JPS63257201A - Humidity-sensitive resistor - Google Patents

Humidity-sensitive resistor

Info

Publication number
JPS63257201A
JPS63257201A JP62090935A JP9093587A JPS63257201A JP S63257201 A JPS63257201 A JP S63257201A JP 62090935 A JP62090935 A JP 62090935A JP 9093587 A JP9093587 A JP 9093587A JP S63257201 A JPS63257201 A JP S63257201A
Authority
JP
Japan
Prior art keywords
humidity
sensitive resistor
fap
calcium
moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62090935A
Other languages
Japanese (ja)
Other versions
JPH07118403B2 (en
Inventor
昇 一ノ瀬
祐文 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP62090935A priority Critical patent/JPH07118403B2/en
Priority to US07/180,812 priority patent/US4855118A/en
Publication of JPS63257201A publication Critical patent/JPS63257201A/en
Priority to US07/336,911 priority patent/US4971739A/en
Publication of JPH07118403B2 publication Critical patent/JPH07118403B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は感湿抵抗体に係り、特には、アパタイト系焼
結体からなる感湿抵抗体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a humidity-sensitive resistor, and particularly to a humidity-sensitive resistor made of an apatite-based sintered body.

[従来の技術〕 感湿抵抗体は、雰囲気の相対湿度に対応した抵抗値を示
すものである。このような感湿抵抗体として、水酸アパ
タイトの焼結体が知られている(特開昭59−6034
8号公報、特開昭59−60350号公報参照)。
[Prior Art] A humidity-sensitive resistor exhibits a resistance value corresponding to the relative humidity of the atmosphere. As such a moisture-sensitive resistor, a sintered body of hydroxyapatite is known (Japanese Patent Laid-Open No. 59-6034).
8 and Japanese Patent Application Laid-Open No. 59-60350).

[発明が解決しようとする問題点] しかしながら、水酸アパタイト焼結体は、湿度に対応す
る抵抗値自体が高いので、感度が良好でなく、特に、低
湿度側での湿度測定に問題がある。
[Problems to be solved by the invention] However, since the hydroxyapatite sintered body itself has a high resistance value corresponding to humidity, the sensitivity is not good, and there is a problem in humidity measurement, especially at low humidity. .

また、低湿度側から高湿度側への湿度測定と、高湿度側
から低湿度側への湿度測定とにおける抵抗値にヒステリ
シスが生じ、信頼性が欠けるという難点を有していた。
In addition, hysteresis occurs in the resistance value when measuring humidity from the low humidity side to the high humidity side and from the high humidity side to the low humidity side, resulting in a drawback of lack of reliability.

したがって、この発明の目的は、湿度に対応する抵抗値
が充分に低く、しかもヒステリシスの問題も殆どない感
湿抵抗体を提供することにある。
Therefore, an object of the present invention is to provide a humidity-sensitive resistor which has a sufficiently low resistance value corresponding to humidity and which has almost no problem of hysteresis.

[問題点を解決するための手段] 上記問題点を解決するために、この発明では、感湿抵抗
体としてフッ素アパタイトの焼結体を用いている、この
フッ素アパタイトのカルシウムイオンの一部をイオン半
径が0.95Aを越え1.35A未満である陽イオンの
一種または2種以上で置換すると、抵抗値がさらに低下
し、低湿度側における湿度測定に特に有利となる。
[Means for Solving the Problems] In order to solve the above problems, in the present invention, a sintered body of fluoroapatite is used as a moisture-sensitive resistor, and some of the calcium ions of this fluoroapatite are ionized. When replaced with one or more cations having a radius of more than 0.95 A and less than 1.35 A, the resistance value further decreases, which is particularly advantageous for humidity measurement on the low humidity side.

[実施例] 以下、添付の図面を参照してこの発明をさらに詳しく説
明する。
[Example] Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

第1図は、この発明の感湿抵抗体を有する湿度素子10
の断面図である。この湿度素子lOは、フッ素アバタイ
’p (FAp)の焼結体からなる感湿抵抗体11を備
え、感湿抵抗体11の両面に電極12および13が形成
されている。電極12および13は、抵抗測定素子14
にそれぞれ接続されており、雰囲気の相対湿度に対応す
る抵抗値が抵抗素子14によって測定され、湿度を知る
ことができる。
FIG. 1 shows a humidity element 10 having a humidity sensitive resistor of the present invention.
FIG. This humidity element 10 includes a humidity sensitive resistor 11 made of a sintered body of fluorine abatai'p (FAp), and electrodes 12 and 13 are formed on both sides of the humidity sensitive resistor 11. Electrodes 12 and 13 are connected to resistance measuring element 14
The resistance value corresponding to the relative humidity of the atmosphere is measured by the resistance element 14, and the humidity can be determined.

この発明の感湿抵抗体を形成するFAPは、式Ca、。The FAP forming the moisture sensitive resistor of this invention has the formula Ca.

(PO2)6F2.で示されるものであるが、そのカル
シウムイオンの一部をイオン半径が0.95Aを越え1
.35A未満である陽イオンの一種または2種以上で置
換しカルサイト型構造とすると抵抗値がさらに低下し、
特に低湿度側での湿度測定にイ]利となる。置換陽イオ
ンとしては、1価陽イオン(例えば、リチウム、ナトリ
ウム、カリウム、fi4)、2価の陽イオン(例えば、
バリウム、ストロンチウム、マグネシウム)、および3
価の陽イオン(例えば、ランタン、ユーロピウム、ビス
マス)がある。
(PO2)6F2. However, if some of the calcium ions have an ionic radius exceeding 0.95A, 1
.. When substituted with one or more cations less than 35A to create a calcite structure, the resistance value further decreases,
This is particularly useful for humidity measurements on the low humidity side. Substitution cations include monovalent cations (for example, lithium, sodium, potassium, fi4), divalent cations (for example,
barium, strontium, magnesium), and 3
There are valent cations (e.g. lanthanum, europium, bismuth).

ところで、FApの合成方法としては、大別して、乾式
法と湿式法とが知られている。乾式法は、FAPの原料
(リン酸カルシウムとフッ化カルシウム、ピロリン酸カ
ルシウムとフッ化カルシウム等)を数百℃もの高温で焼
成する工程を含むため、フッ素が揮散しやすく、均一な
組成を有するFAp粉末を得ることが困難である。
By the way, methods for synthesizing FAp are broadly classified into dry methods and wet methods. The dry method involves firing the raw materials for FAP (calcium phosphate and calcium fluoride, calcium pyrophosphate and calcium fluoride, etc.) at a high temperature of several hundred degrees Celsius, so fluorine is easily volatilized and FAp powder with a uniform composition can be produced. difficult to obtain.

湿式法としては、リン酸一水素カルシウムの懸濁液にフ
ッ化カルシウムを加えて両者を反応させる方法、モノフ
ルオロリン酸カルシウム二水塩を加水分解する方法等が
知られている。しかしながら、これらの方法は副生物を
伴なうことが多く、純粋なFApが得られない、また、
湿式法によりで水酸アパタイトを製造する際にフッ素イ
オンを共存させてFAPを合成することも知られている
が、得られたFApは非晶質である。
Known wet methods include a method in which calcium fluoride is added to a suspension of calcium monohydrogen phosphate and the two are reacted, and a method in which calcium monofluorophosphate dihydrate is hydrolyzed. However, these methods often involve by-products, do not yield pure FAp, and
It is also known to synthesize FAP by coexisting fluorine ions when producing hydroxyapatite by a wet method, but the obtained FAp is amorphous.

ところで、FApを感湿抵抗体に適用する際に、FAp
粉末を焼結する必要があるが、一般に、焼結温度が高温
であればある程、FApは、フッ素の揮発性によって大
気中の水分と反応してフッ素−水酸基固溶アパタイトに
変換することが知られている。感湿抵抗体としてみた場
合、フ素アパタイトに比較して、水酸アパタイトは抵抗
値が対数で1桁高くなるので、このような水酸基の導入
は、特に低湿度における湿度の測定に不利となる。した
がって、できるだけ低温で焼結できるFApが望まれて
いるが、従来の方法で得られたFApは、その点におい
て満足できるものではない。
By the way, when applying FAp to a moisture-sensitive resistor, FAp
It is necessary to sinter the powder, but in general, the higher the sintering temperature, the more likely it is that FAp will react with atmospheric moisture due to the volatility of fluorine and convert into fluorine-hydroxyl solid solution apatite. Are known. When viewed as a moisture-sensitive resistor, hydroxyapatite has a logarithmically higher resistance value by an order of magnitude compared to fluoroapatite, so the introduction of such hydroxyl groups is disadvantageous, especially in measuring humidity at low humidity. . Therefore, FAp that can be sintered at as low a temperature as possible is desired, but FAp obtained by conventional methods is not satisfactory in this respect.

本発明者らは、上記従来法の欠点を解決する方法として
、FApの原料として、リン酸一水素カルシウム(Ca
HPO4) 、炭酸カルシウム(CaCO3)およびフ
ッ化カルシウム(CaFz)を用いる湿式法を開発した
。すなわち、これら原料を所定の割合(すなわち、モル
比6:3:l)で配合し、これをまずメカノケミカル作
用に供する。しかる後、これら原料を水中で反応(固体
−水系反応)させる。
The present inventors have proposed using calcium monohydrogen phosphate (Ca
A wet method using HPO4), calcium carbonate (CaCO3) and calcium fluoride (CaFz) was developed. That is, these raw materials are blended in a predetermined ratio (ie, a molar ratio of 6:3:l), and this is first subjected to mechanochemical action. Thereafter, these raw materials are reacted in water (solid-water reaction).

メカノケミカル作用とは、固体物質が摩砕、摩擦、すベ
リ、切削、遠心、衝撃などの手段により加えられた機械
的エネルギーの一部を固体内部に保有することにより、
その物理化学的性状に変化をおこす作用を意味する(「
工業化学雑誌J71巻、9号(198B) 1301頁
)、このような作用は、上記原料をボールミルで混合粉
砕することによって容易に付与することができる。ボー
ルミルによる処理は、原料混合物に水を加え、常温でお
こなえばよい、粉砕時間は、通常、5時間ないし48時
間である。
Mechanochemical action is when a solid substance retains a part of the mechanical energy applied by means such as grinding, friction, sliding, cutting, centrifugation, impact, etc.
It means an action that causes a change in its physicochemical properties (“
Industrial Chemistry Magazine J71, No. 9 (198B, p. 1301), such an action can be easily imparted by mixing and pulverizing the above raw materials in a ball mill. The ball milling process can be carried out by adding water to the raw material mixture at room temperature, and the grinding time is usually 5 to 48 hours.

ついで、水中で上記原料を固体−水系反応させる。固体
−水系反応は、原料系と生成系との水中溶解度の差を用
いた反応であり、この発明においては、上記原料の溶解
度が生成物FApの溶解度よりも大きいため、一旦生成
したFApはそのまま沈降し、反応の平衡は常に生成物
の方向に傾き、FApの生成反応が進行する。この反応
時の温度は、100℃以下、好ましくは80℃ないし1
00℃である。この方法によれば、このように低い温度
で反応がおこなえるので、従来の乾式法のように反応中
にフッ素が揮散することによる組成の不均一性は生じな
い。反応時間は1通常、8時間ないし12時間である。
Then, the raw materials are subjected to a solid-water reaction in water. The solid-water reaction is a reaction that uses the difference in solubility in water between the raw material system and the product system. In this invention, since the solubility of the raw material is greater than the solubility of the product FAp, once the FAp is produced, it can be used as is. The reaction equilibrium always tilts toward the product, and the FAp production reaction progresses. The temperature during this reaction is 100°C or less, preferably 80°C to 1°C.
It is 00℃. According to this method, since the reaction can be carried out at such a low temperature, compositional non-uniformity due to fluorine volatilization during the reaction does not occur as in conventional dry methods. The reaction time is usually 8 to 12 hours.

この固体−水系反応は定量的であり、副生物はほとんど
生じない。
This solid-water reaction is quantitative and produces almost no by-products.

反応終了後は、ろ過等の手段によりFApを回収し、乾
燥する。こうして得たFApは、粒径0.1ないし0.
4pmの微細な粉末の形態にあり、結晶性も良好である
。また、この方法によって製造されたFApは焼結性が
良好で、700℃ないし800℃という低い温度で焼結
をおこなうことができる。この方法によって製造された
FApの、従来のFApとの構造(結晶構造等)上の差
異は充分に解明されていないが、この方法によって製造
されたFApは特に優れた湿度−抵抗値特性を有するこ
とは明らかとなっている。
After the reaction is completed, FAp is recovered by means such as filtration and dried. The thus obtained FAp has a particle size of 0.1 to 0.
It is in the form of a fine powder of 4 pm and has good crystallinity. Furthermore, the FAp produced by this method has good sinterability and can be sintered at a low temperature of 700°C to 800°C. Although the structural differences (crystal structure, etc.) between FAp produced by this method and conventional FAp are not fully elucidated, FAp produced by this method has particularly excellent humidity-resistance characteristics. That is clear.

なお、J:記陽イオンで置換されたフッ素アパタイトを
得るためには、上記フッ素アパタイト原料にさらに当該
陽イオンの供給源例えば炭酸塩を加えて、上記と同様に
処理、反応をおこなえばよい、陽イオンによるカルシウ
ムイオンの置換率は、0,1ないし20原子%とするこ
とが好ましい。
In addition, in order to obtain fluoroapatite substituted with the J: cation, a source of the cation, such as a carbonate, may be further added to the fluoroapatite raw material, and the treatment and reaction may be carried out in the same manner as above. The substitution rate of calcium ions by cations is preferably 0.1 to 20 atomic %.

実施例 1 (A) リン酸一水素カルシウム、炭酸カルシウムおよ
びフッ化カルシウムをモル比6:3:lでFAPの合成
量が50グラムとなるように秤量し、ボールミル中で水
200ミリリットルとともに8Orpmで24時間混合
拳粉砕した。この原料混合物を水中において100℃で
10時間反応させ、FApを得た。得られたFAPは、
平均粒径0.2JLmの微細な粉末であった。このFA
pのX線回折図を第2図に示す。
Example 1 (A) Calcium monohydrogen phosphate, calcium carbonate, and calcium fluoride were weighed at a molar ratio of 6:3:l so that the amount of FAP synthesized would be 50 grams, and the mixture was mixed with 200 ml of water in a ball mill at 8 Orpm. Mixed and fist-milled for 24 hours. This raw material mixture was reacted in water at 100° C. for 10 hours to obtain FAp. The obtained FAP is
It was a fine powder with an average particle size of 0.2 JLm. This FA
The X-ray diffraction pattern of p is shown in FIG.

(E)上記(A)で得たFAp粉末にポリビニルアルコ
ールを加え造粒した後、圧粉密度が1.5g/’cm3
 となるように、直径18.15mm、厚さ1.0mm
の大きさにプレス成形し、780℃で2時間焼結させた
ところ良好な焼結体を得た。この焼結体の両面にスクリ
ーン印刷により銀ペーストを塗布し、530℃で焼付け
て電極を形成して湿度素子を得た。
(E) After adding polyvinyl alcohol to the FAp powder obtained in (A) above and granulating it, the compacted powder density is 1.5 g/'cm3
The diameter is 18.15mm and the thickness is 1.0mm.
A good sintered body was obtained by press molding to a size of 1 and sintering at 780°C for 2 hours. Silver paste was applied to both sides of this sintered body by screen printing and baked at 530°C to form electrodes to obtain a humidity element.

この湿度素子の感湿特性(抵抗値(R)の対数値と相対
湿度(RH)との関係)を第3図に示す(曲線a) 0
m定条件は25℃、IKHz、1■であった。なお、上
記FApの代りに水酸アパタイトを用いて同条件で作製
した湿度素子の感湿特性を第3図中曲線すで示す、第3
図に示す結果から、この発明の方法によって得たFAp
は、水酸アパタイトと比較して、感湿抵抗体としての抵
抗値が非常に低いことがわかる。
The humidity-sensitive characteristics (the relationship between the logarithm of the resistance value (R) and the relative humidity (RH)) of this humidity element are shown in Figure 3 (curve a).
The constant conditions were 25° C., IKHz, and 1 μm. Note that the curve 3 in FIG.
From the results shown in the figure, it can be seen that FAp obtained by the method of this invention
It can be seen that the resistance value as a moisture-sensitive resistor is very low compared to hydroxyapatite.

また、本実施例で得た湿度素子について、相対湿度(R
H)を30%から90%まで加湿した場合および90%
から30%まで除湿した場合における抵抗値(R(Ω)
)を測定した(測定条件:25℃、IKHz、IV)。
Furthermore, regarding the humidity element obtained in this example, relative humidity (R
H) when humidified from 30% to 90% and 90%
Resistance value (R (Ω) when dehumidifying from to 30%
) was measured (measurement conditions: 25°C, IKHz, IV).

測定結果を以下の表1および表2に示すとともに、ヒス
テリシス曲線として第4図に示す(第4図において、抵
抗値は対数表示である)。
The measurement results are shown in Tables 1 and 2 below, and are shown in FIG. 4 as a hysteresis curve (in FIG. 4, the resistance values are expressed in logarithm).

表 1 (加湿過程) 表 2(除湿過程) 以上の結果から、この発明の感湿抵抗体は、抵抗値のヒ
ステリシスが殆どないことがわかる。
Table 1 (humidifying process) Table 2 (dehumidifying process) From the above results, it can be seen that the humidity sensitive resistor of the present invention has almost no hysteresis in resistance value.

実施例 2 リン酸−カルシウム、炭酸カルシウム、フッ化カルシウ
ムおよびJ¥酸カリウムをモル比で6:2:1:0.5
の割合で秤量した後、実施例1と同様の方法により湿度
素子を得た。この湿度素子の感湿特性を第5図に示す、
測定条件は25℃、1kHz、1vであった。この結果
かられかるように、フッ素アパタイトのカルシウムイオ
ンの一部を所定の陽イオンで置換したものは、相対湿度
に対応する抵抗値がさらに低下する。
Example 2 Calcium phosphate, calcium carbonate, calcium fluoride and potassium J-acid in a molar ratio of 6:2:1:0.5
After weighing at a ratio of , a humidity element was obtained in the same manner as in Example 1. The humidity sensitive characteristics of this humidity element are shown in Figure 5.
The measurement conditions were 25° C., 1 kHz, and 1 V. As can be seen from this result, when some of the calcium ions in fluoroapatite are replaced with predetermined cations, the resistance value corresponding to relative humidity further decreases.

[発明の効果] 以上述べたように、この発明によれば、湿度に対応する
抵抗値が充分に低く、しかも抵抗値のヒステリシスが殆
どない感湿抵抗体が提供される。
[Effects of the Invention] As described above, according to the present invention, a humidity-sensitive resistor is provided which has a sufficiently low resistance value corresponding to humidity and has almost no hysteresis in the resistance value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の感湿抵抗体を有する湿度素子の断
面図、第2図は、この発明の感湿抵抗体として用いるF
ApのX線回折図、第3図は、この発明の一実施例に係
る感湿抵抗体の感湿特性を比較例とともに示すグラフ図
、第4図は、この発明の感湿抵抗素子の抵抗値のヒステ
リシスを測定したグラフ図、および第5図は、この発明
の他の実施例に係る感湿抵抗体の感湿特性を示すグラフ
図。 11・會・感湿抵抗体、12.13・・φ電極、14・
・・抵抗測定素子 出願人代理人 井埋士(5847)鈴江武彦、第1図
FIG. 1 is a cross-sectional view of a humidity element having a humidity-sensitive resistor of the present invention, and FIG. 2 is a cross-sectional view of a humidity element having a humidity-sensitive resistor of the present invention.
The X-ray diffraction diagram of Ap, FIG. 3 is a graph showing the humidity-sensitive characteristics of the humidity-sensitive resistor according to one embodiment of the present invention together with a comparative example, and FIG. 4 is the resistance of the humidity-sensitive resistor of the present invention. FIG. 5 is a graph showing the measurement of the hysteresis of the value, and FIG. 5 is a graph showing the humidity-sensitive characteristics of a humidity-sensitive resistor according to another embodiment of the present invention. 11. Moisture-sensitive resistor, 12.13..φ electrode, 14.
...Resistance measuring element applicant's representative: Ibuji (5847) Takehiko Suzue, Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)フッ素アパタイトの焼結体からなる感湿抵抗体。(1) A moisture-sensitive resistor made of a sintered body of fluoroapatite. (2)フッ素アパタイトが、リン酸一水素カルシウム、
炭酸カルシウムおよびフッ化カルシウムを所定の割合で
配合し、メカノケミカル作用に供した後、水中で反応さ
せることによって得たものである特許請求の範囲第1項
記載の感湿抵抗体。
(2) Fluorapatite is calcium monohydrogen phosphate,
The moisture-sensitive resistor according to claim 1, which is obtained by blending calcium carbonate and calcium fluoride in a predetermined ratio, subjecting it to a mechanochemical action, and then reacting it in water.
(3)フッ素アパタイトのカルシウムイオンの一部をイ
オン半径が0.95Aを越え1.35A未満である陽イ
オンの1種または2種以上で置換した特許請求の範囲第
2項記載の感湿抵抗体。
(3) The moisture-sensitive resistor according to claim 2, wherein a part of the calcium ions of the fluoroapatite is replaced with one or more cations having an ionic radius of more than 0.95A and less than 1.35A. body.
JP62090935A 1987-04-15 1987-04-15 Moisture-sensitive resistor Expired - Lifetime JPH07118403B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62090935A JPH07118403B2 (en) 1987-04-15 1987-04-15 Moisture-sensitive resistor
US07/180,812 US4855118A (en) 1987-04-15 1988-04-12 Method of producing fluorapatite
US07/336,911 US4971739A (en) 1987-04-15 1989-04-12 Method of producing fluorapatite and a moisture sensitive resistor using fluorapatite obtained by the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62090935A JPH07118403B2 (en) 1987-04-15 1987-04-15 Moisture-sensitive resistor

Publications (2)

Publication Number Publication Date
JPS63257201A true JPS63257201A (en) 1988-10-25
JPH07118403B2 JPH07118403B2 (en) 1995-12-18

Family

ID=14012306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62090935A Expired - Lifetime JPH07118403B2 (en) 1987-04-15 1987-04-15 Moisture-sensitive resistor

Country Status (1)

Country Link
JP (1) JPH07118403B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025358A1 (en) * 2004-08-31 2006-03-09 Japan Science And Technology Agency Detector for chemical sensor device and use thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014481A (en) * 1983-07-05 1985-01-25 Canon Inc Luminescent device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014481A (en) * 1983-07-05 1985-01-25 Canon Inc Luminescent device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025358A1 (en) * 2004-08-31 2006-03-09 Japan Science And Technology Agency Detector for chemical sensor device and use thereof
JPWO2006025358A1 (en) * 2004-08-31 2008-05-08 独立行政法人科学技術振興機構 Detector for chemical sensor device and use thereof
JP4670084B2 (en) * 2004-08-31 2011-04-13 独立行政法人科学技術振興機構 Detector for chemical sensor device and use thereof
US8277750B2 (en) 2004-08-31 2012-10-02 Kinki University Detector for chemical sensor device and use thereof

Also Published As

Publication number Publication date
JPH07118403B2 (en) 1995-12-18

Similar Documents

Publication Publication Date Title
US4855118A (en) Method of producing fluorapatite
EP2838836B1 (en) Method for producing li-ion conductive lithium aluminium titanium phosphates and use thereof as a solid-state electrolyte
KR102662015B1 (en) Boron nitride powder, method for producing boron nitride powder, and cosmetics
JPH02296706A (en) Amorphous or irregular- laminate and spherical in particular boron nitride and its production method
DE10301061A1 (en) Burnt alumina, process for its production and fine alpha alumina powder obtained by using the fired alumina
KR20230169256A (en) Hexagonal boron nitride powder for cosmetics, and cosmetics
JPS63257201A (en) Humidity-sensitive resistor
US4322485A (en) Preparation of materials
JPH0524856B2 (en)
JP2021116205A (en) Hexagonal boron nitride powder and method for producing the same, and cosmetics and method for producing the same
EP0810189B1 (en) Liquid phase sintering process for alumina ceramics
US3804765A (en) Adjusting ferroelectric ceramic characteristics during formation thereof
US20240277586A1 (en) Hexagonal boron nitride powder and method for producing same, and cosmetic preparation and method for producing same
GB2052462A (en) Improvements in or relating to the preparation of ion conductors
JPS585844B2 (en) Stable β-type alumina slurry
US6117595A (en) High sodium ion conducting inorganic composite solid electrolyte and method for production thereof
Dash et al. Study on phase formation and sintering kinetics of BaTi0. 6Zr0. 4O3 powder synthesized through modified chemical route
JP2841344B2 (en) Piezoelectric ceramic composition
US3248328A (en) Piezoelectric ceramic composition of lead titanate and 0.1 to 5 mole percent calciumfluoride
DE19847034C2 (en) Process for the production of a lithium-stabilized Me-ß "Al¶2¶O¶3¶ ceramic and its use
JPH05170413A (en) Production of hydroxyapatite
JPH1095661A (en) Production of sodium beta"-alumina compound
JP2001033426A (en) Solid electrolyte-type carbon dioxide sensor element
JPH013047A (en) Granular inorganic molded body and its manufacturing method
JPH07106888B2 (en) Chlorapatite manufacturing method