JPS63255981A - Inhibition of noise of discharge tube - Google Patents

Inhibition of noise of discharge tube

Info

Publication number
JPS63255981A
JPS63255981A JP9057587A JP9057587A JPS63255981A JP S63255981 A JPS63255981 A JP S63255981A JP 9057587 A JP9057587 A JP 9057587A JP 9057587 A JP9057587 A JP 9057587A JP S63255981 A JPS63255981 A JP S63255981A
Authority
JP
Japan
Prior art keywords
discharge tube
noise
magnetic field
magnet
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9057587A
Other languages
Japanese (ja)
Other versions
JPH0531834B2 (en
Inventor
Hiroshi Amamiya
雨宮 宏
Yuichi Sakamoto
雄一 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP9057587A priority Critical patent/JPS63255981A/en
Publication of JPS63255981A publication Critical patent/JPS63255981A/en
Publication of JPH0531834B2 publication Critical patent/JPH0531834B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To eliminate the labor hour for manufacturing a discharge tube by a method wherein the minimum magnetic field is formed in the vicinity of the anode part of the discharge tube to control the noise of the discharge tube. CONSTITUTION:Magnet rows, which respectively consist of 3 pieces of rectangular parallelepiped ferrite magnets M arranging their magnetic poles in the same direction, are formed on the outer peripheral part of a discharge tube T and 4 pieces of these magnet rows are arranged in such a way that the polarities of the magnetic poles opposing to each other become the same one, that is, a fellow S or a fellow N and the polarities of the magnetic poles of the adjacent magnet rows are made to differ from each other to form 4 poles. The magnetic field which is formed by such the magnet groups is 0 in the central axis and the absolute value is increased as the magnetic field heads for the radial direction and the configuration of the minimum magnetic field is formed. Accordingly, the fluctuations of an electron density, an electron temperature and an energy distribution, which are a plasma parameter, are suppressed in the vicinity of an anode A and the noise of the discharge tube is inhibited. Thereby, an existing discharge tube can be used and the labor hour for manufacturing a new discharge tube can be omitted.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は放電管の雑音を抑制する方法に関し、特に陽光
柱内の雑音を放電管内の電極等と電気的接触なしに抑制
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for suppressing noise in a discharge tube, and more particularly to a method for suppressing noise in a positive column without electrical contact with electrodes or the like in the discharge tube.

(従来の技術) 一般に放電管の特性は圧力、電流、電圧といった巨視的
な量で把握されがちであるが、電子密度、電子温度、エ
ネルギー分布等の物理量(プラズマパラメータ)で把握
する方がより正確である。プラズマパラメータを測定す
るのにラングミニアブローブが汎用されている。しかし
プローブ特性は放電管中に雑音があるとそれによる歪み
を受は非常に誤った情報をあたえることになる 〔F、 W、 Crawford:J、Appl、 P
hys、34 (1963) 1897 :I。
(Prior art) In general, the characteristics of a discharge tube tend to be understood in terms of macroscopic quantities such as pressure, current, and voltage, but it is better to understand them in terms of physical quantities (plasma parameters) such as electron density, electron temperature, and energy distribution. Accurate. Langminier probes are commonly used to measure plasma parameters. However, if there is noise in the discharge tube, the probe characteristics will be distorted, giving extremely incorrect information [F, W, Crawford: J, Appl, P
hys, 34 (1963) 1897:I.

特に雑音エネルギー振幅が電子温度程度に近づくと歪は
一層増大される。一般に放電管中の電子温度は数eV付
近である。従って、雑音成分の最大振幅を0. I V
以下に抑えることは信頼性のある測定において不可欠な
事項である。従って、ブローブ測定が雑音に影響される
ことなく測定されるか否かが、その放電管の優劣を判断
する1つの重要な評価である。放電管中には種々の雑音
が存在する。
In particular, when the noise energy amplitude approaches the electron temperature, the distortion is further increased. Generally, the electron temperature in a discharge tube is around several eV. Therefore, the maximum amplitude of the noise component is set to 0. IV
It is essential for reliable measurements to be kept below. Therefore, whether or not probe measurements can be made without being affected by noise is an important evaluation for determining the quality of a discharge tube. Various types of noise exist in a discharge tube.

その主なものは陰極からの1次電子による高周波振動、
イオン音波性雑音、陽光柱内の移動縞、陽極振動、電源
の揺らぎ1と起因する雑音、ハム等である。これらの雑
音は発生源が互いに独立であっても相互に結合していて
、そのうち1つを抑制することにより他の雑音も抑制さ
れることが多い。
The main one is high frequency vibration caused by primary electrons from the cathode.
These include ion sonic noise, moving stripes in the positive column, anode vibration, noise caused by fluctuations in the power supply, hum, etc. Even if the sources of these noises are independent from each other, they are coupled to each other, and suppressing one of them often suppresses the other noises as well.

これまで雑音制御法として種々の方法が考案されてきた
。その主なものは(1)陽極からの振動を検出し移相、
適当な振幅まで増幅したのち逆位相で陰極に戻すことに
より雑音制御を行う負帰還法〔T。
Various methods have been devised as noise control methods. The main ones are (1) detecting vibrations from the anode and shifting the phase;
Negative feedback method [T.

K、Chu  and  H,W、Hendel:Pr
oc、Symp、Feedback  andDyna
mic Control of Plasmas、Pr
1nceton、N、J。
K, Chu and H, W, Handel: Pr.
oc, Symp, Feedback and Dyna
mic Control of Plasmas, Pr
1nceton, N.J.

(American In5titute of Ph
ysics、NewYork)1970〕、(2)熱陰
極放電管の場合傍熱型陰極のヒータ電流を加減して雑音
を最小に調節する方法〔K、Ohe andS、 Ta
keda: Jpn、 J、 Appl、 Phys、
 11(1972) 1173.  及び畑中、前田、
宗像、産出、西辻゛電気学会論文誌AlO2−11(1
982) 575 ’] 、(3)電極の前方にグリブ
トを配置しこれに適当な電圧を与えて振動を最小になる
ように抑制する方法〔亀ケ谷:電気学会誌89−7(1
969)1218〕、(4)陽極の型を紡錘型とし陽極
柱の等電位面に平行に合わせることにより境界条件を最
適に工夫する方法〔畑中、前田、宗像、産出、西辻:電
気学会論文誌AlO2−11(1982) 575 〕
、(5)放電管(とくにレーザー管のように細長い管の
場合)を適当な長さに裁断し移動縞型振動が成長しない
ようにする方法(T、 5uzuki:Jpn、 J、
 Appl。
(American In5titude of Ph.
ysics, New York) 1970], (2) In the case of hot cathode discharge tubes, a method of adjusting the heater current of the indirectly heated cathode to minimize noise [K, Ohe and S, Ta
keda: Jpn, J, Appl, Phys,
11 (1972) 1173. and Hatanaka, Maeda,
Munakata, production, Nishitsuji, Institute of Electrical Engineers of Japan journal AlO2-11 (1
982) 575'], (3) A method of suppressing vibration to a minimum by placing a glybut in front of the electrode and applying an appropriate voltage to it [Kamegaya: Journal of the Institute of Electrical Engineers of Japan 89-7 (1)
969) 1218], (4) A method of optimizing the boundary conditions by making the anode spindle-shaped and aligning it parallel to the equipotential surface of the anode column [Hatanaka, Maeda, Munakata, Isan, Nishitsugu: Transactions of the Institute of Electrical Engineers of Japan] AlO2-11 (1982) 575]
, (5) A method of cutting a discharge tube (especially in the case of a long and thin tube such as a laser tube) to an appropriate length to prevent the growth of moving striped vibrations (T, 5uzuki: Jpn, J,
Appl.

Phys、 9 (1970) 309 )等である。Phys, 9 (1970) 309), etc.

(発明が解決しようとする問題点) しかし、負帰還法は比較的雑音スペクトルが鋭い場合で
ないと有効でない。また他の方法も全て放電管の構造に
関するものであるから、放電管を作成する際に面倒な製
作の手間を要する上、広い放電条件、即ち圧力、電流範
囲に対して万能でない。
(Problems to be Solved by the Invention) However, the negative feedback method is not effective unless the noise spectrum is relatively sharp. Furthermore, since all other methods relate to the structure of the discharge tube, they require troublesome manufacturing work when producing the discharge tube, and are not universally applicable to wide discharge conditions, ie, pressure and current ranges.

(問題点を解決するための手段) 本発明は以上の欠点を克服すべく創案されたもので、放
電管の陽極部の近傍に極小磁場を形成することにより放
電管の雑音を制御した。
(Means for Solving the Problems) The present invention was devised to overcome the above drawbacks, and controls the noise of the discharge tube by forming a minimal magnetic field near the anode portion of the discharge tube.

この極小磁場は、放電管の陽極部の外周に設置された永
久磁石、電磁石、コイルにより形成される。
This minimal magnetic field is formed by a permanent magnet, an electromagnet, and a coil installed around the outer periphery of the anode section of the discharge tube.

(作 用) 放電管の陽極の近傍に極小磁場を形成すると、陽極近く
においてプラズマパラメータである電子密度、電子温度
、エネルギー分布のゆらぎが抑えられ、雑音が抑制され
る。
(Function) When a minimal magnetic field is formed near the anode of the discharge tube, fluctuations in plasma parameters such as electron density, electron temperature, and energy distribution near the anode are suppressed, and noise is suppressed.

放電管がレーザー発振管の場合は光出力の安定化が図れ
ることになる。
If the discharge tube is a laser oscillation tube, the light output can be stabilized.

(発明の効果) 本発明によると、単に陽極付近に極小磁場を形成するだ
けでよいので、既存の放電管を使用することができる。
(Effects of the Invention) According to the present invention, it is sufficient to simply form a minimal magnetic field near the anode, so an existing discharge tube can be used.

従って、新たな放電管製作の手間が省ける。また、広い
放電条件に対応することができる。
Therefore, the effort of manufacturing a new discharge tube can be saved. Moreover, it can correspond to a wide range of discharge conditions.

(実施例) 以下、添付図を参照して本発明の詳細な説明を行い、本
発明の効果をオッシロスコープ、スペクトラムアナライ
ザ、プローブによる測定から明らかにする。
(Example) Hereinafter, the present invention will be described in detail with reference to the attached drawings, and the effects of the present invention will be clarified through measurements using an oscilloscope, a spectrum analyzer, and a probe.

第1図は本発明の一実施例を示す縦断面図である。通常
の放電装置と同様、円筒型放電管Tの内部に陽極Aおよ
び傍熱型陰極Kが配置さている。
FIG. 1 is a longitudinal sectional view showing one embodiment of the present invention. Like a normal discharge device, an anode A and an indirectly heated cathode K are arranged inside a cylindrical discharge tube T.

これら電極間には直流電源■8、によって電圧が印加さ
れている。安定抵抗Rを介して流れる電流は電流計Iに
より、放電管内のプラズマパラメータはラングミューア
ブローブP1  により、そして雑音は雑音ピックアッ
プ用の雑音検出プローブP2により検出される。第2図
に詳細に示される様に、放電管Tの外周部分には、3個
の長方体フェライト磁石Mが磁極が同一の向きで並べら
れて磁石列が形成されている。この磁石列4個が、対向
する磁極の極性が同−即ちS同士、N同士となり、隣接
する磁石列の磁極の極性は異なって4極を成すように配
置されている。このようにして構成された磁石群により
作られる磁場Bの特徴は中心軸ではB= O,径方向に
向かうにつれてBの絶対値は増加し、極小磁場配位が形
成される。なお、磁力線は磁石の面にカスプとなる。
A voltage is applied between these electrodes by a DC power source (8). The current flowing through the stabilizing resistor R is detected by an ammeter I, the plasma parameters in the discharge tube are detected by a Langmuir probe P1, and the noise is detected by a noise detection probe P2 for noise pickup. As shown in detail in FIG. 2, on the outer periphery of the discharge tube T, three rectangular ferrite magnets M are arranged with their magnetic poles in the same direction to form a magnet row. These four magnet rows are arranged so that the polarities of the opposing magnetic poles are the same, that is, S and N, and the polarities of the magnetic poles of adjacent magnet rows are different, forming four poles. The characteristic of the magnetic field B created by the magnet group configured in this way is that B=O at the central axis, and the absolute value of B increases as it goes in the radial direction, forming a minimum magnetic field configuration. Note that the lines of magnetic force form a cusp on the surface of the magnet.

第3b図および第3C図はそれぞれ第3a図に示される
磁石配置におけるa−a’およびb−b’線に沿った磁
場強度を示すグラフである。a−a’力方向はr = 
2.2 cmで最大、b−b’力方向は磁石の面r =
 2.8 C[Dで最大になる。等磁場面(アイソパー
)は同軸のほぼ4角柱に近い形となる。雑音検出プロー
ブP2 で検出した雑音のオッシログラフ波形を、磁石
を陽極付近に第2図のように配置した場合と配置しない
場合についてそれぞれ第4b図と第4a図に示す。また
、周波数スペクトルを同様にして磁石を陽稀付近に第2
図のように配置した場合と配置しない場合についてそれ
ぞれ第5b図と第5a図に示す。雑音信号はピックアッ
ププローブからコンデンサを経て更に必要に応じて1/
10オシロスプローブを経てオッシロスコープ及びスペ
クトラムアナライザに導入することにより監視した。こ
の例では圧力p=o、04Torr、電流i = 3 
QmA、放電管内ガスはAr1管径は5. Octll
、管長は30cmである。第4a図ないし第5b図から
分かるように、磁石M群を配置した時は配置しない前と
比べ雑音強度は略20dB程度に落ちていることが分か
る。
Figures 3b and 3c are graphs showing the magnetic field strength along lines a-a' and bb', respectively, for the magnet arrangement shown in figure 3a. a-a' force direction is r =
Maximum at 2.2 cm, b-b' force direction is magnet surface r =
2.8 C [Maximum at D. The isomagnetic scene (isopar) has a shape close to that of a coaxial square prism. Oscillographic waveforms of noise detected by the noise detection probe P2 are shown in FIGS. 4b and 4a, respectively, with and without a magnet placed near the anode as shown in FIG. In addition, with the same frequency spectrum, a second magnet was placed near Yoki.
5b and 5a respectively show the case where the arrangement is as shown and the case where it is not arranged as shown in the figure. The noise signal is passed from the pickup probe to the capacitor and then further connected to 1/2 as necessary.
Monitoring was performed by introducing an oscilloscope and a spectrum analyzer through a 10 oscilloscope probe. In this example pressure p=o, 04Torr, current i=3
QmA, the gas inside the discharge tube is Ar1 tube diameter is 5. Octll
, the pipe length is 30 cm. As can be seen from FIGS. 4a to 5b, when the magnet group M is arranged, the noise intensity is reduced to about 20 dB compared to before it is not arranged.

第6a図および第6b図はプローブPl で測定ラング
ミュアプローブ特性l、とビート法(HoAmemiy
a:J、Phys、 Sac、 Japan 36(1
974) 1712)で測定したエネルギー分布に対応
する2次微分波形lP”である。第6a図が磁石M群な
しの場合に対応する。第6b図から分かるように上記磁
石M群により陽極付近に極小磁場配位を形成すると、雑
音を抑制することができ、エネルギー分布やプローブ特
性が歪なく測定できることが分かる。
Figures 6a and 6b show the Langmuir probe characteristic l measured with probe Pl and the Beat method (HoAmemiy
a: J, Phys, Sac, Japan 36 (1
974) 1712). Figure 6a corresponds to the case without the magnet group M. As can be seen from figure 6b, the magnet group M causes the magnets to move near the anode. It can be seen that by forming a minimal magnetic field configuration, noise can be suppressed and energy distribution and probe characteristics can be measured without distortion.

第2図に示される4つの磁石列は互いに分離されて描か
れているが、実際は非磁性の枠により固定し、枠と磁石
群は放電管軸に沿って4個を配置した状態のまま軸方向
に可動、またθ方向に回転可能とすることができる。磁
石枠を軸方向に適当な距離だけ移動したり、θ方向に適
当に回転することにより最大抑制を達成することができ
る。
Although the four magnet rows shown in Figure 2 are drawn separated from each other, they are actually fixed by a non-magnetic frame, and the frame and magnet group remain aligned with the four magnets arranged along the discharge tube axis. It can be made movable in the direction and rotatable in the θ direction. Maximum suppression can be achieved by moving the magnet frame an appropriate distance in the axial direction or rotating it in the θ direction.

磁場の有効な適用条件は次の関係式によって与えられる
The effective application conditions for the magnetic field are given by the following relation:

ωτ〉■ ここで、ωは電子のサイクロトロン角周波数でω−eB
/m (e :電子の電荷、m:電子の質量)。
ωτ〉■ Here, ω is the cyclotron angular frequency of the electron and ω-eB
/m (e: electron charge, m: electron mass).

Bは放電管陽極の半径rA での磁場強度である。B is the magnetic field strength at the radius rA of the discharge tube anode.

一方、τは電子のガス分子との衝突周波時間で、τ=λ
/■8(λ:電子の平均自由行程、■o:電子の熱速度
)で与えられる。V、−(8kT。
On the other hand, τ is the collision frequency time of electrons with gas molecules, and τ=λ
/■8 (λ: mean free path of electron, ■o: thermal velocity of electron). V, -(8kT.

/πm ) l/2−6、T X 10’ T、 ”2
cm/S、又T、、はeV単位、λ”(PPC)−’、
P:ガス圧(Torr) 、Po: ITorrのもと
てl cm当たりの衝突の頻度でBrownのデータ(
S、C4Brown:Ba5ic Dataof PI
as+na Physics、John Wiley 
& 5ons Inc、1959)等から得られるもの
である。
/πm) l/2-6, T X 10' T, "2
cm/S, T, is in eV unit, λ''(PPC)-',
P: gas pressure (Torr), Po: source of ITorr, Brown's data (frequency of collisions per cm)
S, C4Brown:Ba5ic Data of PI
as+na Physics, John Wiley
& 5ons Inc., 1959).

第2図では各3個の長方形磁石からなる4個の磁石列を
用いる振動抑制力の実施例を示したが、本発明はこれに
ついて限定されるものではなく、又磁石列の数も4個以
外に6個、8個等としてよくこれに応じて6極、8極等
極小磁場配位が達成される。磁極数を2nとすることに
より磁場強度はr″−1に比例する形でr=0から変化
し、また、θ方向の一様性がよくなる。そして陽極で固
定される陽光柱の形はn=2の時は棒状、n=3の時は
3角状、n=4の時は4角状、・・・・・・というよう
に変化する。更に、磁石としてはフェライト磁石を用い
たが場合に応じ希土類磁石でもよいし、その形も長方形
に限定されるものではなく円形等の任意の形にすること
が出来る。更に、第7図に示すように、磁極を対向する
ことなく極小磁場配位を形成することもできし、ソレノ
イドコイル等な電磁石を用いてもよい。
Although FIG. 2 shows an example of the vibration suppressing force using four magnet rows each consisting of three rectangular magnets, the present invention is not limited to this, and the number of magnet rows is also four. In addition, six, eight, etc. may be used to achieve minimum magnetic field configurations such as six poles and eight poles. By setting the number of magnetic poles to 2n, the magnetic field strength changes from r=0 in proportion to r''-1, and the uniformity in the θ direction becomes better.The shape of the positive column fixed by the anode is n. When n = 2, it changes to a bar shape, when n = 3, it changes to a triangular shape, when n = 4, it changes like a square shape, etc.Furthermore, a ferrite magnet was used as the magnet. Depending on the case, a rare earth magnet may be used, and its shape is not limited to a rectangle, but can be any shape such as a circle.Furthermore, as shown in Fig. Coordination may be formed, and electromagnets such as solenoid coils may be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による雑音抑制磁石群と放電
管の断面図、 第2図は本発明の一実施例による雑音抑制磁石群と放電
管の斜視図、 第3a図、第3b図および第3c図は本発明の一実施例
による雑音抑制磁石群が作り出す磁場強度分布図、 第4a図および第4b図はそれぞれ放電管雑音のオッシ
ログラフトレースと本発明磁石群による雑音抑制後のト
レースを示すグラフ、 第5a図および第5b図はそれぞれ放電管雑音のスペク
トラムアナライザ上の雑音スペクトラムと本発明により
雑音を抑制した後のスペクトラムを示すグラフ、 第6a図および第6b図はプローブ特性1.とその二次
微分曲線】P′を示すグラフ、第7図は極小磁場配位の
別の形成法を示す斜視図。 M・・・磁石、T・・・放電管、A・・・陽極、K・・
・傍熱型陰極、P、・・・ラングミュアプローブ、P2
 ・・・雑音検出プローブ、■・・・電流計、R・・・
安定抵抗、■6・・・直流電源、B・・・磁場。 嬬了図 竿1 図 嫡2図 第 3α図 悄3b図 鴫3C図 と(cm) 第 一吋間 4図 竺5図 (α) (b) 醜6CL図 Vp(V) 第6b図 Vp(V)
FIG. 1 is a sectional view of a noise suppression magnet group and a discharge tube according to an embodiment of the present invention, FIG. 2 is a perspective view of a noise suppression magnet group and a discharge tube according to an embodiment of the present invention, FIGS. 3a and 3b Figures 3 and 3c are magnetic field strength distribution diagrams created by the noise suppression magnet group according to an embodiment of the present invention, and Figures 4a and 4b are oscillographic traces of discharge tube noise and the results after noise suppression by the magnet group of the present invention, respectively. Graphs showing traces. Figures 5a and 5b are graphs showing the noise spectrum of discharge tube noise on a spectrum analyzer and the spectrum after noise suppression according to the present invention, respectively. Figures 6a and 6b are probe characteristics 1. .. and its second-order differential curve] P', and FIG. 7 is a perspective view showing another method of forming the minimal magnetic field configuration. M...Magnet, T...Discharge tube, A...Anode, K...
・Indirectly heated cathode, P, ...Langmuir probe, P2
...Noise detection probe, ■...Ammeter, R...
Stable resistance, ■6...DC power supply, B...magnetic field. Figure 1 Figure 2 Figure 3α Figure 3b Figure 3C and (cm) Figure 1 4 Figure 5 (α) (b) Ugly 6CL Figure Vp (V) Figure 6b Vp (V )

Claims (1)

【特許請求の範囲】[Claims] 放電管の陽極の近傍に極小磁場配位を形成して放電管の
雑音を抑制することを特徴とする方法。
A method characterized by suppressing noise in the discharge tube by forming a minimal magnetic field configuration near the anode of the discharge tube.
JP9057587A 1987-04-13 1987-04-13 Inhibition of noise of discharge tube Granted JPS63255981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9057587A JPS63255981A (en) 1987-04-13 1987-04-13 Inhibition of noise of discharge tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9057587A JPS63255981A (en) 1987-04-13 1987-04-13 Inhibition of noise of discharge tube

Publications (2)

Publication Number Publication Date
JPS63255981A true JPS63255981A (en) 1988-10-24
JPH0531834B2 JPH0531834B2 (en) 1993-05-13

Family

ID=14002225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9057587A Granted JPS63255981A (en) 1987-04-13 1987-04-13 Inhibition of noise of discharge tube

Country Status (1)

Country Link
JP (1) JPS63255981A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001003256A1 (en) * 1999-07-02 2001-01-11 Jens Christiansen Gas laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001003256A1 (en) * 1999-07-02 2001-01-11 Jens Christiansen Gas laser

Also Published As

Publication number Publication date
JPH0531834B2 (en) 1993-05-13

Similar Documents

Publication Publication Date Title
US7163602B2 (en) Apparatus for generating planar plasma using concentric coils and ferromagnetic cores
US5659276A (en) Magnetic field generator for magnetron plasma
GB2137409A (en) Scanning a charged particle beam
EP0295649B1 (en) Magnetron sputter apparatus and method for forming films by using the same apparatus
JPS61190070A (en) Sputter device
JPS63255981A (en) Inhibition of noise of discharge tube
Hershkowitz et al. Surface trapping of primary electrons by multidipole magnetic fields
Luccio et al. Studies on the magnetic field of a permanent magnet undulator for a free electron laser
Rautenbach Experimental verification of the space charge law (I= k (e/m) 12V32) for ion beams from a plasma ion source
Boswell et al. Wave phenomena preceding and during a beam‐plasma discharge
Harries et al. Plasma Containment in a Quadrupole Configuration
Roberts et al. Harmonically resonant cavity as a bunch-length monitor
JP3272202B2 (en) Magnetic field generator for magnetron plasma
Kubo et al. Plasma measurements with triple and single probes in an asymmetrical parallel plate rf plasma reactor
SU1511655A1 (en) Method of forming the polarizing magnetic field in radiospectroscopic dap
SU1649399A1 (en) Polarizing magnetic field source for radiospectrometric equipment
JPS62147733A (en) Plasma processor
JP2766957B2 (en) Multiple electromagnets connected in series
JP3957844B2 (en) Magnetic field generator for magnetron plasma
SU1603545A1 (en) Method of producing ion stream
Fujita et al. Plasma states in a cylindrical cusp-shaped magnetic field composed of a permanent magnet array
Bhushan Analysis of IV Characteristics of Plasma using Langmuir Probe
JPH03266350A (en) Exb type energy filter
JP2870473B2 (en) Ion source device
Barden et al. The use of an electron beam for the accurate measurement of alternating magnetic field strengths