JPS63255983A - Optical transmitter - Google Patents

Optical transmitter

Info

Publication number
JPS63255983A
JPS63255983A JP62090188A JP9018887A JPS63255983A JP S63255983 A JPS63255983 A JP S63255983A JP 62090188 A JP62090188 A JP 62090188A JP 9018887 A JP9018887 A JP 9018887A JP S63255983 A JPS63255983 A JP S63255983A
Authority
JP
Japan
Prior art keywords
light
emitting element
circuit
temperature
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62090188A
Other languages
Japanese (ja)
Other versions
JP2776501B2 (en
Inventor
Keizo Kashiwagi
柏木 慶三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62090188A priority Critical patent/JP2776501B2/en
Publication of JPS63255983A publication Critical patent/JPS63255983A/en
Application granted granted Critical
Publication of JP2776501B2 publication Critical patent/JP2776501B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/06837Stabilising otherwise than by an applied electric field or current, e.g. by controlling the temperature

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To eliminate the need for providing individually a temperature detecting element and to contrive an increase in the reliability of an optical transmitter by a method wherein the temperature of a light-emitting element is detected from the output signal of a photodetector. CONSTITUTION:An optical transmitter is constituted of a light-emitting element 3, a driving circuit 1 of the element 3 consisting of transistors 11 and 12, a photodetector 4, which is housed in the same package as that of the element 3 and monitors part of the luminescent power of the element 3, a temperature detecting circuit 15 consisting of a low-pass filter 13 for inputting a monitoring current and a first amplifying circuit 14, a luminescent power control circuit 16 for inputting similarly the monitoring current, a Peltier element 9 and a temperature control circuit 8. The temperature of the element 3 is detected by the output signal of the circuit 14 connected to the filter 13. Thereby, a detection of the correct temperature of the light-emitting element is made possible and a highly reliable optical transmitter can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光送信器に関し、特に1発光素子の温度検出回
路を有する光送信器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical transmitter, and more particularly to an optical transmitter having a temperature detection circuit of one light emitting element.

〔従来の技術〕[Conventional technology]

従来、この種の光送信器は、電源変動、温度変動による
発光素子の発光・ぐワー変動を抑圧するために、第3図
に示す構成となっていた。駆動回路1において、ディジ
タル電気信号2によシスイツチングされた発光素子3の
発光パワーは、その発光パワーの一部を発光素子3と同
一・9ツケージに収納された受光素子4でモニタしてい
る。モニタ電流はピーク検出回路5及び増幅回路6で発
光パワーのピーク値に比例した電圧に変換、増幅された
後、駆動回路1に帰還され1発光素子3の駆動電流を制
御している。
Conventionally, this type of optical transmitter has had a configuration shown in FIG. 3 in order to suppress fluctuations in the light emission and power of the light emitting element due to power fluctuations and temperature fluctuations. In the drive circuit 1, a part of the light emitting power of the light emitting element 3, which is switched by the digital electric signal 2, is monitored by a light receiving element 4 housed in the same cage as the light emitting element 3. The monitor current is converted into a voltage proportional to the peak value of the light emitting power and amplified by the peak detection circuit 5 and the amplifier circuit 6, and then fed back to the drive circuit 1 to control the drive current of one light emitting element 3.

また8発光素子3に近接してサーミスタ7等の温度検出
素子を設置し、その出力信号が温度制御回路8を介して
、ベルチェ素子9の電流を制御することにより1発光素
子3と光ファイバ10の結合部における温度を一定にし
て9発光素子3の冷却を行なうと共に光結合部における
光軸ずれを抑制している。
In addition, a temperature detection element such as a thermistor 7 is installed in the vicinity of the eight light emitting elements 3, and the output signal is transmitted between the one light emitting element 3 and the optical fiber 10 by controlling the current of the Bertier element 9 via the temperature control circuit 8. The nine light emitting elements 3 are cooled by keeping the temperature at the coupling portion constant, and optical axis deviation at the optical coupling portion is suppressed.

〔見開が解決しようとする問題点〕[Problems that the two-page spread attempts to solve]

上述した従来の光送信器は、サーミスタの大きさと信頼
性上の問題から発光素子とサーミスタを同一パノケーソ
に収納できないために2発光素子とサーミスタ間の熱抵
抗が大きくなり1発光素子の正確な温度検出ができず、
光送信器の信頼性を低下させるという問題点がある。
In the conventional optical transmitter described above, the light emitting element and the thermistor cannot be housed in the same pano-receptor due to problems with the size and reliability of the thermistor, so the thermal resistance between the two light emitting elements and the thermistor increases, making it difficult to accurately measure the temperature of one light emitting element. Unable to detect
There is a problem in that the reliability of the optical transmitter is reduced.

本発明は従来のもののこのような問題点を解決しようと
するもので1発光素子の正確な温度検出を可能とし、高
信頼性の光送信器を提供するものである。
The present invention aims to solve these problems with the conventional devices, and provides a highly reliable optical transmitter that enables accurate temperature detection of a single light emitting element.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の光送信器は発光素′子と、ディジタル電気入力
信号により発光素子をスイッチングする駆動回路と、前
記発光素子の発光パワーの一部をモニタする受光素子と
、該受光素子の出力信号を入力とする低域通過フィルタ
及び第1の増幅回路と。
The optical transmitter of the present invention includes a light emitting element, a drive circuit that switches the light emitting element using a digital electrical input signal, a light receiving element that monitors a part of the light emitting power of the light emitting element, and an output signal of the light receiving element. A low pass filter and a first amplifier circuit as input.

前記受光素子の出力信号を入力とする発光・ぐワー制御
回路とを有している。発光パワー制御回路は。
and a light emission/warming control circuit which receives the output signal of the light receiving element as input. Light emitting power control circuit.

高域通過フィルタ及びピーク検出回路と第2の増幅回路
から構成されておシ、受光素子の出力信号を入力とし1
発光素子の発光パワーのピーク値に比例した電圧を前記
駆動回路に帰還して、前記発光素子の発光・ぐワー変動
を抑圧する機能をもつ。
It is composed of a high-pass filter, a peak detection circuit, and a second amplifier circuit, and receives the output signal of the light receiving element as input.
It has a function of feeding back a voltage proportional to the peak value of the light emitting power of the light emitting element to the drive circuit to suppress fluctuations in light emission and power of the light emitting element.

本光送信器では、低域通過フィルタに接続された第1の
増幅回路の出力信号により1発光素子の温度検出を行な
う。
In this optical transmitter, the temperature of one light emitting element is detected by the output signal of the first amplifier circuit connected to the low-pass filter.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の回路図である。FIG. 1 is a circuit diagram of an embodiment of the present invention.

この光送信器は1発光素子3と、トランジスタ11.1
2からなる発光素子3の駆動回路1と。
This optical transmitter includes one light emitting element 3 and a transistor 11.1.
A drive circuit 1 for a light emitting element 3 consisting of 2.

発光素子3と同一パッケージに収納され発光素子3の発
光・ぐワーの一部をモニタする受光素子4と。
and a light receiving element 4 which is housed in the same package as the light emitting element 3 and monitors a part of the light emission and glow of the light emitting element 3.

モニタ電流を入力する低域通過フィルター3及び第1の
垢幅回路14からなる温度検出回路15と。
and a temperature detection circuit 15 comprising a low-pass filter 3 and a first width circuit 14 to which a monitor current is input.

同じくモニタ電流を入力とする発光パワー制御回路16
と、ベルチェ素子9と、温度制御回路8から構成されて
いる。
A light emitting power control circuit 16 that also receives the monitor current as input.
, a Bertier element 9 , and a temperature control circuit 8 .

発光パワー制御回路16は、高域通過フィルタ17及び
ピーク検出回路5及び第2の増幅回路6から構成されて
おり、受光素子4のモニタ電流を入力とし1発光パワー
のピーク値に比例した電圧を駆動回路1のトランジスタ
11に帰還することで、温度や時間経過に対する発光・
ぐワーの変動を抑圧している。温度検出回路15の出力
信号は。
The light emission power control circuit 16 is composed of a high-pass filter 17, a peak detection circuit 5, and a second amplifier circuit 6, and receives the monitor current of the light receiving element 4 as input and generates a voltage proportional to the peak value of one light emission power. By feeding back to the transistor 11 of the drive circuit 1, light emission and
This suppresses fluctuations in the flow rate. The output signal of the temperature detection circuit 15 is as follows.

温度制御回路8を介してベルチェ素子9の電流を制御し
1発光素子3の温度を一定にしている。ここで1発光素
子3としてInGaAsP半導体レーデ。
The current of the Bertier element 9 is controlled via the temperature control circuit 8 to keep the temperature of one light emitting element 3 constant. Here, one light emitting element 3 is an InGaAsP semiconductor radar.

受光素子4としてはI nGaAsPINフォトダイオ
ードを用いた。
As the light receiving element 4, an InGaAs PIN photodiode was used.

低域]in過フィルタ13はコンデンサと抵抗器とオ(
アンプからなるアクティブフィルタで構成し。
low frequency] in filter 13 consists of a capacitor, a resistor, and an
It consists of an active filter consisting of an amplifier.

カットオフ周波数を10 Hzに設定することで、変調
信号成分を除去し受光素子4の暗電流だけを取り出す。
By setting the cutoff frequency to 10 Hz, the modulated signal component is removed and only the dark current of the light receiving element 4 is extracted.

受光素子4の暗電流の対数値と温度が比例することから
、第1の増幅回路14はアンチログアンゾを使用し、温
度検出回路15の出力電圧が受光素子4と同一パンケー
ジに収納された発光素子3の温度と比例するようにした
Since the logarithm value of the dark current of the light-receiving element 4 is proportional to the temperature, the first amplifier circuit 14 uses an antiloganzo, and the output voltage of the temperature detection circuit 15 is housed in the same pan cage as the light-receiving element 4. It is made to be proportional to the temperature of the light emitting element 3.

温度制御回路8はオペアンプと基準電圧源とベルチェ駆
動用トランジスタから構成し、温度検出回路15の出力
電圧を入力とし、ベルチェ素子9に流す電流とその極性
を制御し1発光素子3の温度を25℃±2°に設定して
いる。
The temperature control circuit 8 is composed of an operational amplifier, a reference voltage source, and a Beltier drive transistor, and receives the output voltage of the temperature detection circuit 15 as an input, controls the current flowing through the Beltier element 9 and its polarity, and controls the temperature of one light emitting element 3 by 25. It is set at ℃±2°.

発光・ぐワー制御回路16内の、高域通過フィルタ17
はコンデンサと抵抗器で構成し、カットオフ周波数をI
 MHzに設定することで、受光素子4のモニタ電流中
の変調信号成分だけが抽出できる。
High-pass filter 17 in the light emission/glow control circuit 16
consists of a capacitor and a resistor, and the cutoff frequency is set to I
By setting the frequency to MHz, only the modulated signal component in the monitor current of the light receiving element 4 can be extracted.

さらに、ピーク検出回路5及び第2の増幅回路6をオペ
アンプで共に構成し1発光パワーのピーク値に比例した
電圧を±10%の精度で検出できた。
Furthermore, the peak detection circuit 5 and the second amplification circuit 6 were both configured with operational amplifiers, and the voltage proportional to the peak value of one emission power could be detected with an accuracy of ±10%.

この結果、光ファイバ1oのファイバ入力A’ワーの変
動を±0.2dBに抑制することができた。
As a result, it was possible to suppress fluctuations in the fiber input A' power of the optical fiber 1o to ±0.2 dB.

第2図は本発明の他の実施例を示す。第1図の温度検出
回路15の出力信号と基準電圧源18の出力電圧をコン
パレータ19で比較し、・ぐイロットランゾ20を駆動
する。これによシ発光素子3の温度上昇アラームを発生
することができる。
FIG. 2 shows another embodiment of the invention. The comparator 19 compares the output signal of the temperature detection circuit 15 shown in FIG. As a result, a temperature rise alarm for the light emitting element 3 can be generated.

〔発明の効果〕〔Effect of the invention〕

以上説明したように1本発明は受光素子の出力信号から
発光素子の温度検出を行なうことにより。
As explained above, one aspect of the present invention is to detect the temperature of the light emitting element from the output signal of the light receiving element.

個別に温度検出素子を設ける必要がないため、光送信器
を高信頼化すると共に小型化できる効果がある。
Since there is no need to provide a separate temperature detection element, the optical transmitter can be made more reliable and smaller.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はそれぞれ本発明の実施例による光送
信器のブロック図、第3図は従来の光送信器の一例のブ
ロック図である。 1・・・1駆動回路、2・・・ディノタル電気信号、3
・・・発光素子、4・・・受光素子、5・・・ピーク検
出回路。 6・・・第2の増幅回路、7・・・サーミスタ、8・・
・温度制御回路、9・・・ペルチェ素子、10・・・光
ファイバ。 11.12・・・トランジスタ、13・・・低域通過フ
ィルタ、14・・・第1の増幅回路、15・・・温度検
出回路、16・・・発光パワー制御回路、17・・・高
域通過フィにり、18・・・基準tZ 圧源、19・・
・コン)Eレータ、20・・り母イロノトランプ。 第1図 1ら 第2図 j日
FIGS. 1 and 2 are block diagrams of optical transmitters according to embodiments of the present invention, and FIG. 3 is a block diagram of an example of a conventional optical transmitter. 1...1 drive circuit, 2...Dinotal electric signal, 3
... Light emitting element, 4... Light receiving element, 5... Peak detection circuit. 6... Second amplifier circuit, 7... Thermistor, 8...
- Temperature control circuit, 9... Peltier element, 10... optical fiber. 11.12...Transistor, 13...Low pass filter, 14...First amplifier circuit, 15...Temperature detection circuit, 16...Emission power control circuit, 17...High frequency Passing point, 18...Reference tZ Pressure source, 19...
・Con)Ereta, 20・・ri mother Irono Trump. Figure 1 1 and 2 Figure j day

Claims (1)

【特許請求の範囲】[Claims] 1、発光素子と;ディジタル電気入力信号により前記発
光素子をスイッチングする駆動回路と;前記発光素子の
発光パワーの一部をモニタする受光素子と;該受光素子
の出力信号を入力とする低域通過フィルタと;該低域フ
ィルタに接続された第1の増幅回路と;前記受光素子の
出力信号を入力とする、高域通過フィルタと;該高域通
過フィルタの出力信号を受けるピーク検出回路と;ピー
ク検出回路の出力信号を入力とする第2の増幅回路と;
を有し、該第2の増幅回路から出力される、前記発光素
子の発光パワーのピーク値に比例した電圧を、前記駆動
回路に帰還して前記発光素子の発光パワー変動を抑圧す
る光送信器であって、前記第1の増幅回路の出力信号か
ら、前記発光素子の温度検出を行なうことを特徴とする
光送信器。
1. A light-emitting element; a drive circuit that switches the light-emitting element according to a digital electrical input signal; a light-receiving element that monitors a part of the light-emitting power of the light-emitting element; a low-pass circuit that receives the output signal of the light-receiving element as input; a filter; a first amplifier circuit connected to the low-pass filter; a high-pass filter that receives the output signal of the light receiving element; a peak detection circuit that receives the output signal of the high-pass filter; a second amplifier circuit that receives the output signal of the peak detection circuit;
an optical transmitter configured to feed back a voltage proportional to the peak value of the light emission power of the light emitting element output from the second amplifier circuit to the drive circuit to suppress fluctuations in the light emission power of the light emitting element. An optical transmitter, characterized in that the temperature of the light emitting element is detected from the output signal of the first amplifier circuit.
JP62090188A 1987-04-13 1987-04-13 Optical transmitter Expired - Lifetime JP2776501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62090188A JP2776501B2 (en) 1987-04-13 1987-04-13 Optical transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62090188A JP2776501B2 (en) 1987-04-13 1987-04-13 Optical transmitter

Publications (2)

Publication Number Publication Date
JPS63255983A true JPS63255983A (en) 1988-10-24
JP2776501B2 JP2776501B2 (en) 1998-07-16

Family

ID=13991512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62090188A Expired - Lifetime JP2776501B2 (en) 1987-04-13 1987-04-13 Optical transmitter

Country Status (1)

Country Link
JP (1) JP2776501B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110718851A (en) * 2018-07-13 2020-01-21 住友电气工业株式会社 Optical assembly

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934684A (en) * 1982-08-20 1984-02-25 Hitachi Cable Ltd Stabilization circuit for characteristic of semiconductor laser diode
JPS5976490A (en) * 1982-10-26 1984-05-01 Canon Inc Laser light controller

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934684A (en) * 1982-08-20 1984-02-25 Hitachi Cable Ltd Stabilization circuit for characteristic of semiconductor laser diode
JPS5976490A (en) * 1982-10-26 1984-05-01 Canon Inc Laser light controller

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110718851A (en) * 2018-07-13 2020-01-21 住友电气工业株式会社 Optical assembly
CN110718851B (en) * 2018-07-13 2024-05-10 住友电气工业株式会社 Optical assembly

Also Published As

Publication number Publication date
JP2776501B2 (en) 1998-07-16

Similar Documents

Publication Publication Date Title
US4954786A (en) Optical amplifying device
US4955029A (en) Process and device for regulating the light power of laser diodes
US6529534B1 (en) Wavelength controlling circuit for laser signal
US4677632A (en) Coupled loop controller for a laser transmitter
US5781572A (en) Optical wavelength stabilizing system
US9078321B2 (en) Light emitting system with light emitting power stabilization
JP2006013252A (en) Method and circuit for controlling laser diode, and optical transmitter
JPS58140175A (en) Abnormality detecting method for semiconductor laser device
EP0930678A2 (en) Optical transmitter
USH322H (en) Laser diode power controller
JPS63255983A (en) Optical transmitter
CN212908511U (en) Double closed-loop negative feedback control system based on laser
US4471323A (en) Protection circuits for complementary direct-coupled amplifiers
US7834602B2 (en) Feedback power control system for an electrical component
US6339702B1 (en) Output power detection circuit of transmitter
JP2694803B2 (en) Optical semiconductor laser device wavelength stabilization method
JPH0837334A (en) Laser wavelength controller
CN115576372A (en) Double closed-loop control device and method for improving output stability of semiconductor light source
JPH04254387A (en) Temperature control circuit
JPS62155576A (en) Semiconductor laser device
JPH0834328B2 (en) LD emission wavelength controller
JPS6410684A (en) Optical transmitter
JPS63257343A (en) Optical transmitter
JPS63285430A (en) Temperature measuring apparatus
JP2825833B2 (en) Laser diode drive