JPS63255985A - Distributed reflection semiconductor laser element - Google Patents

Distributed reflection semiconductor laser element

Info

Publication number
JPS63255985A
JPS63255985A JP8973487A JP8973487A JPS63255985A JP S63255985 A JPS63255985 A JP S63255985A JP 8973487 A JP8973487 A JP 8973487A JP 8973487 A JP8973487 A JP 8973487A JP S63255985 A JPS63255985 A JP S63255985A
Authority
JP
Japan
Prior art keywords
layer
region
impurity
active
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8973487A
Other languages
Japanese (ja)
Inventor
Hiroshi Ogawa
洋 小川
Saeko Oshiba
小枝子 大柴
Akihiro Matoba
的場 昭大
Masao Kobayashi
正男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP8973487A priority Critical patent/JPS63255985A/en
Publication of JPS63255985A publication Critical patent/JPS63255985A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To contrive the improvement of the coupling efficiency of an active region and an optical waveguide layer by a method wherein an impurity-doped region obtainable by doping a specified impurity to part of an active layer formed in the same growth process is used as the active region and the residual part of the active layer is used as the optical waveguide layer. CONSTITUTION:An active region 32 and an optical waveguide layer 34 are formed of the same grown layer (active layer) 26 formed in the same growth process. The region 31 is constituted of an impurity-doped region obtainable by doping an impurity to part of this layer 26 and the layer 34 is constituted of the impurity-undoped residual part of the layer 26. The impurity to be doped to the layer 26 for forming the region 32 shall be an impurity which is not absorbed in the layer 34 by doping this impurity or such an impurity that the light of a small-absorption wavelength is made to luminescence from the region 32. Accordingly, a scattering loss to generate when the emitted light is incided in the layer 34 from the region 32 and a scattering loss to generate when the feedback light is incided in the active region from the layer 34 are reduced. Thereby, the coupling efficiency of the region 32 and the layer 34 is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は単−縦モードで動作する分布反射型半導体レ
ーザ素子の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to the structure of a distributed reflection semiconductor laser device operating in a single longitudinal mode.

(従来の技術) 従来より、高速変調を行なった際や温度変化があった際
にも単一の縦モードで安定した発振を行なえる分布反射
型半導体レーザ素子(D B Rレーザ:Distri
buted Bragg Reflector La5
er)が提案されており、その研究及び開発が盛んに行
なわれている。このDBRレーザでは、横モードをも単
一化するために埋込み構造(BuriedHetero
structure)が採用されることが多い。
(Prior art) Conventionally, distributed reflection semiconductor laser devices (DBR lasers) have been developed that can stably oscillate in a single longitudinal mode even when high-speed modulation or temperature changes occur.
butted Bragg Reflector La5
er) has been proposed, and its research and development are being actively conducted. This DBR laser uses a buried structure (BuriedHetero) to unify the transverse mode.
structure) is often adopted.

半導体レーザとして最も典型的な構成のファプリー・ペ
ロ共振器(Fabry−Perot Re5onato
r)、型の半導体レーザ素子(以下FPレーザと称す)
はり開面から構成されるファプリー・ペロ共振器を具え
るが、DBRレーザはこのファプリー・ペロ共振器を、
回折格子から構成される分布ブラッグ反射器(D B 
R:Digtributed Bragg Refle
ctor)に置き換えたもので、このDBHの反射率の
波長依存性を利用することによって縦弔−モード発振の
実現を図るものである。
Fabry-Perot resonator (Fabry-Perot resonator), which has the most typical configuration as a semiconductor laser.
r) type semiconductor laser device (hereinafter referred to as FP laser)
The DBR laser is equipped with a Fapley-Perot resonator consisting of a beam cut plane.
A distributed Bragg reflector (D B
R: Digtributed Bragg Refle
The purpose is to realize longitudinal mode oscillation by utilizing the wavelength dependence of the reflectance of this DBH.

FPレーザにおいては利得が最大となる波長でレーザ発
振が行われるのに対し、DBRレーザにおいてはDBH
の格子間隔によって決まるブラッグ波長及びブラッグ波
長近傍の波長を有する光だけが共振してレーザ発振が行
なわれるため、発振波長の制御が容易であるという利点
がある。またDBRレーザは啓開面を必ずしも必要とし
ないため集積化レーザとして用いて好適であり1例えば
光集積回路用光源として光集積回路中へ集積化するのに
適する。
In FP lasers, laser oscillation is performed at the wavelength where the gain is maximum, whereas in DBR lasers, the DBH
Since only light having the Bragg wavelength determined by the lattice spacing and the wavelength near the Bragg wavelength resonates and laser oscillation is performed, there is an advantage that the oscillation wavelength can be easily controlled. Furthermore, since the DBR laser does not necessarily require an open surface, it is suitable for use as an integrated laser, and is suitable for integration into an optical integrated circuit, for example, as a light source for an optical integrated circuit.

以下、図面を参照して、従来のDBRレーザ(文献:末
松編「半導体レーザと光集積回路」(1984)pp3
41〜389)につき説明する。
Below, with reference to the drawings, a conventional DBR laser (Reference: Suematsu ed. "Semiconductor Laser and Optical Integrated Circuit" (1984) pp3
41 to 389) will be explained.

第3図は従来の直接結合方式のDBRレーザの基本的構
成を示す要部断面図であり、この図はレーザ光の出射方
向に沿って取った断面を示している。
FIG. 3 is a sectional view of a main part showing the basic configuration of a conventional direct coupling type DBR laser, and this figure shows a cross section taken along the laser beam emission direction.

同図において、10はF側りラッド層、12は活性領域
及び14は上側クラッド層を示し、活性領域12及びヒ
側グランド層14は、I)BR領領域除く領域の上側ク
ラッド層10)1に、順次に形成される。ここで、活性
領域12とDBRレーザの端面との間の、DBRが形成
されているレーザ構成領域をDBR領域と称する。
In the figure, 10 is an F side rad layer, 12 is an active region, and 14 is an upper cladding layer. are formed sequentially. Here, the laser component region where the DBR is formed between the active region 12 and the end face of the DBR laser is referred to as a DBR region.

また16はDBR領域の光出力取出し用の光導波層、1
8は光ガイド層及び20はDBRであり、光導波層16
は、活性領域12のレーザ光出射面と直接結合させて、
DBR領域の下側クラッド層lO上に形成され、この光
導波層16上に順次に光ガイド層18及びDBR20が
形成される。
16 is an optical waveguide layer for extracting the optical output of the DBR region;
8 is a light guide layer, 20 is a DBR, and the light guide layer 16
is directly coupled to the laser light emitting surface of the active region 12,
The optical waveguide layer 18 and the DBR 20 are formed on the lower cladding layer 10 of the DBR region, and the optical waveguide layer 18 and the DBR 20 are sequentially formed on the optical waveguide layer 16.

この従来のDBRレーザの要部を作成するに当っては、
図示せずも、活性層及び−上側クラッド層を、下側クラ
ッド層10毛に順次に積層成長させ、その後DBR領域
の活性層及び上側クラッド層をエツチング除去する。そ
の結果、活性層をエツチング除去して形成されたメサ形
状の活性領域12及び上側クラッド層をエツチング除去
して形成されたメサ形状の上側クラッド層14を得る。
In creating the main parts of this conventional DBR laser,
Although not shown, an active layer and an upper cladding layer are sequentially grown on the lower cladding layer 10, and then the active layer and upper cladding layer in the DBR region are removed by etching. As a result, a mesa-shaped active region 12 formed by etching away the active layer and a mesa-shaped upper cladding layer 14 formed by etching and removing the upper cladding layer are obtained.

その後、光導波層16及び光ガイド層18を、DBR領
域の下側クラ−2ド層10旧に順次に積層し、然る後光
ガイド層18にDBR20を形成する。
Thereafter, the optical waveguide layer 16 and the optical guide layer 18 are sequentially laminated on the lower cladding layer 10 of the DBR region, and the DBR 20 is formed on the rear optical guide layer 18.

このDBRレーザではDBR20の良好な波長選択性を
得るため、光導波層16を、活性領域12よりも禁制帯
域幅が大きくなるような組成を有する層から、形成して
光導波層16における光の損失特に吸収損失の低減を図
っていた。
In this DBR laser, in order to obtain good wavelength selectivity of the DBR 20, the optical waveguide layer 16 is formed from a layer having a composition such that the forbidden bandwidth is larger than that of the active region 12. The aim was to reduce loss, especially absorption loss.

(発明が解決しようとする問題点) しかしながらヒ述した従来のDBRレーザでは、それぞ
れ異なる成長工程で形成された活性領域と光導波層とを
直接結合しており、従ってこれら活性領域及び光導波層
の結合によって界面が形成される。これがため活性領域
から光導波層へ入射する発光光やDBRで回折され活性
領域に帰還してくる反射光の損失特に散乱損失がこの界
面において大きく、従ってこれら活性領域及び光導波層
の結合効率が悪かった。また活性領域と光導波層とを直
接結合するため、結合効率を向トすることが難しかった
(Problems to be Solved by the Invention) However, in the conventional DBR laser described above, the active region and the optical waveguide layer, which are formed in different growth processes, are directly coupled, and therefore the active region and the optical waveguide layer are An interface is formed by the bonding of . Therefore, the loss of emitted light that enters the optical waveguide layer from the active region and the reflected light that is diffracted by the DBR and returned to the active region is large at this interface, especially scattering loss, and therefore the coupling efficiency between the active region and the optical waveguide layer is reduced. It was bad. Furthermore, since the active region and the optical waveguide layer are directly coupled, it is difficult to improve the coupling efficiency.

この発明の目的はL述した従来の問題点を解決し、活性
領域及び光導波層の結合効率を従来よりも容易に火きく
することが出来、従って発振特性の向上を図れるDBR
レーザを提供することにある。
The purpose of this invention is to solve the above-mentioned conventional problems, and to develop a DBR that can increase the coupling efficiency between the active region and the optical waveguide layer more easily than before, and thus improve the oscillation characteristics.
The goal is to provide lasers.

(問題点を解決するための手段) この目的の達成を図るため、この発明の反射分布型半導
体レーザ素子(DBRレーザ)は、活性領域とDBR領
域の光出力取出し用の光導波層とを具える分布反射型半
導体レーザ素子において、同一成長工程で形成された活
性層の一部分に不純物を添加した不純物添加領域を活性
領域とし、活性層の残部を光導波層とし、さらに不純物
を、この不純物の添加により光導波層で吸収されないか
又は吸収の小さい波長の光を活性領域から発光させるよ
うな不純物とした構成を有する。
(Means for Solving the Problems) In order to achieve this object, a distributed reflection type semiconductor laser device (DBR laser) of the present invention includes an active region and an optical waveguide layer for extracting optical output from the DBR region. In a distributed reflection type semiconductor laser device, an impurity doped region in which impurities are added to a part of the active layer formed in the same growth process is used as an active region, the remainder of the active layer is used as an optical waveguide layer, and an impurity is further added to the impurity. It has a structure in which the impurity is added so that the active region emits light having a wavelength that is not absorbed in the optical waveguide layer or is absorbed to a small extent.

(作用) このような構成のDBRレーザによれば、活性領域と、
光出力取出し用の光導波層とを同一成長工程で形成され
た同一の成長層(活性層)から構成するので、これら活
性領域及び光導波層の結合効率の向りを図れる。
(Function) According to the DBR laser having such a configuration, the active region and
Since the optical waveguide layer for extracting light output and the optical waveguide layer are formed from the same growth layer (active layer) formed in the same growth process, it is possible to improve the coupling efficiency between the active region and the optical waveguide layer.

また活性領域の形成のため活性層に添加される不純物を
、この不純物の添加により光導波層で吸収されないか又
は吸収の小さい波長の光を活性領域から発光させるよう
な不純物とするので、活性領域から発光される発光光の
波長(発振波長)及び発光光のうちDBRで反射され活
性領域に帰還する帰還光の光導波層における吸収損失を
なくしくほぼOとし)又は小さくすることが出来る。
In addition, the impurity added to the active layer to form the active region is an impurity that causes the active region to emit light with a wavelength that is not absorbed by the optical waveguide layer or has a small absorption. The absorption loss in the optical waveguide layer of the wavelength of the emitted light (oscillation wavelength) and the feedback light reflected by the DBR and returned to the active region among the emitted light can be reduced to almost O) or reduced.

(実施例) 以下、図面を参照してこの発明の実施例につき説明する
。以下に述べる実施例では、この発明を適用した最も基
本的な構成のDBRレーザにつき説明する。
(Embodiments) Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the embodiments described below, a DBR laser having the most basic configuration to which the present invention is applied will be described.

第1図はこの発明の一実施例の構成を概略的に示す断面
図であり、活性領域から発光した光の出射方向に沿って
取った断面を示す。
FIG. 1 is a cross-sectional view schematically showing the structure of an embodiment of the present invention, and shows a cross section taken along the direction in which light emitted from the active region is emitted.

同図において、22は基板、24.26.28及び30
はこの基板22J:、に順次に形成した下側クラッド層
、活性層、光ガイド層及び、北側クラッド層をそれぞれ
示す、尚、各層は1層24の屈折率〉層26の屈折率く
層28の屈折率く層30の屈折率と成るように形成され
る。
In the same figure, 22 is a substrate, 24, 26, 28 and 30
22J shows a lower cladding layer, an active layer, a light guide layer, and a north cladding layer that are sequentially formed on this substrate 22J, where each layer has a refractive index of 1 layer 24 > a refractive index of layer 26 and a layer 28 The refractive index of the layer 30 is smaller than the refractive index of the layer 30.

この実施例では、基板22としてInP基板、下側クラ
ッド層24としてn−1nP層、活性層26としてIn
GaAsP層、光ガイド層28としてp−1nGaAs
P層及び北側クラッド層30としてp−1nP層を形成
する。
In this embodiment, the substrate 22 is an InP substrate, the lower cladding layer 24 is an n-1nP layer, and the active layer 26 is an InP substrate.
GaAsP layer, p-1nGaAs as optical guide layer 28
A p-1nP layer is formed as the P layer and the north cladding layer 30.

尚、光ガイド層28としてはp−1nGaAsP層の他
例えばp−InP層又はInGaAsP層を設けても良
い。
In addition to the p-1nGaAsP layer, for example, a p-InP layer or an InGaAsP layer may be provided as the optical guide layer 28.

また32は活性領域及び34はDBR領域の光出力取り
出し用の光導波層を示し、これら活性領域32及び光導
波層34を同一成長工程で形成された同一の成長層(活
性層)2Bから形成する。この活性層2Bの一部分に不
純物を添加した不純物添加領域が活性領域32を構成し
、活性層2Bの不純物を添加しない残部が光導波層34
を構成する。活性領域32の形成のため活性層26に添
加される不純物は、この不純物の添加により光導波層3
4で吸収されないか又は吸収の小さい波長の光を活性領
域32から発光させるような、不純物とする。
Further, 32 indicates an active region and 34 indicates an optical waveguide layer for extracting optical output from the DBR region, and these active region 32 and optical waveguide layer 34 are formed from the same growth layer (active layer) 2B formed in the same growth process. do. An impurity doped region in which impurities are added to a part of the active layer 2B constitutes an active region 32, and the remaining part of the active layer 2B to which impurities are not added constitutes an optical waveguide layer 34.
Configure. The impurity added to the active layer 26 to form the active region 32 is added to the optical waveguide layer 3 due to the addition of this impurity.
The impurity is used to cause the active region 32 to emit light of a wavelength that is not absorbed by the active region 32 or has a small absorption.

38は不純物添加領域を示し、この実施例では、DBR
領域を除く領域の北側クラッド層30から活性層2Bま
で亜鉛(Z n)を拡散することによって、不純物添加
領域3Bを形成する。この不純物添加領域3Bの形成に
よってZnを拡散された領域の活性層26から活性領域
32を形成する。ここで、活性領域32とDBRレーザ
の端面との間の、DBR40が形成されている(或は形
成される)レーザ構成領域をDBR領域と称する。従っ
て、この実施例では、図中に示す、x1線及びx2線の
間の領域の基板22、層24.2B、2B及び30と、
Yl線及びY2線の間の領域の基板22、層24.28
.28及び30とがDBR領域である。
38 indicates an impurity doped region, in this example, DBR
An impurity-doped region 3B is formed by diffusing zinc (Zn) from the northern cladding layer 30 to the active layer 2B except for the region. By forming this impurity doped region 3B, an active region 32 is formed from the active layer 26 in which Zn is diffused. Here, the laser component region where the DBR 40 is formed (or will be formed) between the active region 32 and the end face of the DBR laser is referred to as a DBR region. Therefore, in this example, the substrate 22, layers 24.2B, 2B and 30 in the region between the x1 and x2 lines shown in the figure,
Substrate 22, layer 24.28 in the area between the Yl line and the Y2 line
.. 28 and 30 are DBR areas.

38は電流注入領域を示し、この実施例では、不純物添
加領域3Bの形成によってZnを拡散された領域の北側
クラッド層30及び光ガイド層28から、電流注入領域
38を形成する。
Reference numeral 38 indicates a current injection region, and in this embodiment, the current injection region 38 is formed from the north cladding layer 30 and the optical guide layer 28 of the region in which Zn is diffused by forming the impurity doped region 3B.

また40は分布ブラッグ反射器(D B R)を示し、
この実施例では、DBR40を、DBR領域のL側りラ
ット層30及び光ガイド層28の界面に形成して、活性
領域32の両側に形成する。
Further, 40 indicates a distributed Bragg reflector (DBR),
In this embodiment, the DBR 40 is formed at the interface between the L-side rat layer 30 and the light guide layer 28 in the DBR region, and is formed on both sides of the active region 32 .

DBR40は、ブラッグ波長を発振波長と一致させるよ
うに、従ってDBR40で反射されて活性領域32に帰
還する帰還光の波長が、発光光の波長(発振波長)と一
致するように、形成される。
The DBR 40 is formed so that the Bragg wavelength matches the oscillation wavelength, so that the wavelength of the feedback light reflected by the DBR 40 and returned to the active region 32 matches the wavelength of the emitted light (oscillation wavelength).

上述のように構成されたこの実施例のDBRレーザでは
、電流注入領域38を経て活性領域32にキャリアの注
入が行なわれ、その結果、活性領域32から発光した発
光光は光導波層34を導波して次段の光回路素子へ出力
される0発光光のうち光導波層34から光力イト層28
へもれ込んだ光は、DBR40で反射され活性領域32
に帰還する。活性領域32ではこの帰還した帰還光によ
って誘導放出が引き起され、これによって縦単一モード
発振が実現される。
In the DBR laser of this embodiment configured as described above, carriers are injected into the active region 32 through the current injection region 38, and as a result, the emitted light emitted from the active region 32 is guided through the optical waveguide layer 34. Of the zero emitted light that is waved and output to the next stage optical circuit element, the light from the optical waveguide layer 34 to the optical power layer 28
The light that leaks into the active region 32 is reflected by the DBR 40 and
to return to. In the active region 32, the returned light causes stimulated emission, thereby realizing longitudinal single mode oscillation.

次にこの発明の理解を深めるため、第1図及び第2図(
A)〜(C)を参照してこの実施例の製造1程につき説
明する。
Next, in order to deepen the understanding of this invention, Figures 1 and 2 (
The first stage of manufacturing of this example will be explained with reference to A) to (C).

まず、第2図(A)に示すように、基板22としてIn
P基板を用い、例えば液相エピタキシャル成長(LPE
)法或は有機金属気相成長(MOCVD)法によって、
基板22上に順次にn−InP下側りラット層24. 
InGaAsP活性層26及びp−InGaAsP光ガ
イド層28を積層成長させる。
First, as shown in FIG. 2(A), the substrate 22 is made of In.
For example, liquid phase epitaxial growth (LPE) is performed using a P substrate.
) method or metal organic chemical vapor deposition (MOCVD) method,
A lower layer of n-InP 24 is sequentially formed on the substrate 22.
An InGaAsP active layer 26 and a p-InGaAsP optical guide layer 28 are grown in layers.

次に、第2図(B)に示すように、DBR領域の光導波
層28を例えばレーザ干渉露光法によってパターニング
した後に化学エツチングすることによって、DBR20
を形成する。
Next, as shown in FIG. 2(B), the optical waveguide layer 28 in the DBR region is patterned by, for example, a laser interference exposure method, and then chemically etched to form the DBR 20.
form.

縦モートを弔−化するため、DBR40は、DBR40
のブラッグ波長を発振波長と一致させるように設計され
、すなわち発光光及び帰還光の波長を一致させるように
設計されて形成される。
In order to replace the vertical moat, DBR40 is
It is designed and formed so that the Bragg wavelength of the laser beam matches the oscillation wavelength, that is, the wavelengths of the emitted light and the feedback light match.

次に、第2図(C)に示すように、上述の層24.26
.28ト同様例えばLPE法或はMOCVD法によって
、光ガイド層28hにp−1nPt側クラツド層30を
積層成長させる。
Next, as shown in FIG. 2(C), the above-mentioned layers 24, 26
.. Similarly to step 28, a p-1nPt side cladding layer 30 is laminated and grown on the optical guide layer 28h by, for example, the LPE method or the MOCVD method.

次に、第1図に示すように、DBR領域を除く領域の北
側クラッド層30から活性層26まで、例えばZnを拡
散することによって、不純物を添加して不純物添加領域
36を形成し、よって同一の成長層(活性層)26から
光導波層34及び活性領域32を形成すると共に上側ク
ラッド層30及び光ガイド層28に電流注入領域38を
形成する。
Next, as shown in FIG. 1, an impurity is added by diffusing Zn, for example, from the north cladding layer 30 in the region excluding the DBR region to the active layer 26 to form an impurity-doped region 36. An optical waveguide layer 34 and an active region 32 are formed from the grown layer (active layer) 26, and a current injection region 38 is formed in the upper cladding layer 30 and the optical guide layer 28.

不純物の添加は、発振波長が光導波層のバンドギャップ
波長よりも長くなるように、行なう。
The impurity is added so that the oscillation wavelength is longer than the bandgap wavelength of the optical waveguide layer.

従って、上述したように発光光及び帰還光の波長が一致
するようにDBR40は形成されるので、発光光及び帰
還光の波長は光導波層34のバンドキャップ波長よりも
長くなる。
Therefore, since the DBR 40 is formed so that the wavelengths of the emitted light and the feedback light match as described above, the wavelengths of the emitted light and the feedback light are longer than the bandgap wavelength of the optical waveguide layer 34.

上述のように構成されたこの発明のDBRレーザによれ
ば、活性領域32及び光導波層34を同一の成長層(活
性層)32から構成するので、発光光が活性領域32か
ら光導波層34へ入射する際の散乱損失及び帰還光が光
導波層34から活性領域へ入射する際の散乱損失を減少
させ、よって活性領域32及び光導波層34の結合効率
を従来より向トすることが出来る。
According to the DBR laser of the present invention configured as described above, since the active region 32 and the optical waveguide layer 34 are configured from the same growth layer (active layer) 32, emitted light is transmitted from the active region 32 to the optical waveguide layer 34. The scattering loss when the feedback light enters the active region from the optical waveguide layer 34 is reduced, and the coupling efficiency between the active region 32 and the optical waveguide layer 34 can be improved compared to the conventional method. .

これと共に発光光及び帰還光の波長は光導波層34のバ
ンドギャップ波長よりも長くなるので、発光光及び帰還
光の光導波層34における吸収損失をすくシ(はぼOと
し)又は小さくすることが出来る。
At the same time, since the wavelengths of the emitted light and the feedback light are longer than the bandgap wavelength of the optical waveguide layer 34, it is necessary to reduce or reduce the absorption loss of the emitted light and the feedback light in the optical waveguide layer 34. I can do it.

これかため、発振特性を従来のDBRレーザよりも向ト
させることが出来、特に発振内イメ電流を低減すること
が出来る。
As a result, the oscillation characteristics can be improved compared to conventional DBR lasers, and in particular, the oscillation current can be reduced.

(変形例) 第3図は上述した実施例の変形例の構成を示す第1図と
同様の断面図である。尚、第1図に示した構成成分と同
一の構成成分については同一の符号を付して示し、その
詳細な説明を省略する。
(Modification) FIG. 3 is a sectional view similar to FIG. 1 showing the structure of a modification of the above-described embodiment. Components that are the same as those shown in FIG. 1 are denoted by the same reference numerals, and detailed explanation thereof will be omitted.

第3図において、42は光ガイド層例えばn−InGa
AsP層を示す。
In FIG. 3, 42 is a light guide layer made of, for example, n-InGa.
The AsP layer is shown.

第3図に示すように、この変形例では、基板22Hに順
次にF側りラッド層24、光ガイド層42、活性層26
及び上側クラッド層30を形成し、さらにDBR40を
DBR領域の北側クラッド層24及び光ガイド層28の
界面に設ける。
As shown in FIG. 3, in this modification, the F-side rad layer 24, the optical guide layer 42, and the active layer 26 are sequentially formed on the substrate 22H.
and an upper cladding layer 30, and further a DBR 40 is provided at the interface between the north cladding layer 24 and the light guide layer 28 in the DBR region.

またこの変形例では、不純物添加領域36を、DBR領
域を除く領域のL側グラッド層30から活性層26まで
形成しており、従って電流注入領域38を−L側クりッ
ド層30に形成した構成と成っている。
Furthermore, in this modification, the impurity doped region 36 is formed from the L-side clad layer 30 in the region excluding the DBR region to the active layer 26, and therefore the current injection region 38 is formed in the -L-side clad layer 30. The structure is as follows.

このように構成されたこの変形例でも、上述の実施例と
同様の効果を期待出来る。
Even with this modified example configured in this way, the same effects as in the above-mentioned embodiment can be expected.

この発明は上述した実施例にのみ限定されるものではな
く、従って各構成成分の形成力・法、形成材料、導電型
その他の設計条件を設計に応じて任意好適に設定するこ
とが出来る。
The present invention is not limited to the above-described embodiments, and therefore, the forming force/method of each component, forming material, conductivity type, and other design conditions can be arbitrarily and suitably set according to the design.

例えば各構成成分の形成材料は上述した実施例にのみ限
定されるものではなく、InP / InGaAsP系
半導体材料、GaAs/ AlGaAs系半導体材料そ
の他の任意好適な半導体材料を用いることが出来る。
For example, the material for forming each component is not limited to the above-mentioned embodiments, and any suitable semiconductor material such as InP/InGaAsP semiconductor material, GaAs/AlGaAs semiconductor material, etc. can be used.

また不純物としてZn、シリコン(Si)その他を用い
て良いし、不純物の添加方法も拡散、イオン注入その他
の方法を用いて良い。また不純物は少なくとも活性領域
が形成されるべき領域の活性層に対して添加されていれ
ば良く、従って不純物を添加する領域も任意好適に変更
することが出来る。活性領域の形成のために添加される
不純物は、この不純物の添加によって活性領域から発光
される光の発振波長に対する光導波層の吸収がなくなり
又は小さくなるのであれば、どのような材料、方法及び
添加量で添加しても良い。
Further, Zn, silicon (Si), or the like may be used as the impurity, and diffusion, ion implantation, or other methods for adding the impurity may be used. Further, it is sufficient that the impurity is added to at least the active layer in the region where the active region is to be formed, and therefore, the region to which the impurity is added can be changed as desired. The impurity added to form the active region can be made of any material, method, and method as long as the addition of this impurity eliminates or reduces the absorption of the optical waveguide layer for the oscillation wavelength of light emitted from the active region. It may be added in an additional amount.

また現在の技術では、層厚の非常に薄い活性層にDBR
を設けると活性層の層切れ等の問題点が生じて活性層自
体にDBRを設けることは非常に困難であるが、将来こ
のような技術的問題点の解決が図られたならば、活性層
自体にDBRを設けるようにしても良い。
In addition, with current technology, DBR is applied to the very thin active layer.
However, if such technical problems are solved in the future, problems such as separation of the active layer will occur, making it extremely difficult to provide a DBR in the active layer itself. A DBR may be provided in itself.

またL述した実施例では、光導波層及びDBRを活性領
域の両側に形成したが、光導波層を活性領域の片側のみ
に設けるようにしても良いし、及び又はDBRを活性領
域の片側のみに設けるようにしても良い。
Furthermore, in the embodiment described above, the optical waveguide layer and the DBR are formed on both sides of the active region, but the optical waveguide layer may be provided only on one side of the active region, and/or the DBR is formed only on one side of the active region. It may also be provided.

製造工程は設計の変更に応じて任意好適に変更すること
が出来、例えば電流注入領域及び活性領域を連続させて
同一工程で形成しても良いし、また電流注入領域及び活
性領域を分離して異なる工程で形成しても良い。
The manufacturing process can be changed arbitrarily and suitably according to changes in the design. For example, the current injection region and the active region may be formed continuously in the same process, or the current injection region and the active region may be formed separately. They may be formed in different steps.

(発明の効果) L述した説明からも明らかなように、この発明の分布反
射型半導体レーザ素子によれば、発光光が活性領域から
光導波層へ入射する際及び帰還光が光導波層から活性領
域へ入射する際の散乱損失を減少させて、活性領域及び
光導波層の結合効率を従来よりも向上することが出来る
(Effects of the Invention) As is clear from the above description, according to the distributed reflection semiconductor laser device of the present invention, when emitted light enters the optical waveguide layer from the active region, and when the feedback light enters the optical waveguide layer, By reducing the scattering loss when the light enters the active region, the coupling efficiency between the active region and the optical waveguide layer can be improved more than before.

これと共に発光光及び帰還光の光導波層における吸収損
失をなくシ(はぼOとする)又はなくすことが出来る。
At the same time, absorption loss of emitted light and feedback light in the optical waveguide layer can be eliminated or eliminated.

これがために、従来よりも発振特性に優れた、特に発振
闇値電流の低減を図れる分布反射型半導体レーザを提供
することが出来る。
For this reason, it is possible to provide a distributed reflection type semiconductor laser that has superior oscillation characteristics than conventional ones, and in particular can reduce the oscillation dark value current.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の反射分布型半導体レーザ素子の一実
施例の構成を示す断面図、 第2図は第1図に示す実施例の製造工程段階を示す工程
図、 第3図は第1図に示す実施例の変形例の構成を示す断面
図。 第4図は従来の分布反射型半導体レーザ素子の構成を示
す要部断面図である。 22・・・基板、     24.30・・・クラッド
層26・・・活性層、    28.42・・・光ガイ
ド層32・・・活性領域、   34・・・光導波層3
6・・・不純物添加領域、38・・・電流性−人領域4
0・・・分布ブラッグ反射器(DBR)。 特許出願人   沖電気玉業株式会社 224核      34 九嘉ス屑 211、30   クラ・シト漕     、yg7r
−秀(午り余カロ雑i\26、ニ名′隨1’#    
   38 償端逓入頒く2δ 九力゛4ド層    
   4θ DBRJ2゛昂恢茹よ戎 瘍(方JcA119’l   の 噌 市p己第1図 ヘハ <           = C)  ζ (811N ”s z ’%I Nへ ■
FIG. 1 is a cross-sectional view showing the structure of an embodiment of the distributed reflection type semiconductor laser device of the present invention, FIG. 2 is a process diagram showing the manufacturing process steps of the embodiment shown in FIG. 1, and FIG. FIG. 3 is a cross-sectional view showing a configuration of a modification of the embodiment shown in the figure. FIG. 4 is a sectional view of a main part showing the structure of a conventional distributed reflection type semiconductor laser device. 22... Substrate, 24.30... Clad layer 26... Active layer, 28.42... Optical guide layer 32... Active region, 34... Optical waveguide layer 3
6...Impurity doped region, 38...Current-human region 4
0...Distributed Bragg reflector (DBR). Patent Applicant: Oki Denki Gyokugyo Co., Ltd. 224 Nuclear 34 Kyushu Kuzu 211, 30 Kura Shitoko, yg7r
- Hide (afternoon Karo miscellaneous i\26, Ni name '隨1'#
38 Redemption distribution 2δ Nine power ゛ 4th layer
4θ DBRJ2 ゛昂恢茹yo击子(方JcA119'lの噌市p G 1 Gaweha<=C) ζ (811N ``s z '% I N■

Claims (1)

【特許請求の範囲】[Claims] (1)活性領域とDBR領域の光出力取出し用の光導波
層とを具える分布反射型半導体レーザ素子において、 同一成長工程で形成された活性層の一部分に不純物を添
加した不純物添加領域を前記活性領域とし、前記活性層
の残部を前記光導波層とし、前記不純物を、該不純物の
添加により前記光導波層で吸収されないか又は吸収の小
さい波長の光を前記活性領域から発光させるような不純
物として成ることを特徴とする分布反射型半導体レーザ
素子。
(1) In a distributed reflection semiconductor laser device comprising an active region and an optical waveguide layer for extracting optical output from a DBR region, an impurity-doped region in which an impurity is added to a part of the active layer formed in the same growth process as described above. an active region, the remainder of the active layer is the optical waveguide layer, and the impurity is an impurity that causes the active region to emit light at a wavelength that is not absorbed or is absorbed in the optical waveguide layer by adding the impurity. What is claimed is: 1. A distributed reflection type semiconductor laser device characterized by comprising:
JP8973487A 1987-04-14 1987-04-14 Distributed reflection semiconductor laser element Pending JPS63255985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8973487A JPS63255985A (en) 1987-04-14 1987-04-14 Distributed reflection semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8973487A JPS63255985A (en) 1987-04-14 1987-04-14 Distributed reflection semiconductor laser element

Publications (1)

Publication Number Publication Date
JPS63255985A true JPS63255985A (en) 1988-10-24

Family

ID=13978994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8973487A Pending JPS63255985A (en) 1987-04-14 1987-04-14 Distributed reflection semiconductor laser element

Country Status (1)

Country Link
JP (1) JPS63255985A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7957446B2 (en) 2008-08-11 2011-06-07 Sumitomo Electric Industries, Ltd. Semiconductor laser and method of making semiconductor laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7957446B2 (en) 2008-08-11 2011-06-07 Sumitomo Electric Industries, Ltd. Semiconductor laser and method of making semiconductor laser

Similar Documents

Publication Publication Date Title
Panish Heterostructure injection lasers
US4603420A (en) Optical integrated circuit
US5068869A (en) Surface-emitting laser diode
US4928285A (en) Impurity-doped semiconductor laser device for single wavelength oscillation
US4045749A (en) Corrugation coupled twin guide laser
EP0430691B1 (en) Semiconductor heterostructures
US6195375B1 (en) Self-pulsation type semiconductor laser
Takemoto et al. 1.3-mu m distributed feedback laser diode with a grating accurately controlled by a new fabrication technique
US20020031152A1 (en) Semiconductor laser device
JP4027639B2 (en) Semiconductor light emitting device
US4514896A (en) Method of forming current confinement channels in semiconductor devices
US5173913A (en) Semiconductor laser
US4447905A (en) Current confinement in semiconductor light emitting devices
JPS63255985A (en) Distributed reflection semiconductor laser element
US5113405A (en) Semiconductor diode laser having a stepped effective refractive index
US4517674A (en) Zinc-diffused narrow stripe AlGaAs/GaAs double heterostructure laser
JPH05283806A (en) Distributed feedback type laser diode having selectivity installed loss part
JP2927661B2 (en) Super luminescent diode element and method of manufacturing the same
JPS6355877B2 (en)
JPS63255986A (en) Distributed reflection semiconductor laser element
JPH0478036B2 (en)
US6793388B2 (en) Semiconductor laser and fabricating method of the same
JPH05299693A (en) Edge face light emission type semiconductor device
US6738405B1 (en) Semiconductor laser
US5357124A (en) Superluminescent diode with stripe shaped doped region