JPS63257529A - Electronic hemomanometer - Google Patents

Electronic hemomanometer

Info

Publication number
JPS63257529A
JPS63257529A JP62092677A JP9267787A JPS63257529A JP S63257529 A JPS63257529 A JP S63257529A JP 62092677 A JP62092677 A JP 62092677A JP 9267787 A JP9267787 A JP 9267787A JP S63257529 A JPS63257529 A JP S63257529A
Authority
JP
Japan
Prior art keywords
value
pressure
blood pressure
pulse wave
collar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62092677A
Other languages
Japanese (ja)
Other versions
JPH088908B2 (en
Inventor
尾浜 昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Tateisi Electronics Co filed Critical Omron Tateisi Electronics Co
Priority to JP62092677A priority Critical patent/JPH088908B2/en
Publication of JPS63257529A publication Critical patent/JPS63257529A/en
Publication of JPH088908B2 publication Critical patent/JPH088908B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、電子血圧計であって、カラ加圧不足のため
に最高血圧値が得られない場合において、適正な再加圧
値を算出してカラを再加圧する電子血圧計に関する。
Detailed Description of the Invention (a) Industrial Application Field The present invention is an electronic sphygmomanometer, which is capable of determining an appropriate repressurization value when the systolic blood pressure value cannot be obtained due to insufficient pressure. This invention relates to an electronic blood pressure monitor that calculates and repressurizes the body.

(ロ)従来の技術 従来の電子血圧計は、通常、カラを加圧するための加圧
設定値が設定されており、この加圧設定値に基づいて加
圧ポンプが作動し、カラを加圧、つまり被測定者の上腕
動脈を阻血するように設定されている。
(B) Conventional technology Conventional electronic blood pressure monitors usually have a pressure setting value for pressurizing the collar, and a pressure pump operates based on this pressure setting value to pressurize the collar. In other words, it is set so as to isolate blood from the brachial artery of the subject.

ところが、動脈阻血に至る圧迫圧は、被測定者によって
まちまちであり、予め設定された加圧設定値までカラが
加圧された場合であっても、被測定者によっては加圧不
足が発生する場合があり、精確な血圧測定を実行し難い
不利がある。
However, the compression pressure that leads to arterial ischemia varies depending on the subject, and even if the collar is pressurized to the preset pressure setting value, insufficient pressure may occur depending on the subject. In some cases, there is a disadvantage that it is difficult to perform accurate blood pressure measurement.

このため、現在の電子血圧計はカラ加圧不足が生じ、血
圧値(最高血圧値)を決定し得ない場合には、当初の加
圧設定値に対し一定圧(例えば30mmt1g)を加算
した合算値を再加圧設定値とし、この再加圧設定値に基
づいて、カラの再加圧を実行するように設定されている
For this reason, with current electronic blood pressure monitors, if insufficient pressure occurs and the blood pressure value (systolic blood pressure value) cannot be determined, the total pressure is calculated by adding a constant pressure (for example, 30mmt1g) to the initial pressure setting value. The value is set as a repressurization set value, and the empty repressurization is set to be executed based on this repressurization set value.

(ハ)発明が解決しようとする問題点 従来の電子血圧計が採用する再加圧設定値算出手段は、
一定の加圧設定値に対し、一定圧(例えば30mml1
g)を加算した画一的な合算値を再加圧゛設定値として
得る方式である。
(c) Problems to be solved by the invention The repressurization setting value calculation means adopted by the conventional electronic blood pressure monitor is as follows:
For a constant pressurization setting value, a constant pressure (e.g. 30 mml1
In this method, a uniform total value obtained by adding g) is obtained as the repressurization setting value.

このため、この一定画一的な再加圧設定値によりカラを
加圧した場合、被測定者によっては動脈圧迫が強すぎ、
欝血を生じさせる虞れがあり、また逆に被測定者によっ
ては、依然として加圧不足であるため、精確な血圧測定
が実行し得す、再再加圧を必要とする等の不利があった
For this reason, if the collar is pressurized using this constant and uniform re-pressurization setting value, the arterial compression may be too strong for some subjects.
There is a risk of causing congestion, and conversely, depending on the person being measured, the pressure may still be insufficient, making it difficult to accurately measure blood pressure. Ta.

この発明は、以上のような問題点を解消させ、カラ加圧
不足が発生した場合に、被測定者の最高血圧値に対応し
た再加圧値を算出し、適正な加圧値に基づき精確な血圧
測定を実行し得る電子血圧計を提供することを目的とす
る。
This invention solves the above-mentioned problems and calculates a re-pressurization value corresponding to the subject's systolic blood pressure value when insufficient pressurization occurs, and accurately calculates the re-pressurization value based on the appropriate pressurization value. An object of the present invention is to provide an electronic blood pressure monitor that can perform accurate blood pressure measurement.

(ニ)問題点を解決するための手段及び作用この目的を
達成させるために、この発明の電子血圧計では、次のよ
うな構成している。
(d) Means and operation for solving the problems In order to achieve this object, the electronic blood pressure monitor of the present invention has the following configuration.

電子血圧計は、カラと、カラを加圧設定値まで加圧する
加圧手段と、カラ内圧力を減圧する減圧手段と、前記カ
ラ内の流体圧を検出する圧力検出手段と、この圧力検出
手段の出力信号中に含まれる脈波成分を検出する脈波成
分検出手段と、この脈波成分検出手段で検出された脈波
成分より脈波振幅値を算出する脈波振幅値算出手段と、
この脈波振幅値算出手段の出力信号及び前記圧力検出手
段の出力信号に基づいて最高血圧値及び最低血圧値を決
定する血圧値決定手段とから成る電子血圧計であって、
前記カラ加圧手段により加圧されたカラの加圧不足を検
出し、前記脈波振幅値算出手段により得られた最大脈波
振幅値と上記血圧値決定手段により得られた最低血圧値
とから、最高血圧値を予測し、この最高血圧値に所定圧
を加算し、この加算値を再加圧設定値とする再加圧設定
値算出手段を備えて構成されている。
The electronic blood pressure monitor includes a collar, a pressurizing means for pressurizing the collar to a pressure setting value, a pressure reducing means for reducing the pressure inside the collar, a pressure detecting means for detecting fluid pressure in the collar, and this pressure detecting means. a pulse wave component detection means for detecting a pulse wave component included in the output signal of the pulse wave component detection means; a pulse wave amplitude value calculation means for calculating a pulse wave amplitude value from the pulse wave component detected by the pulse wave component detection means;
An electronic blood pressure monitor comprising blood pressure value determining means for determining a systolic blood pressure value and a diastolic blood pressure value based on the output signal of the pulse wave amplitude value calculating means and the output signal of the pressure detecting means,
Insufficient pressurization of the collar pressurized by the collar pressurizing means is detected, and from the maximum pulse wave amplitude value obtained by the pulse wave amplitude value calculating means and the diastolic blood pressure value obtained by the blood pressure value determining means. , a re-pressurization set value calculation means for predicting the systolic blood pressure value, adding a predetermined pressure to the systolic blood pressure value, and using this added value as the re-pressurization set value.

このような構成を有する電子血圧計では、カラを加圧設
定値まで加圧し、微速排気に移行した段階でカラの加圧
不足が検出された時、つまり、最高血圧値に対応する脈
波振幅値(例えば脈波振幅増加過程における最大脈波振
幅値の50%)データが検出されない場合にカラ加圧不
足が検出される。このカラ加圧不足が検出された時、最
大脈波振幅値と最低血圧値とから、最高血圧値を予測す
る。そして、この予測最高血圧値に対し、一定圧(例え
ば30mm)Ig)を加算し、この加算値を再加圧設定
値とする。
In an electronic sphygmomanometer having such a configuration, when insufficient pressurization of the collar is detected after the collar is pressurized to the set pressure value and the transition to slow exhaustion occurs, the pulse wave amplitude corresponding to the systolic blood pressure value is detected. If the value (for example, 50% of the maximum pulse wave amplitude value in the pulse wave amplitude increasing process) data is not detected, insufficient pressurization is detected. When this insufficient pressurization is detected, the systolic blood pressure value is predicted from the maximum pulse wave amplitude value and the diastolic blood pressure value. Then, a constant pressure (for example, 30 mm, Ig) is added to this predicted systolic blood pressure value, and this added value is used as the repressurization setting value.

最高血圧値(SYS)の予測は、 SYS=3XPm−2XD IAで得られる。Prediction of systolic blood pressure (SYS) is SYS=3XPm-2XD obtained by IA.

ここで、Pmは最大脈波振幅値、DIAは脈波振幅の減
少過程における最大脈波振幅値の70%に対応するカラ
圧として求められる最低血圧値である。
Here, Pm is the maximum pulse wave amplitude value, and DIA is the diastolic blood pressure value determined as the empty pressure corresponding to 70% of the maximum pulse wave amplitude value in the process of decreasing the pulse wave amplitude.

従って、カラ加圧不足が発生した場合、被測定者の最高
血圧値を予測することで、被測定者に対応した再加圧設
定値が算出し得、被測定者に対し過不足のない適正な再
加圧設定値が得られる。
Therefore, when insufficient pressurization occurs, by predicting the patient's systolic blood pressure value, it is possible to calculate the re-pressurization setting value corresponding to the patient, and it is possible to calculate the re-pressurization set value corresponding to the patient. A suitable repressurization setting value can be obtained.

(ポ)実施例 第3図は、この発明に係る電子血圧計の空気系と測定回
路の具体的な一実施例を示すブロンク図である。
(P) Embodiment FIG. 3 is a block diagram showing a specific embodiment of the air system and measurement circuit of the electronic blood pressure monitor according to the present invention.

カラ圧には、チューブ2を介して加圧ポンプ(加圧手段
)3、微速排気弁4、急速排気弁5及び圧力センサ(圧
力検出手段)6が接続されている。
A pressurizing pump (pressurizing means) 3, a slow exhaust valve 4, a rapid exhaust valve 5, and a pressure sensor (pressure detecting means) 6 are connected to the empty pressure via a tube 2.

圧力センサ6は、例えば歪ゲージを使用したダイヤフラ
ム式圧力変換器、或いは半導体圧力変換素子等が使用さ
れており、圧力センサ6の出力信号(アナログ量)は、
増幅器7で増幅され、A/D変換器8によりデジタル値
に変換される。CPU(セントラルプロセッシングユニ
ット)9は、A/D変換器7によりデジタル値に変換さ
れた圧力センサ6の出力信号を一定周期で取り込み、カ
ラ圧及びカラ圧信号上に現れる脈波成分を抽出して取込
む。
The pressure sensor 6 uses, for example, a diaphragm pressure transducer using a strain gauge or a semiconductor pressure transducer element, and the output signal (analog amount) of the pressure sensor 6 is as follows.
The signal is amplified by an amplifier 7 and converted into a digital value by an A/D converter 8. The CPU (central processing unit) 9 takes in the output signal of the pressure sensor 6 converted into a digital value by the A/D converter 7 at regular intervals, extracts the empty pressure and the pulse wave component appearing on the empty pressure signal. Take in.

またCPU9は、プログラム及び測定データを記憶する
メモリを内蔵する他、加圧ポンプ3及び急速排気弁4を
ON10 F Fする機能及び脈波振幅値を算出する機
能を有し、カラ圧データと脈波振幅値から血圧を決定す
る機能を備えている。そして、決定された血圧値はCP
U9の指令により出力され、表示器10に表示される。
In addition, the CPU 9 has a built-in memory for storing programs and measurement data, and also has a function to turn on the pressurizing pump 3 and the rapid exhaust valve 4, and a function to calculate the pulse wave amplitude value. It has the ability to determine blood pressure from wave amplitude values. Then, the determined blood pressure value is CP
It is output according to the command from U9 and displayed on the display 10.

更にCPU9には、脈波振幅値よりカラ加圧不足を検出
し、最大脈波振幅値と最低血圧値より最高血圧値を予測
し、且つこの予測最高血圧値に一定圧(30mm11g
)を加算し、この合算値を再加圧設定値として算出する
と共に、この再加圧設定値に基づき、前記加圧ポンプ3
を駆動させる制御機能を備えている。
Furthermore, the CPU 9 detects insufficient pressurization from the pulse wave amplitude value, predicts the systolic blood pressure value from the maximum pulse wave amplitude value and the diastolic blood pressure value, and applies a constant pressure (30 mm 11 g) to the predicted systolic blood pressure value.
), and this total value is calculated as the re-pressurization setting value, and based on this re-pressurization setting value, the pressure pump 3
It has a control function to drive.

最高血圧値の予測は、−1に知られた最大脈波振幅値(
Pm)と、最高血圧値(SYS)及び最低血圧値(DI
A)との相関関係式に基づき算出される。この相関関係
式は、 P m=DIA  +  −(SYS  −DIA) 
 ・ ・ ・ (1)で表され、この(1)式より、 SYS=3XPm−2XDIA  −(2)が得られる
。この(2)式に基づき、最高血圧値ば30mmHg)
を加算し再加圧設定値とする。
The prediction of the systolic blood pressure value is based on the maximum pulse wave amplitude value known to -1 (
Pm), systolic blood pressure value (SYS) and diastolic blood pressure value (DI
It is calculated based on the correlation formula with A). This correlation formula is: P m = DIA + - (SYS - DIA)
・ ・ ・ It is represented by (1), and from this equation (1), SYS=3XPm−2XDIA −(2) is obtained. Based on this formula (2), the systolic blood pressure is 30 mmHg)
is added and used as the repressurization setting value.

第1図は、実施例電子血圧値の具体的な処理動作を示す
フローチャートである。
FIG. 1 is a flowchart showing specific processing operations for electronic blood pressure values according to the embodiment.

被測定者が上腕にカラェを巻付け〔ステップ(以下rS
TJという)1〕、計器のスタートスイッチ11をON
すると測定が開始される(Sr2)。ここで、急速排気
弁5及び微速排気弁4が閉鎖され(Sr3)、加圧ポン
プ3が作動しカラェが加圧設定値まで加圧される(Sr
1)。
The person to be measured wraps Karae around his upper arm [step (hereinafter referred to as rS)]
(referred to as TJ)1], turn on the start switch 11 of the meter.
Then, measurement is started (Sr2). Here, the rapid exhaust valve 5 and the slow exhaust valve 4 are closed (Sr3), the pressurizing pump 3 is activated, and the air is pressurized to the pressurization setting value (Sr3).
1).

Sr1では、カラェが加圧設定値まで加圧されたか否か
を判定している。今、カラェが加圧設定値まで加圧され
たとすると、このSr1の判定がYESとなり、加圧ポ
ンプ3の駆動が停止する(Sr6)。そして、微速排気
弁4が開放しカラェ内圧力が、例えば3118g/se
c程度で微速排気される(Sr7)。この減圧過程にお
いて、サンプリングタイム毎にカラ圧とカラ圧上の脈波
成分が、順次CPU9に取込ホれる(Sr8)。
In Sr1, it is determined whether the collar has been pressurized to the pressurization setting value. Now, assuming that the collar is pressurized to the pressurization setting value, the determination of Sr1 becomes YES, and the driving of the pressurizing pump 3 is stopped (Sr6). Then, the slow exhaust valve 4 opens and the internal pressure increases to, for example, 3118 g/se.
It is exhausted at a slow speed at about c (Sr7). In this pressure reduction process, the empty pressure and the pulse wave component on the empty pressure are sequentially taken into the CPU 9 at each sampling time (Sr8).

Sr1では、カラェの加圧不足を検出している。In Sr1, insufficient pressurization of the collar is detected.

つまり、微速排気の段階当初に得られた脈波振幅値(増
加過程にある脈波振幅値)が、最大脈波振幅値(3、0
flHg程度)より低く、最高血圧値に対応する脈波振
幅値(最大脈波振幅値の高圧側50%)データがあるか
否かを判定している。
In other words, the pulse wave amplitude value obtained at the beginning of the slow exhaust stage (the pulse wave amplitude value in the increasing process) is the maximum pulse wave amplitude value (3, 0
It is determined whether there is data on a pulse wave amplitude value (50% on the high pressure side of the maximum pulse wave amplitude value) that is lower than the systolic blood pressure value (approximately flHg) and corresponds to the systolic blood pressure value.

仮に、当初の加圧設定値が被測定者の阻血に充分な値で
あったとすると、このSr1の判定がYESとなり、通
常の血圧測定に移行する。つまり、最大脈波振幅値(P
m)を抽出しく5T15)、この最大脈波振幅値の高圧
側及び低圧側でそれぞれ最大値(ピーク値Pm)の50
%、70%となる点のカラ圧を最高血圧値(SYS) 
、最低血圧値(DIA)として算出しく5T15及び5
T16)、血圧値を決定した後、急速排気弁5を開放し
く5T1B)、血圧値を表示器10に表示して測定を終
了する(ST19)。
Assuming that the initial pressurization setting value is sufficient for blood ischemia of the subject, the determination of Sr1 will be YES and the routine will proceed to normal blood pressure measurement. In other words, the maximum pulse wave amplitude value (P
5T15) of the maximum value (peak value Pm) on the high pressure side and low pressure side of this maximum pulse wave amplitude value.
%, the pressure at the point of 70% is the systolic blood pressure value (SYS)
, calculated as diastolic blood pressure value (DIA), 5T15 and 5
After determining the blood pressure value (T16), the rapid exhaust valve 5 is opened (5T1B), the blood pressure value is displayed on the display 10, and the measurement is completed (ST19).

ところが、第4図で示すように微速排気の段階当初に得
られた脈波振幅値(脈波振幅の増加段階にある脈波振幅
値)が、最大脈波振幅値(Pa)に接近している場合、
つまり最高血圧値に対応する脈波振幅値を検出し得す、
最高血圧値を決定し得ない場合はカラェの加圧不足であ
るとして、Sr1の判定がYESとなる。ここで、最大
脈波振幅値(Pm)が抽出され(STI O) 、且つ
微速排気の進行に伴い検出される最低血圧値(最大脈波
振幅値の低圧側の70%に対応するカラ圧)を算出する
(STII)。この算出が終了した時点で直ちに第4図
に示すように急速排気弁5を開放して、カラェを急速減
圧する(ST12)。その後、抽出した最大脈波振幅値
と決定された最低血圧値(DIA)に基づき、最高血圧
値を予測した後、この予測最高血圧値より再加圧設定値
を算出する(ST13及び5T14)。
However, as shown in Fig. 4, the pulse wave amplitude value obtained at the beginning of the slow evacuation stage (the pulse wave amplitude value at the pulse wave amplitude increasing stage) approaches the maximum pulse wave amplitude value (Pa). If there is
In other words, the pulse wave amplitude value corresponding to the systolic blood pressure value can be detected.
If the systolic blood pressure value cannot be determined, it is assumed that there is insufficient pressurization, and the determination of Sr1 is YES. Here, the maximum pulse wave amplitude value (Pm) is extracted (STI O), and the diastolic blood pressure value (empty pressure corresponding to 70% of the low pressure side of the maximum pulse wave amplitude value) detected as slow evacuation progresses. Calculate (STII). Immediately after this calculation is completed, the rapid exhaust valve 5 is opened as shown in FIG. 4 to rapidly reduce the pressure in the air (ST12). Thereafter, the systolic blood pressure value is predicted based on the extracted maximum pulse wave amplitude value and the determined diastolic blood pressure value (DIA), and then the re-pressurization set value is calculated from this predicted systolic blood pressure value (ST13 and 5T14).

第2図は、再加圧設定値を算出する具体例を示すフロー
チャートである。再加圧設定値の算出は、まず最高血圧
値の予測作業から開始される(Sr21)、最高血圧値
の予測は、 SYS−3XPm−2XDIA によって求められ、この予測最高血圧値に基づいて再加
圧設定値(Pg)が算出される。再加圧設定値は、 P  s  =SYS +α により求められる。つまり、再加圧設定値は予測最高血
圧値に所定圧(α)、例えば30m11gを加算して算
出される(ST22)。
FIG. 2 is a flowchart showing a specific example of calculating the repressurization setting value. Calculation of the repressurization set value first starts with predicting the systolic blood pressure value (Sr21). The prediction of the systolic blood pressure value is obtained by SYS-3XPm-2XDIA, and repressurization is performed based on this predicted systolic blood pressure value. A pressure set value (Pg) is calculated. The repressurization set value is determined by P s =SYS +α. That is, the repressurization set value is calculated by adding a predetermined pressure (α), for example, 30 m11 g, to the predicted systolic blood pressure value (ST22).

かくして、この再加圧設定値に基づき、再び加圧ポンプ
3が駆動し、第4図で示すようにカラェが再加圧設定値
まで加圧され、従来同様に微速排気段階において血圧測
定が実行される結果、被測定者に対応した最も適正な加
圧状態が得られ、精確な血圧測定が達成される。
In this way, the pressurizing pump 3 is driven again based on this re-pressurization set value, and as shown in FIG. 4, the pressure pump is pressurized to the re-pressurizing set value, and blood pressure measurement is performed in the slow evacuation stage as in the conventional case. As a result, the most appropriate pressurization state corresponding to the subject can be obtained, and accurate blood pressure measurement can be achieved.

(へ)発明の効果 この発明では、以上のように、カラの加圧不足を検出し
た時、最大脈波振幅値と最低血圧値とから最高血圧値を
予測し、この最高血圧値に所定圧を加算して、再加圧設
定値を算出し、この再加圧設定値に基づきカラを再加圧
して血圧測定を実行することとしたから、被測定者に対
応した適正な再加圧設定値が得られ、精確な血圧測定を
実行し得る。
(f) Effects of the Invention In this invention, as described above, when insufficient pressurization of the collar is detected, the systolic blood pressure value is predicted from the maximum pulse wave amplitude value and the diastolic blood pressure value, and a predetermined pressure is set to this systolic blood pressure value. The re-pressurization setting value is calculated by adding the re-pressurization setting value, and the blood pressure measurement is performed by re-pressurizing the collar based on this re-pressurization setting value, so the re-pressurization setting is appropriate for the subject. values can be obtained and accurate blood pressure measurements can be performed.

従って、従来のように、被測定者の最高血圧値の如何に
拘わらず、加圧設定値に画一的な一定圧を加算する再加
圧設定値算出方式により生じていた、被測定者に苦痛を
伴う余分な圧迫を与え、欝血を生じさせる不利が解消さ
れる許かりでなく、再加圧が再び加圧不足となり、何度
も加圧を遺り直す等の不利を克服し得る等、発明目的を
達成した優れた効果を有する。
Therefore, regardless of the patient's systolic blood pressure value, the conventional repressurization setting value calculation method adds a uniform constant pressure to the pressurization setting value. It is possible to overcome the disadvantages of applying painful extra pressure and causing stasis, as well as the disadvantages of re-pressurization resulting in insufficient pressure and repeating pressure over and over again. etc., it has an excellent effect of achieving the purpose of the invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例電子血圧計の具体的な処理動作を示す
フローチャート、第2図は、再加圧設定値を算出する具
体例を詳細に示すフローチャート、第3図は、実施例電
子血圧計の空気系及び回路構成例を示すブロック図、第
4図は、実施例電子血圧計により血圧を測定する状態を
示す説明図である。 1:カラ、   6:圧力検出手段、 9:CPU。 特許出願人       立石電機株式会社(ばか1名
) 第2図 第3図 第4図 力ロah驚j【壜鳳↑1
FIG. 1 is a flowchart showing specific processing operations of the electronic blood pressure monitor according to the embodiment, FIG. 2 is a flowchart showing details of a specific example of calculating the repressurization setting value, and FIG. FIG. 4 is a block diagram showing an example of the air system and circuit configuration of the meter, and is an explanatory diagram showing a state in which blood pressure is measured by the electronic blood pressure monitor of the embodiment. 1: Blank, 6: Pressure detection means, 9: CPU. Patent applicant: Tateishi Electric Co., Ltd. (1 idiot) Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] (1)カラと、カラを加圧設定値まで加圧する加圧手段
と、カラ内圧力を減圧する減圧手段と、前記カラ内の流
体圧を検出する圧力検出手段と、この圧力検出手段の出
力信号中に含まれる脈波成分を検出する脈波成分検出手
段と、この脈波成分検出手段で検出された脈波成分より
脈波振幅値を算出する脈波振幅値算出手段と、この脈波
振幅値算出手段の出力信号及び前記圧力検出手段の出力
信号に基づいて最高血圧値及び最低血圧値を決定する血
圧値決定手段とから成る電子血圧計において、前記加圧
手段により加圧されたカラの加圧不足を検出し、前記脈
波振幅値算出手段により得られた最大脈波振幅値と上記
血圧値決定手段により得られた最低血圧値とから、最高
血圧値を予測し、この最高血圧値に所定圧を加算し、こ
の加算値を再加圧設定値とする再加圧設定値算出手段を
備えたことを特徴とする電子血圧計。
(1) A collar, a pressurizing means for pressurizing the collar to a pressure setting value, a pressure reducing means for reducing the pressure inside the collar, a pressure detecting means for detecting the fluid pressure inside the collar, and an output of this pressure detecting means pulse wave component detection means for detecting a pulse wave component included in the signal; pulse wave amplitude value calculation means for calculating a pulse wave amplitude value from the pulse wave component detected by the pulse wave component detection means; An electronic blood pressure monitor comprising blood pressure value determining means for determining a systolic blood pressure value and a diastolic blood pressure value based on an output signal of an amplitude value calculating means and an output signal of the pressure detecting means, wherein Detecting insufficient pressurization of An electronic sphygmomanometer characterized by comprising a repressurization set value calculation means that adds a predetermined pressure to the value and uses the added value as a repressurization set value.
JP62092677A 1987-04-15 1987-04-15 Electronic blood pressure monitor Expired - Lifetime JPH088908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62092677A JPH088908B2 (en) 1987-04-15 1987-04-15 Electronic blood pressure monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62092677A JPH088908B2 (en) 1987-04-15 1987-04-15 Electronic blood pressure monitor

Publications (2)

Publication Number Publication Date
JPS63257529A true JPS63257529A (en) 1988-10-25
JPH088908B2 JPH088908B2 (en) 1996-01-31

Family

ID=14061116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62092677A Expired - Lifetime JPH088908B2 (en) 1987-04-15 1987-04-15 Electronic blood pressure monitor

Country Status (1)

Country Link
JP (1) JPH088908B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375039A (en) * 1989-08-17 1991-03-29 Terumo Corp Electronic hemadynamometer
JPH0375038A (en) * 1989-08-17 1991-03-29 Terumo Corp Electronic hemadynamometer
JPH0646704U (en) * 1992-12-01 1994-06-28 日本コーリン株式会社 Oscillometric automatic blood pressure measurement device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6116731A (en) * 1984-07-04 1986-01-24 コーリン電子株式会社 Blood pressure measuring apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6116731A (en) * 1984-07-04 1986-01-24 コーリン電子株式会社 Blood pressure measuring apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375039A (en) * 1989-08-17 1991-03-29 Terumo Corp Electronic hemadynamometer
JPH0375038A (en) * 1989-08-17 1991-03-29 Terumo Corp Electronic hemadynamometer
JPH0646704U (en) * 1992-12-01 1994-06-28 日本コーリン株式会社 Oscillometric automatic blood pressure measurement device

Also Published As

Publication number Publication date
JPH088908B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
JP2938231B2 (en) Oscillometric type automatic blood pressure measurement device
JP3587837B2 (en) Arterial stiffness evaluation device
JP3590613B2 (en) Amplitude increase index calculation device and arteriosclerosis test device
JPH0191835A (en) Electronic hemomanometer
JPS63130043A (en) Automatic hemomanometer
US5522395A (en) Electronic sphygmomanometer and method of controlling operation of same
JPH01101967A (en) Electronic hemomanometer
JPH05165Y2 (en)
KR100827816B1 (en) Device and Method for Measuring Blood Pressure
JP2975700B2 (en) Blood pressure monitoring device
JPS63257529A (en) Electronic hemomanometer
JP2001309895A (en) Sphygmomanometer
JP3818853B2 (en) Electronic blood pressure monitor
JP3728486B2 (en) Sphygmomanometer
JP3501492B2 (en) Automatic blood pressure measurement device with blood pressure value estimation function
JPS63171539A (en) Automatic blood pressure measuring apparatus
JP4522561B2 (en) Pressurized blood pressure monitor
JP2506119B2 (en) Electronic blood pressure monitor
JPS6247337A (en) Electronic hemomanometer
JPH04152933A (en) Electronic sphygmomanometer
JPS63194639A (en) Electronic hemomanometer
JPH09201341A (en) Electronic hemodynamometer
JP3002595B2 (en) Blood pressure monitoring device
JP4398553B2 (en) Electronic blood pressure monitor
JP3649464B2 (en) Cardiac function evaluation device