JPS63257281A - Edge emission type light emitting diode - Google Patents

Edge emission type light emitting diode

Info

Publication number
JPS63257281A
JPS63257281A JP62092207A JP9220787A JPS63257281A JP S63257281 A JPS63257281 A JP S63257281A JP 62092207 A JP62092207 A JP 62092207A JP 9220787 A JP9220787 A JP 9220787A JP S63257281 A JPS63257281 A JP S63257281A
Authority
JP
Japan
Prior art keywords
light emitting
layer
type
groove
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62092207A
Other languages
Japanese (ja)
Other versions
JPH077848B2 (en
Inventor
Eseko Yoshinari
吉成 恵聖子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP9220787A priority Critical patent/JPH077848B2/en
Publication of JPS63257281A publication Critical patent/JPS63257281A/en
Publication of JPH077848B2 publication Critical patent/JPH077848B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To prevent the laser oscillation by changing the current density inside a device by a method wherein an LED of the edge light emitting type is constituted to have a current constriction structure where the width of a groove is changed continuously inside the device. CONSTITUTION:An n-type InP current block layer 2 is grown on a p-type InP substrate 1. Then, a groove 8 is made on the n-type InP block layer 2 by a selective etching method by making use of a photoresist film as a mask in such a way that the groove is 9 mum in width on the light emitting side and 0 in width on the reflection side. A p-type InP clad layer 3, a p-type InGaAsP active layer 4, an n-type InP clad layer 5 and an n-type InGaAsP cap layer 6 are grown in succession on the layer. The current density to be injected into the active layer is smaller than the current density inside the groove 8 because an electric current is spread in the transverse direction in the p-type InP clad layer 3; in addition, because the width of the groove 8 becomes gradually narrow from the light emitting side toward the reflection side, the current density to be injected into the active layer in a region near the reflection side becomes considerably small as compared with another region near the light emitting side.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は端面発光型発光ダイオードの構造に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to the structure of an edge-emitting type light emitting diode.

〔従来の技術〕[Conventional technology]

端面発光型発光ダイオード(LED)は光ファイバーと
のカップリング効率が高いという特徴を有しているため
に通信用の光源として有望視されている。従来、この種
のLEDとして結晶内部に電流ブロック層を設けたLE
Dが知られているが、これは第2図に示すようにp型I
nP基板1上に該基板と反対の導電型を有するn型In
P電流ブロック層2を形成したのち、少なくとも基板1
に達する深さの一定の幅の溝7を設け、しかるのち溝内
及び溝外上に基板1と同じ導電型のp型InPクラッド
層3、p型I nGaAsP活性層4、n型InPクラ
ッド層5及びn型I nGaAsPキャップ層6を形成
した構造を有していた。、従って、基板より注入された
電流は溝部を経て、活性層へと注入されてゆくが、素子
長全域で溝幅が同じ幅であるため、活性層へ注入される
電流の電流密度は素子長方向では差はなかった。
Edge-emitting light emitting diodes (LEDs) are considered promising as light sources for communication because they have a characteristic of high coupling efficiency with optical fibers. Conventionally, this type of LED has a current blocking layer provided inside the crystal.
D is known, but this is a p-type I as shown in Figure 2.
n-type In having a conductivity type opposite to that of the substrate is formed on the nP substrate 1.
After forming the P current blocking layer 2, at least the substrate 1 is
A groove 7 of a constant width and a depth of 5 and an n-type InGaAsP cap layer 6 were formed. Therefore, the current injected from the substrate passes through the groove and is injected into the active layer, but since the groove width is the same over the entire device length, the current density of the current injected into the active layer is proportional to the device length. There was no difference in direction.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の端面発光LEDは、電流狭窄のための溝
構造が発光面から反射面までの全面に施しであるので注
入電流が高くなると、素子端面のへき開面が共振器とな
ってレーザ発振を起こししきい値が発生するために、電
流−光出力特性の線形性が失われる。さらに温度による
電流光出力特性曲線の変化が著るしくなるため、LED
用の駆動用回路では、出力の制御が困難になるという欠
点があった。
In the conventional edge-emitting LED described above, the groove structure for current confinement is applied over the entire surface from the light-emitting surface to the reflective surface, so when the injected current becomes high, the cleavage plane on the element end-face becomes a resonator, causing laser oscillation. Due to the generation of the triggering threshold, the linearity of the current-light output characteristics is lost. Furthermore, the change in the current light output characteristic curve due to temperature becomes significant, so the LED
The conventional drive circuit had the disadvantage that it was difficult to control the output.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、電流狭窄のための渦部の溝幅を発光面から反
射面へ向けて連続的に狭めることにより素子内で電流注
入密度を変化させ、発光面側では利得が大きく反射面側
では損失が大きくなる構造とすることにより、高電流密
度に対しても良好なLED特性を示す端面発光型LED
を提供するものである。
The present invention changes the current injection density within the device by continuously narrowing the groove width of the vortex part for current confinement from the light emitting surface toward the reflective surface, so that the gain is large on the light emitting surface side and the gain is large on the reflective surface side. An edge-emitting LED that exhibits good LED characteristics even at high current densities due to its structure that increases loss.
It provides:

〔実施例〕〔Example〕

次に本発明についてI nP−I nGaAsPを半導
体層として用いた場合の実施例を図面を参照して説明す
る。第1図(A’)、(B)、(C)は本発明の第1の
実施例の素子の各主要部の製造工程を示す斜視図である
。まず、第1図(A)に示すようにp型InP基板1上
にn型InP電流ブロック層2を成長させる。次いで第
1図(B)に示すようにn型InPブロック層2上にフ
ォトレジスト膜をマスクとして泗択エツチングで発光側
面での溝幅9μm、反射側面での溝幅Oの同じ深さの溝
8を形成する。その上に第1図(C)に示すように、p
型InPクラッド層3、P型InGaAsP活性層4、
n型InPクラッド層5、およびn型InGaAsPキ
ャップ層6を連続成長する。そして両面に電極を設けて
LEDは完成する。素子長は約300μmである。
Next, an embodiment of the present invention in which InP-InGaAsP is used as a semiconductor layer will be described with reference to the drawings. FIGS. 1A', 1B, and 1C are perspective views showing the manufacturing process of each main part of a device according to a first embodiment of the present invention. First, as shown in FIG. 1(A), an n-type InP current blocking layer 2 is grown on a p-type InP substrate 1. Next, as shown in FIG. 1(B), using a photoresist film as a mask, selective etching is performed on the n-type InP block layer 2 to form grooves with a groove width of 9 μm on the light emitting side and a groove width O on the reflective side. form 8. On top of that, as shown in FIG. 1(C), p
InP type cladding layer 3, P type InGaAsP active layer 4,
An n-type InP cladding layer 5 and an n-type InGaAsP cap layer 6 are successively grown. Then, electrodes are provided on both sides to complete the LED. The element length is approximately 300 μm.

このようにして製作したLEDの電極に電圧を印加して
電流を流すと、電流はp型InP基板1より溝8中を通
ってp型InPクラッド層3、p型I nGaAsP活
性層4、n型InPクラッド層5、n型InGaAsP
キャップ層6へと流れる。ここで活性層4へ注入される
電流密度は、p型InPクラッドN3での電流構法がり
のため、溝中での電流密度よりも小さく、かつ溝幅が発
光面側から反射面側へ向けて、徐々に狭くなっているた
め反射面側付近の領域では活性層への注入電流密度は発
光面側付近の領域に比べかなり小さくなっている。この
結果反射面側付近の領域では、レーザー発振を起こす利
得には達しに<<、逆にレーザー発振を妨げる効果をも
たらす。
When a voltage is applied to the electrodes of the LED manufactured in this way to cause a current to flow, the current passes through the groove 8 from the p-type InP substrate 1 to the p-type InP cladding layer 3, the p-type InGaAsP active layer 4, and the nGaAsP active layer 4. type InP cladding layer 5, n-type InGaAsP
It flows into the cap layer 6. Here, the current density injected into the active layer 4 is smaller than the current density in the groove because of the current structure in the p-type InP cladding N3, and the groove width is from the light emitting surface side to the reflective surface side. , gradually narrows, so the current density injected into the active layer in the region near the reflective surface side is considerably smaller than in the region near the light emitting surface side. As a result, in the region near the reflective surface side, the gain that causes laser oscillation is not reached<<, but on the contrary, it has the effect of hindering laser oscillation.

次に、具体的効果をデータをもとにして説明する。第3
図は、本発明の端面発光型LEDの電流−光出力特性の
実験結果である。破線で示す従来例では約20mAの注
入電流でレーザー発振を起こし、20mA以上の注入電
流に対してはLED特性を得ることができなかった。こ
れに対し実線で示す本発明による端面発光型LEDにお
いてはレーザー発振をおこさず、80mAまで良好なL
ED特性を示した。
Next, specific effects will be explained based on data. Third
The figure shows the experimental results of the current-light output characteristics of the edge-emitting type LED of the present invention. In the conventional example shown by the broken line, laser oscillation occurred with an injection current of about 20 mA, and LED characteristics could not be obtained for an injection current of 20 mA or more. On the other hand, the edge-emitting type LED according to the present invention shown by the solid line does not cause laser oscillation and has a good L of up to 80 mA.
It showed ED characteristics.

次に本発明の第2の実施例として、n型InP電流ブロ
ックN2の上に発光面での溝幅9μm、反射面での溝幅
3μmの溝を形成したLEDを製作した。
Next, as a second example of the present invention, an LED was manufactured in which a groove with a groove width of 9 μm on the light emitting surface and a groove width of 3 μm on the reflective surface was formed on the n-type InP current block N2.

第4図は30mAの注入電流に対するレーザー発振によ
る不良率を調査した結果を示すグラフである。縦軸にレ
ーザー発振による不良率、横軸は発光面における溝幅に
対する反射面の溝幅の割合いを示す、従来のLEDは、
横軸1の場合であり、不良率50%であった。本発明に
よる第2の実施例のLEDは横軸3/9の場合で、その
不良率は12%であり、第1の実施例のLEDは横軸0
の場合で、その不良率は5%であった。第2の実施例に
おいて、電流−光出力特性を調べたところ、第1の実施
例と同様の効果を得た。
FIG. 4 is a graph showing the results of investigating the failure rate due to laser oscillation with respect to an injection current of 30 mA. The vertical axis shows the defect rate due to laser oscillation, and the horizontal axis shows the ratio of the groove width on the reflective surface to the groove width on the light emitting surface.
This is the case of 1 on the horizontal axis, where the defective rate was 50%. The LED of the second embodiment according to the present invention has a defective rate of 12% when the horizontal axis is 3/9, and the LED of the first embodiment has a horizontal axis of 0.
In this case, the defect rate was 5%. In the second example, when the current-light output characteristics were examined, the same effects as in the first example were obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、端面発光型LEDにお
いて素子内に溝幅が連続的に変化する電流狭窄構造を有
することにより、素子内の電流密度に変化をもたせてレ
ーザー発振を防止し、高出力の良好なLEDを高歩留り
で得ることができる効果がある。
As explained above, the present invention prevents laser oscillation by changing the current density within the element by having a current confinement structure in which the groove width changes continuously within the element in an edge-emitting LED. This has the effect of making it possible to obtain high-output, high-quality LEDs at a high yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)〜(C)は本発明の第1の実施例における
端面発光型LEDの製造工程を示す斜視図、第2図(A
)〜(C)は従来の端而発光型LEDの製造工程を示す
斜視図、第3図は本発明の端面発光型LEDの電流−光
出力特性を示す図、第4図は本発明の端面発光型LED
のレーザー発振による不良率と従来の場合の比較図であ
る。 1・・・p型InP基板、2・・・n型InPブロック
層、’l・・pffiInPクラッド層、4 ・p型I
nGaAsP活性層、5・・・n型InPクラッド層、
6・・・n型InGaAsPキャップ層、7,8・・・
溝。 消3V
FIGS. 1(A) to (C) are perspective views showing the manufacturing process of an edge-emitting type LED in the first embodiment of the present invention, and FIG.
) to (C) are perspective views showing the manufacturing process of the conventional edge-emitting type LED, FIG. 3 is a diagram showing the current-light output characteristics of the edge-emitting type LED of the present invention, and FIG. 4 is a diagram showing the edge-emitting type LED of the present invention. Luminous LED
FIG. 3 is a comparison diagram between the defective rate due to laser oscillation and the conventional case. 1...p-type InP substrate, 2...n-type InP block layer, 'l...pffiInP cladding layer, 4 ・p-type I
nGaAsP active layer, 5... n-type InP cladding layer,
6... n-type InGaAsP cap layer, 7, 8...
groove. 3V off

Claims (1)

【特許請求の範囲】[Claims]  半導体基板上に形成された電流ブロック層に基板に達
するストライプ状の溝を形成して注入電流を狭窄する端
面発光型発光ダイオードにおいて、前記溝の溝幅を発光
面側から反射面側へ連続的に狭めて電流注入領域を制限
したことを特徴とする端面発光型発光ダイオード。
In an edge-emitting light emitting diode in which a striped groove reaching the substrate is formed in a current blocking layer formed on a semiconductor substrate to narrow the injection current, the width of the groove is continuous from the light emitting surface side to the reflective surface side. An edge-emitting type light-emitting diode characterized in that a current injection area is restricted by narrowing the area to .
JP9220787A 1987-04-14 1987-04-14 Edge emitting type light emitting diode Expired - Lifetime JPH077848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9220787A JPH077848B2 (en) 1987-04-14 1987-04-14 Edge emitting type light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9220787A JPH077848B2 (en) 1987-04-14 1987-04-14 Edge emitting type light emitting diode

Publications (2)

Publication Number Publication Date
JPS63257281A true JPS63257281A (en) 1988-10-25
JPH077848B2 JPH077848B2 (en) 1995-01-30

Family

ID=14047997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9220787A Expired - Lifetime JPH077848B2 (en) 1987-04-14 1987-04-14 Edge emitting type light emitting diode

Country Status (1)

Country Link
JP (1) JPH077848B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109715256A (en) * 2016-11-30 2019-05-03 株式会社万代 Model toy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56142166A (en) * 1979-10-25 1981-11-06 Shichifuku Shiyokuhin Kk Molding vessel for sealing pack
JPS5777455A (en) * 1980-08-26 1982-05-14 Tetra Pak Dev Cap
JPS59162455U (en) * 1983-04-15 1984-10-31 三笠産業株式会社 bottle closure
JPS59186254U (en) * 1983-05-31 1984-12-11 三笠産業株式会社 bottle lid
JPS60260292A (en) * 1984-06-06 1985-12-23 Matsushita Electric Ind Co Ltd Speaker system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56142166A (en) * 1979-10-25 1981-11-06 Shichifuku Shiyokuhin Kk Molding vessel for sealing pack
JPS5777455A (en) * 1980-08-26 1982-05-14 Tetra Pak Dev Cap
JPS59162455U (en) * 1983-04-15 1984-10-31 三笠産業株式会社 bottle closure
JPS59186254U (en) * 1983-05-31 1984-12-11 三笠産業株式会社 bottle lid
JPS60260292A (en) * 1984-06-06 1985-12-23 Matsushita Electric Ind Co Ltd Speaker system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109715256A (en) * 2016-11-30 2019-05-03 株式会社万代 Model toy

Also Published As

Publication number Publication date
JPH077848B2 (en) 1995-01-30

Similar Documents

Publication Publication Date Title
JPS6343908B2 (en)
JP2015226045A (en) Semiconductor device and method of manufacturing the same
JPS60149183A (en) Distributed feedback type semiconductor laser
JP3264321B2 (en) Waveguide-type semiconductor optical integrated device and method of manufacturing the same
JP6925540B2 (en) Semiconductor optical device
WO2018105015A1 (en) Method for manufacturing semiconductor laser
JPS63257281A (en) Edge emission type light emitting diode
JPH0671121B2 (en) Semiconductor laser device
JPH10326940A (en) Semiconductor light-emitting element
JPS5858784A (en) Distribution feedback type semiconductor laser
JP2006108225A (en) Semiconductor laser
JPS63276289A (en) Semiconductor laser and using method thereof
JPS62137893A (en) Semiconductor laser
JPS6342867B2 (en)
JPS5992588A (en) Mono-axial mode semiconductor laser
JPH09246664A (en) Semiconductor laser
JPH04105381A (en) Semiconductor laser
JPH0824207B2 (en) Semiconductor laser device
JPS63278290A (en) Semiconductor laser and its use
JPH01194377A (en) Semiconductor laser device
JP2747324B2 (en) Semiconductor optical switch
JP2011049222A (en) Nitride semiconductor laser and method of manufacturing the same
JPS63222476A (en) Manufacture of edge light emitting diode
JPS63216388A (en) Edge emission type light emitting diode
JPH0353580A (en) Semiconductor laser element