 in the thickness less than the depth of the recessed part 10. Then, an insulating film 7 is deposited, and after the upper surface of the insulating film 7 in the recessed part 10 has been brought in the same level as the surface of the substrate 1 or more in thickness, a surface flattening film is deposited thereon, and an etching back is performed until the polycrystalline film 3 is exposed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置特に集積回路の分離領域の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing isolation regions of semiconductor devices, particularly integrated circuits.

〔発明の概要〕[Summary of the invention]

本発明による分1jill fil域の製造方法は、P
o1y/SiN多N膜をマスクにして基板に凹部を形成
し、この凹部をPSG、 BPSG等のシリゲートグラ
スをリフローさせて埋め、不要なシリゲートグラスを除
去した後さらに凹部内に残9たシリゲートグラス上にキ
ャップ絶縁膜を形成するものである。深い分離領域が小
さな応力でしかも平坦な表面をもって設けることができ
る。
The method of manufacturing a minute 1 jill fil area according to the present invention is as follows:
A recess is formed in the substrate using the o1y/SiN polyN film as a mask, and the recess is filled with siligate glass such as PSG or BPSG. A cap insulating film is formed on silicate glass. Deep isolation regions can be provided with low stresses and yet with flat surfaces.

〔従来の技術〕[Conventional technology]

従来の分#領域は選択酸化を用いたいわゆるLOGOS
(Loaf 0Xidation or Si)が専ら
用いられていた。しかしLOGOSはバーズビークの存
在によって分離領域の微細化に制限があると共に、基板
表面に選択酸化膜の厚みの半分程度の凸部が生し、やは
り微細加工上問題があった。一方、最近深い溝堀を行う
トレンチ分離があるが、幅の狭い分離には有利だが逆に
幅の広い分離には不利という問題があった。
The conventional #region is the so-called LOGOS using selective oxidation.
(Loaf Oxidation or Si) was exclusively used. However, LOGOS has limitations in miniaturization of the isolation region due to the presence of bird's beaks, and also has protrusions on the substrate surface that are about half the thickness of the selective oxide film, which also poses problems in terms of microfabrication. On the other hand, recently there has been a trench isolation method in which deep grooves are dug, but this method is advantageous for narrow isolations but disadvantageous for wide isolations.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は任意の分離幅に適用でき、表面がほぼ平坦な分
離領域の製造方法を提供するものである。
The present invention provides a method for manufacturing a separation region that can be applied to any separation width and has a substantially flat surface.

〔問題点を解決するための手段〕[Means for solving problems]

本発明による分MSN域の製造方法は、基板上に少なく
ともPo1y Si/SiN多層膜を堆積する第1工程
と、多NIIQを所定の幅に選択エッチすると共に基板
内に所定の深さに凹部を設ける第2工程と、凹部の側壁
と底面に熱酸化膜を形成する第3工程と、例えばPSG
を凹部の幅の半分もしくは凹部の深さ以上の厚みで堆積
し、熱処理によりpsc リフローさせる第4工程と、
PSG全面エッチして多層膜上の不要なPSGを除去す
ると共に凹部の深さ以下の厚みに凹部内にPSGを残す
第5工程と、絶縁膜を堆積し前記凹部内の前記絶縁膜の
上面が基板表面と同一面となる以上の厚みにする第6工
程と、表面平坦化膜を堆積し、少なくとも前記Po1y
 Si膜が露出するまでエッチバンクを行う第7工程と
、Po1y Si/SiNを除去して基板表面を露出す
る第8工程とからなる。凹部の底面の基板内にチャンネ
ルカットfiI域を第2または第3工程の後形成できる
。また絶縁膜と表面平坦化膜をSOGなどの塗布絶縁膜
で兼ねることもできる。
The manufacturing method of the minute MSN region according to the present invention includes a first step of depositing at least a PolySi/SiN multilayer film on a substrate, selectively etching the multilayer film to a predetermined width, and forming a recess to a predetermined depth in the substrate. A second step of forming a thermal oxide film on the side walls and bottom of the recess, a third step of forming a thermal oxide film on the side walls and bottom of the recess, and
A fourth step of depositing the material to a thickness equal to or more than half the width of the recess or the depth of the recess, and reflowing the psc by heat treatment;
A fifth step of etching the entire surface of the PSG to remove unnecessary PSG on the multilayer film and leaving the PSG in the recess to a thickness less than the depth of the recess, and depositing an insulating film so that the upper surface of the insulating film in the recess is a sixth step of making the thickness at least flush with the substrate surface, depositing a surface flattening film, and depositing at least the poly
The process consists of a seventh step in which an etch bank is performed until the Si film is exposed, and an eighth step in which the polySi/SiN is removed to expose the substrate surface. A channel cut fiI region can be formed in the substrate at the bottom of the recess after the second or third step. Further, a coated insulating film such as SOG can also serve as the insulating film and the surface flattening film.

〔作用〕[Effect]

第4工程のPSGのりフローで凹部が埋められると共に
表面はほぼ平坦となる。第5工程でPSGをエッチバン
クすれば多層膜上のPSGは除去でき、凹部内にPSG
を残すことができる。同様に第7工程でも絶縁膜を凹部
内に残すことが可能となる。
In the fourth step, the PSG glue flow fills the recesses and makes the surface almost flat. If the PSG is etched in the fifth step, the PSG on the multilayer film can be removed, and the PSG can be etched into the recess.
can be left behind. Similarly, in the seventh step, it is possible to leave the insulating film in the recess.

リフロー絶縁膜としてPSGを例にしているが、BSG
PSG is used as an example of a reflow insulating film, but BSG
.

BPSG、^aSGなどの低融点シリゲートグラスが使
える。これらのシリゲートグラスからの不純物の基板内
へのオートドープの防止は凹部底面は熱酸化膜、凹部上
面は絶縁膜によってなされる。
Low melting point silicate glasses such as BPSG and ^aSG can be used. Autodoping of impurities from these siligate glasses into the substrate is prevented by a thermal oxide film on the bottom surface of the recess and an insulating film on the upper surface of the recess.

〔実施例〕〔Example〕

以下に図面を用いて本発明を詳述する。 The present invention will be explained in detail below using the drawings.

(11第1実施例〔第1図+al〜(h)〕第1図(M
l〜(hlには本発明の第1実施例の製造方法が分M’
611域の工程断面図として示される。第1図(alは
、例えばn型s+5板l上に下層から窒化膜(SiN)
2.多結晶Si膜(poly Si)3からなる多N膜
を設けた断面である。 poly Si3. SiN2
はそれぞれ例えば0.3μm、0.1.unである。第
1図fblはマスク工程でレジスト4を分離9I域の幅
に開孔を設け、このレジスト4をマスクにpoly3/
SiN2多層膜をエッチしさらに続いて基板lに凹部1
0を設けた断面図である。この一連の工程は反応性イオ
ンエッチ(RIB)等の異方性エッチで行える0例えば
凹部10の幅は1.5μm、深さは1μmである。必要
により凹部10の底部にはイオン注入でp型頭域11が
形成される。第1図(C)はレジスト4を除去後、凹部
lOの側壁と底面に熱酸化11151を形成した状態で
、同時にpoly Si3上にも酸化膜53が成長する
。酸化膜51の厚みは0,2μm以上あれば充分である
(11 First embodiment [Fig. 1 + al to (h)] Fig. 1 (M
l~(hl is the manufacturing method of the first embodiment of the present invention. M'
It is shown as a process cross-sectional view of the 611 area. Figure 1 (Al is, for example, a nitride film (SiN) on an n-type S+5 plate l from the bottom layer.
2. This is a cross section in which a polyN film made of a polycrystalline Si film (polySi) 3 is provided. polySi3. SiN2
are, for example, 0.3 μm and 0.1 μm, respectively. It is un. In Fig. 1 fbl, an opening is made in the resist 4 in the width of the separation 9I region in a mask process, and this resist 4 is used as a mask to form poly3/
After etching the SiN2 multilayer film, a recess 1 is formed in the substrate 1.
FIG. This series of steps can be performed by anisotropic etching such as reactive ion etching (RIB). For example, the recess 10 has a width of 1.5 μm and a depth of 1 μm. If necessary, a p-type head region 11 is formed at the bottom of the recess 10 by ion implantation. In FIG. 1C, after the resist 4 is removed, thermal oxidation 11151 is formed on the sidewalls and bottom of the recessed portion 1O, and at the same time, an oxide film 53 is grown on the polySi3. It is sufficient that the thickness of the oxide film 51 is 0.2 μm or more.

第1図(dlは、シリゲートグラスとしてBPSG 6
を堆積した断面で、第1図師)はリフローした状態を示
す。BPSG 6の厚みは凹部10が埋まる程度でこの
例では幅の半分(0,8μm)以上である。幅が深さの
2倍以上のときはBr’SG 6は潔さ以上に堆積する
Figure 1 (dl is BPSG 6 as silicate glass)
Figure 1 shows the reflowed state. The thickness of the BPSG 6 is enough to fill the recess 10, and in this example, it is more than half the width (0.8 μm). When the width is more than twice the depth, Br'SG 6 is deposited more than the thickness.

リフローは900℃以上の温度でなされ、BPSG 6
の表面は充分平坦になる。第1図(「)はBPSG 6
を全面エッチバックして凹部10にBPSG 6を残し
た状態を示す。エッチバックはプラズマエッチやIII
E等でなされ、残されたBPSG 6の厚みは凹部1o
の深さ以下(この例では1.0μm以下)に選ばれる。
Reflow is done at a temperature of 900℃ or higher, and BPSG 6
surface becomes sufficiently flat. Figure 1 (') is BPSG 6
The state is shown in which BPSG 6 is left in the recess 10 by etching back the entire surface. Etch back is plasma etch or III
E etc., and the thickness of the remaining BPSG 6 is the recess 1o.
(in this example, 1.0 μm or less).

第1図(glはSiO□などの絶縁膜7をCVD等で堆
積した状態である。絶縁膜7の厚みは凹部10内の絶縁
膜7の上面が基板1の表面の高さ以上になり、BPSG
 6からの不純物をマスクできる程度に厚いことが必要
で、この例では0.2μm以上である。この後、レジス
ト等の表面平坦化膜を堆積し、表面平坦化膜と絶縁膜7
をほぼ等しい速度でエッチバックした状態が第1図+h
lである。このエッチバックは少なくともpoly2が
露出するまでなされ、この例では5il12が露出する
まで行った。この後は、SiN2を除去して基板lを露
出し、例えばゲート酸化膜を形成する。
FIG. 1 (gl is a state in which an insulating film 7 such as SiO□ is deposited by CVD or the like. The thickness of the insulating film 7 is such that the upper surface of the insulating film 7 in the recess 10 is higher than the height of the surface of the substrate 1, BPSG
It needs to be thick enough to mask impurities from 6, and in this example it is 0.2 μm or more. After this, a surface flattening film such as a resist is deposited, and the surface flattening film and the insulating film 7 are deposited.
Figure 1 +h shows the state in which the
It is l. This etchback was performed until at least poly2 was exposed, and in this example, 5il12 was exposed. After this, SiN2 is removed to expose the substrate 1, and a gate oxide film, for example, is formed.

p型?■域11の形成は第1図(C1の工程の後、酸化
膜51を通してイオンン土人することもできる。またこ
の例ではウェルがない場合を説明したが、第1図tal
前に例えばPウェルを設ければよい。
P-type? ■Formation of region 11, as shown in FIG.
For example, a P-well may be provided in front.

(2)第2実施例〔第2図(al〜(d)〕第2図(a
)〜(dlには本発明の第2実施例を示す。
(2) Second embodiment [Fig. 2 (al to (d))] Fig. 2 (a
) to (dl show the second embodiment of the present invention.

第2図(alと(blは第1図fblと(C1に対応す
るので説明を省く。第2図(C)はBPSG 6の堆積
・リフローおよびエッチバンク後、絶縁膜7として表面
平坦化膜も兼ねる5OG(spin on glass
)を塗布した断面である。第2図(dlはSoGをエッ
チバンクした状態を示し、エッチバンクはpoly3が
露出するまで行っている。この後、poly3.SiN
2は容易に除去でき基板1を露出できる。但し、SiN
2エンチはジャストエッチするか基板1表面露出後再度
絶縁膜7エツチしないと絶縁膜7とSiN2のオーバー
ラツプ分が絶縁v7のオーバーハングとして残ってしま
う。
Figure 2 (al and (bl) correspond to fbl and (C1 in Figure 1, so their explanations are omitted. 5OG (spin on glass)
) is applied. Figure 2 (dl shows the state where SoG was etched and banked, and the etch bank was performed until poly3 was exposed. After this, poly3.SiN
2 can be easily removed and the substrate 1 can be exposed. However, SiN
If the second etch is just etched or the insulating film 7 is not etched again after the surface of the substrate 1 is exposed, the overlap between the insulating film 7 and SiN2 will remain as an overhang of the insulating film v7.

(3)第3実施例〔第3図(al〜(d)〕第3図(a
l〜(dlには本発明の第3実施例を凹部10の一部を
拡大した断面図で示す。第3図(δ)は第1図(blに
対応する。但しSiN2の下に薄い酸化膜21を敷いて
いる。第3図(blはSiN2のみをリン酸等でサイド
エッチしてpoly3端部および凹部10側壁より内側
にSiN2の端部を位置させた状態を示す。第3図[C
1は熱酸化した状態で基板1上に成長した酸化IIり5
1とpoly3の下面に成長した酸化膜53でSiN2
端部が被われた状態を示す。第3図fd+は第1図(h
iまたは第2図fdlに対応する断面である。薄い酸化
膜21の有無にかかわらずこの工程によれば絶縁膜7の
エッチバンク後、poly3およびSiN2を除去して
も露出する基板1表面と酸化膜51の填界は逆テーバ状
にならない。即ち上記の第2図fdl後処置上の問題点
を解決できる。
(3) Third embodiment [Fig. 3 (al to (d)] Fig. 3 (a)
Figure 3 (δ) corresponds to Figure 1 (bl). A film 21 is laid down. Fig. 3 (bl shows a state in which only SiN2 is side-etched with phosphoric acid, etc., and the end of SiN2 is positioned inside the poly3 end and the side wall of the recess 10. C
1 is oxide II grown on the substrate 1 in a thermally oxidized state 5
The oxide film 53 grown on the bottom surface of poly3 and SiN2
The end is shown covered. Fig. 3 fd+ is Fig. 1 (h
This is a cross section corresponding to i or fdl in FIG. Regardless of the presence or absence of the thin oxide film 21, according to this step, even if poly3 and SiN2 are removed after the insulating film 7 is etched, the filling area between the exposed surface of the substrate 1 and the oxide film 51 will not become inverted tapered. That is, the above-mentioned problems regarding post-treatment of the fdl shown in FIG. 2 can be solved.

〔発明の効果〕〔Effect of the invention〕

以上本発明を詳述したが、凹部を埋めるシリゲートグラ
スは一般的にSiとの間の応力が小さいので、分離領域
形成による欠陥発生を抑えられる。
The present invention has been described above in detail, but since the silicate glass that fills the recess generally has low stress with Si, it is possible to suppress the occurrence of defects due to the formation of the isolation region.

また、種々の幅を持ったICの製造においてもシリゲー
トグラスの厚さを凹部の深さ以上にすれば平坦な表面の
分離領域が形成できる。本発明はMOS。
Furthermore, even in the manufacture of ICs having various widths, isolation regions with flat surfaces can be formed by making the thickness of the siligate glass greater than the depth of the recess. The present invention is a MOS.

CMO5だけでな(バイポーラICの分離にも適用でき
るし、Si以外の半導体ICにも応用できるものである
It can be applied not only to CMO5 (bipolar IC separation), but also to semiconductor ICs other than Si.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図fa)〜fhlは本発明の第1実施例の分離領域
形成方法による工程順断面図、第2図(al〜(dlは
本発明の第2実施例による工程+11rl断面図、第3
図+a)〜fdlは本発明の第3実施例の拡大工程断面
図である。 1・・・・・・Si基板 2・・・・・・SiN膜 3・・・・・・poly Si膜 4・・・・・・レジスト 6・・・・・・シリゲートグラス 7・・・・・・絶縁膜 lO・・・・・・凹部 11・・・・・・p層領域 21.51.53・・・酸化膜 以上 本発明^勇I(先例14る敦垣7J 、A?工札啼内面
図87 図
1 fa) to fhl are step-by-step sectional views according to the isolation region forming method according to the first embodiment of the present invention, and FIG.
Figures +a) to fdl are enlarged cross-sectional views of the third embodiment of the present invention. 1...Si substrate 2...SiN film 3...poly Si film 4...resist 6...Siligate glass 7... ... Insulating film lO ... Concavity 11 ... P layer region 21.51.53 ... Oxide film or more Present invention ^Yu I (precedent 14) Atsugaki 7J, A? Sappaku inner view 87

Claims (4)

【特許請求の範囲】[Claims] (1)半導体基板上に少なくとも下側から窒化膜と多結
晶半導体膜から成る多層膜を順次堆積する第1工程と、 マスク工程によって前記多層膜を所定の幅に選択エッチ
すると共に、前記基板内に前記所定の幅で所定の深さに
凹部を設ける第2工程と、 少なくとも前記凹部の側壁と底面に熱酸化膜を形成する
第3工程と、 低融点シリゲートグラスを前記所定の幅の半分もしくは
前記所定の深さ以上の厚みで堆積し、熱処理により前記
シリゲートグラスをリフローさせる第4工程と、 前記シリゲートグラスを全面エッチして前記多層膜上の
前記シリゲートグラスを除去すると共に前記凹部の深さ
以下の厚みに前記凹部内に残す第5工程と、 絶縁膜を堆積し、前記凹部内の前記絶縁膜の上面が少な
くとも前記基板表面と同一面となる以上の厚みにする第
6工程と、 表面平坦化膜を堆積し、少なくとも前記多結晶膜が露出
するまでエッチバックを行う第7工程と、前記多結晶膜
および窒化膜を除去して前記基板表面を露出する第8工
程とから、なる半導体装置の製造方法。
(1) A first step of sequentially depositing a multilayer film consisting of a nitride film and a polycrystalline semiconductor film on a semiconductor substrate from at least the bottom side, selectively etching the multilayer film to a predetermined width using a mask step, and etching the multilayer film to a predetermined width within the substrate. a second step of forming a recess with the predetermined width and a predetermined depth; a third step of forming a thermal oxide film on at least the side walls and bottom of the recess; and a half of the predetermined width of the low melting point silicate glass. Alternatively, a fourth step of depositing the siligate glass to a thickness equal to or greater than the predetermined depth and reflowing the siligate glass by heat treatment; etching the entire surface of the siligate glass to remove the siligate glass on the multilayer film; a fifth step of leaving the insulating film in the recess at a thickness equal to or less than the depth of the recess; and a sixth step of depositing an insulating film so that the upper surface of the insulating film in the recess is at least flush with the surface of the substrate. a seventh step of depositing a surface flattening film and etching back until at least the polycrystalline film is exposed; and an eighth step of removing the polycrystalline film and the nitride film to expose the substrate surface. A method for manufacturing a semiconductor device.
(2)前記第2工程もしくは第3工程の後、前記凹部の
底面の前記基板内に不純物を選択的に添加する工程を含
むことを特徴とする特許請求の範囲第1項記載の半導体
装置の製造方法。
(2) The semiconductor device according to claim 1, further comprising the step of selectively adding impurities into the substrate at the bottom of the recess after the second step or the third step. Production method.
(3)前記絶縁膜と前記表面平坦化膜を塗布絶縁膜で兼
ねることを特徴とする特許請求の範囲第1項または第2
項記載の半導体装置の製造方法。
(3) Claim 1 or 2, characterized in that a coated insulating film serves as the insulating film and the surface flattening film.
A method for manufacturing a semiconductor device according to section 1.
(4)前記第2工程において、前記窒化膜の端部を前記
多結晶膜および前記凹部の側壁より内側に位置させ、前
記第3工程において前記基板上の熱酸化膜と前記多結晶
膜の下側の熱酸化膜が連結するごとくしたことを特徴と
する特許請求の範囲第1項から第3項いずれか記載の半
導体装置の製造方法。
(4) In the second step, the end portion of the nitride film is located inside the polycrystalline film and the sidewall of the recess, and in the third step, the end portion of the nitride film is located under the thermal oxide film on the substrate and the polycrystalline film. 4. A method of manufacturing a semiconductor device according to claim 1, wherein the thermal oxide films on the sides are connected to each other.
JP9265687A 1987-04-15 1987-04-15 Manufacture of semiconductor device Pending JPS63258039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9265687A JPS63258039A (en) 1987-04-15 1987-04-15 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9265687A JPS63258039A (en) 1987-04-15 1987-04-15 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63258039A true JPS63258039A (en) 1988-10-25

Family

ID=14060513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9265687A Pending JPS63258039A (en) 1987-04-15 1987-04-15 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63258039A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745694A (en) * 1993-07-26 1995-02-14 Nec Corp Semiconductor device and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745694A (en) * 1993-07-26 1995-02-14 Nec Corp Semiconductor device and manufacture thereof

Similar Documents

Publication Publication Date Title
US6127241A (en) Trench isolation structure and fabrication method thereof
EP0062722B1 (en) Method of manufacturing a semiconductor device comprising an insulating film for component isolation
US6461934B2 (en) Method of manufacturing semiconductor device having trench type element isolation regions
US5387539A (en) Method of manufacturing trench isolation
KR100227766B1 (en) Semiconductor device and the manufacturing method thereof
JPH02156552A (en) Semiconductor device and manufacture thereof
JPH02214140A (en) Method of forming trench which has round bottom at silicon anlistrate for forming trench isolation of micture
JP2001135718A (en) Method of manufacturing trench separating structure
US6376893B1 (en) Trench isolation structure and fabrication method thereof
US5371036A (en) Locos technology with narrow silicon trench
US6544861B2 (en) Method for forming isolation trench
US6251750B1 (en) Method for manufacturing shallow trench isolation
JP2001102439A (en) Manufacturing method of semiconductor device
JPS6355780B2 (en)
JPS63258039A (en) Manufacture of semiconductor device
JPH04217326A (en) Semiconductor device and fabrication thereof
USRE34400E (en) Method for fabricating isolation region in semiconductor devices
US6444539B1 (en) Method for producing a shallow trench isolation filled with thermal oxide
JP3021850B2 (en) Method for manufacturing semiconductor device
JPH0521592A (en) Manufacture of semiconductor device and semiconductor device
KR0140734B1 (en) Method of semiconductor device
KR20000015466A (en) Trench isolation method
JPS63260126A (en) Manufacture of semiconductor device
KR100344771B1 (en) Method of isolating semiconductor devices
US20010026993A1 (en) Method of fabricating an isolation structure in an integrated circuit