JPS63255649A - Differential scanning calorimeter - Google Patents

Differential scanning calorimeter

Info

Publication number
JPS63255649A
JPS63255649A JP9057987A JP9057987A JPS63255649A JP S63255649 A JPS63255649 A JP S63255649A JP 9057987 A JP9057987 A JP 9057987A JP 9057987 A JP9057987 A JP 9057987A JP S63255649 A JPS63255649 A JP S63255649A
Authority
JP
Japan
Prior art keywords
heat
sample
heat sink
specimen
sample holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9057987A
Other languages
Japanese (ja)
Other versions
JPH0823535B2 (en
Inventor
Ryoichi Kinoshita
良一 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP62090579A priority Critical patent/JPH0823535B2/en
Publication of JPS63255649A publication Critical patent/JPS63255649A/en
Publication of JPH0823535B2 publication Critical patent/JPH0823535B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To prevent the lowering in the calorific value detection sensitivity of a detector, by embedding a specimen holder in the recessed cavity of a heat sink to reduce the conduction of heat due to radiation even in a high temp. region. CONSTITUTION:Recessed cavities 2, 3 are provided to the surface of a heat sink 1 and the specimen holder 4 on a specimen side is embedded in the cavity 2 and the specimen holder 5 on a reference substance side is embedded in the cavity 3. A specimen and specimen container 9 are provided in the holder 4 and a reference substance and reference substance container 10 are provided in the holder 5. When the temp. of the heat sink 1 is controlled by a heating oven 11, a heat stream is supplied to the specimen and the reference substance from the heat sink 1 through the specimen holders 4, 5. Therefore, by measuring the voltage between platinum-rhodium 13% wires 6, 7, the temp. difference between the holders 4, 5 can be detected and the lowering in the calorific value detection sensitivity of a detector can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、示差走査熱量計(以降DSCと略す)に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a differential scanning calorimeter (hereinafter abbreviated as DSC).

〔発明の概要〕[Summary of the invention]

本発明は熱流束型DSCにおいて、高温域(約1000
′C付近)での輻射での熱の伝達の影響による、熱流検
出器の熱量検出感度の低下を小さくする事を目的とする
ため、2つ以上の凹状のくぼみを持つヒートシンクと、
このヒートシンクの凹状のくぼみにほぼはいる形の試料
ホルダーと、前記ヒートシンクを温度コントロールする
手段とから構成され、高温域(例えば金の融点1063
℃付近)においても試料ホルダーへの輻射による熱の伝
達量を小さくし、低温域(例えば金属インジウムの融点
156.6℃付近)と同様に主としてヒートシンクから
の熱伝導により試料ホルダーへ熱が流れる様にし、上記
目的を達成させたものである。
The present invention is a heat flux type DSC in a high temperature range (approximately 1000
In order to reduce the decrease in the heat detection sensitivity of the heat flow detector due to the effect of heat transfer by radiation at temperatures near
It consists of a sample holder that almost fits into the concave recess of this heat sink, and a means for controlling the temperature of the heat sink.
Even at low temperatures (near This has achieved the above objectives.

〔従来の技術〕[Conventional technology]

従来のこの種のDSCの構造は第20図熱測定討論会講
演要旨り b −02に見られ、第3図に示す様に、試
料及び試料容器59、並びに基準物質及び基準物質用容
器60を設置するための試料側並びに基準物質側の試料
ホルダー54.55がヒートシンク51に対し、凸状に
飛び出した構造であった。
The structure of a conventional DSC of this type is shown in Figure 20 (B-02), and as shown in Figure 3, it has a sample and sample container 59, a reference material and a reference material container 60. The sample holders 54 and 55 on the sample side and the reference material side for installation had a structure in which they protruded in a convex shape with respect to the heat sink 51.

〔発明が解決しようとする問題点] ■二二足来技術においては、検出器の熱星検出感度が低
温域(例えば金属インジウムの融点156.6°C付近
)に比べ、高温域(例えば金の融点1063°CイζJ
近)では著しく低下するという欠点があった。
[Problems to be solved by the invention] ■ In the 22-day technology, the sensitivity of the detector for detecting hot stars is lower in the high temperature range (for example, around the melting point of metal indium, 156.6°C) than in the low temperature range (for example, around the melting point of metal indium, 156.6°C). The melting point of 1063°C ζJ
However, in recent years, the disadvantage was that it decreased significantly.

一般にタフ1泊束型DSCの熱量検出系の構造は、従来
例第3図の様に試料及び試料容器5つを設置するための
試料側試料ホルダー54、基準物質及び基準物質用容器
60を設置するための基準物質側試料ホルダー55を設
i、I、各試料ホルダー54、55と温度コントロール
されたヒートシンク51の間を適切な熱抵抗体52でつ
なぎ、各試料ホルダー54.55間に示差型に熱電対等
(例示差型熱電対56)の温度差検出器を設け、各試料
ホルダー54、55間の温度差を検出する構造となって
いる。
In general, the structure of the calorific value detection system of the Tough overnight bundle type DSC is as shown in the conventional example shown in Fig. 3, which includes a sample holder 54 on the sample side for installing the sample and five sample containers, a reference material and a container 60 for the reference material. A sample holder 55 on the reference material side is installed to connect each sample holder 54, 55 and a temperature-controlled heat sink 51 with an appropriate thermal resistor 52, A temperature difference detector such as a thermocouple (for example, a differential thermocouple 56) is provided in the sample holder 54 to detect the temperature difference between the sample holders 54 and 55.

この検出された温度差は、ヒートシンク51から各熱抵
抗体52、各試料ホルダー54.55を通して、それぞ
れ試料及び試料容器59、基【1!!物質及び基(1鼾
物質用容器60に熱伝導が流れる熱流の差に比例する。
This detected temperature difference is transmitted from the heat sink 51 through each thermal resistor 52 and each sample holder 54, 55 to the sample and sample container 59, and the base [1! ! Heat conduction is proportional to the difference in heat flow between the substance and the substance container 60.

第4図+a+、 (blに従来例のDSCで試料を測定
した時の熱の流れを低温域(例えば金属インジウムの融
点156.6°C付近)で測定した場合と(第4図(a
))と、高温域(例えば金の融点1063°Cイ・J近
)で測定した場合(第4図(b))とで比較して示した
Figure 4 +a+, (bl) shows the heat flow when measuring a sample with a conventional DSC in a low temperature range (e.g. around the melting point of metallic indium, 156.6°C) and (Figure 4 (a)
)) and when measured in a high temperature range (for example, near the melting point of gold, 1063° C.) (Fig. 4(b)).

第4図でシ41試料側試料ホルダー54、周辺部のみ示
した。基で1L物質側試料ホルダ一55周辺部は、試料
側試料ホルダー54周辺部と対称の形状で熱の流れは第
4図に示した流れに準する。
In FIG. 4, only the peripheral portion of the sample holder 54 on the sample side of the sample 41 is shown. The periphery of the 1L substance side sample holder 55 is symmetrical to the periphery of the sample holder 54 on the sample side, and the flow of heat conforms to the flow shown in FIG.

低温域では、試料への熱の流れは熱伝導によるし−トシ
ンクからの熱の流れ64が主であるか、高温域では熱伝
導によるヒートシンクからの熱の流れ65の他に、ヒー
トシンクからの輻射による熱の流れ66や、加熱炉壁か
らの輻射によるクハの流れ67が大きな量として存在す
る。これは、よく知られた様に、2物体間の輻射による
熱の伝達量はこの2物体の名絶対温度の4乗の差に依存
するためで、イ!\温域(156,6°C付近)では問
題にならない様な、ヒートシンク51や外界(加熱炉壁
62等)からの試料ボルダ一部への輻射による熱流入量
も、高温域(1063°C付近)では大きな量となるた
めである。
In the low temperature range, the heat flow to the sample is mainly due to heat flow 64 from the heat sink due to thermal conduction, or in the high temperature range, in addition to the heat flow 65 from the heat sink due to heat conduction, there is also radiation from the heat sink. There is a large amount of heat flow 66 caused by heat flow and heat flow 67 caused by radiation from the heating furnace wall. This is because, as is well known, the amount of heat transferred by radiation between two objects depends on the difference in the nominal absolute temperature of the two objects to the fourth power. \The amount of heat flowing into a part of the sample boulder from the heat sink 51 and the outside world (heating furnace wall 62, etc.), which would not be a problem in the high temperature range (near 156.6°C), This is because the amount is large in the vicinity).

ちなみに2物体の表面状態が変化セす、且つ、2物体間
の温度差が変化しない場合でも、156.6°C付近で
のこの2物体間の輻射による熱の伝達量に対し、106
3°C付近でのこの2物体間の輻射による熱の伝達量は
約304@となる。
By the way, even if the surface conditions of two objects change and the temperature difference between the two objects does not change, the amount of heat transferred by radiation between these two objects at around 156.6°C is 106
The amount of heat transferred by radiation between these two objects at around 3°C is approximately 304@.

示差型熱電対56で検出する温度差は、熱伝導によるヒ
ートシンクからの熱の流れ64.65の試料側、基準物
質側での熱流差に比例している。従って、試料及び基準
物質への全体の熱の流れの、試料側。
The temperature difference detected by the differential thermocouple 56 is proportional to the difference in heat flow 64,65 from the heat sink due to thermal conduction between the sample side and the reference material side. Therefore, the sample side of the total heat flow to the sample and reference material.

基準物質側での熱流差に対する、示差熱電対56で検出
され換算される熱流差の比率は、低温域に比較し高温域
では著り、<小さくなる。これは検出器の熱量検出感度
の著しい低下を意味する。
The ratio of the heat flow difference detected and converted by the differential thermocouple 56 to the heat flow difference on the reference material side becomes significantly smaller in the high temperature range than in the low temperature range. This means that the sensitivity of the detector for detecting the amount of heat is significantly reduced.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記の欠点をなくすため開発されたもので、2
つ以トの凹状のくぼみをもつヒートシンクと、このヒー
トシンクの凹状のくぼみにほぼはいる形の試料ホルダー
と、前記ヒートシンクを温度コンl−ロールする手段と
から構成されている。
The present invention was developed to eliminate the above-mentioned drawbacks.
The heat sink is comprised of a heat sink having two concave recesses, a sample holder that fits approximately into the concave recesses of the heat sink, and means for controlling the temperature of the heat sink.

〔作用〕[Effect]

上記構成の作用は、ヒートシンクを温度コントロールす
る1段(例えばヒーター13を巻いた加熱炉11)によ
りヒートシンク温度が高温域(例えば金の融点1063
°C44近)に上げられた場合でも、試料ボルダ一部へ
の熱の流入はヒートシンクからの熱伝導が主体で、例え
ば加熱炉壁12等からの輻射による熱の流入量を小さく
し、熱流検出器での熱量検出感度の低下をおさえる。
The effect of the above configuration is that the heat sink temperature is controlled in a high temperature range (for example, the melting point of gold is 1063
Even when the temperature is raised to a temperature close to 44 °C, the inflow of heat into a part of the sample boulder is mainly due to heat conduction from the heat sink. Prevents the decrease in heat detection sensitivity in the device.

〔実施例〕〔Example〕

第1図は本発明にかかるDSCの実施例の断面図を示す
。1はアルミナ製のし−1−シンクで、凹4Je(7)
 < ホミ2 、 3がヒートシンク表面上に対称位置
につけられている。凹状のくぼみ2には試料側試i」ホ
ルダー4が、凹状のくぼみ3には% Yp物質側試料ホ
ルダー5が埋め込まれ、それぞれヒートシンク1とアル
ミナ系接着剤又は打ち込め等、の手法で定まった接触状
態を保っている。
FIG. 1 shows a cross-sectional view of an embodiment of a DSC according to the invention. 1 is alumina sink-1-sink, concave 4Je (7)
<Homs 2 and 3 are placed at symmetrical positions on the heat sink surface. A sample holder 4 on the sample side is embedded in the concave depression 2, and a sample holder 5 on the %Yp material side is embedded in the concave depression 3, and each is in contact with the heat sink 1 by a method such as alumina adhesive or implantation. maintains its condition.

各試料ホルダーは試才」ホルダー内側20が白金、試料
ホルダー外側21が白金−ロジウム13%合金でできて
おり、内と夕■は多点溶接等で一体化してしする。各試
料ホルダー底面の表面にはそれぞれ白金−ロジウム13
%線6.7が溶接されており、又各試料ホルダーの内側
20の白金部に白金線8が溶接されており、試料側試料
ホルダー4と基準物質側試料ホルダー5とはこの白金線
8により電気的導通が保たれている。
Each sample holder is made of platinum on the inside 20 of the sample holder, and a 13% platinum-rhodium alloy on the outside 21 of the sample holder, and the inner and outer parts are integrated by multi-point welding or the like. The bottom surface of each sample holder is coated with platinum-rhodium-13.
% wire 6.7 is welded, and a platinum wire 8 is welded to the platinum part on the inside 20 of each sample holder, and the sample holder 4 on the sample side and the sample holder 5 on the reference material side are connected by this platinum wire 8. Electrical continuity is maintained.

これにより、白金 ロジウム13%線6、試料側試料ホ
ルダー4、白金線8、基準物質側試料ホルダー5、白金
−ロジウム13%vA7の電気系路が示差型熱電対を形
成する。従って、白金−1コジウム13%vA6,7間
の電圧を計測する事により、試料側試料ホルダー4と基
準物質側試料ホルダー5の温度差を検知できる。
As a result, the electrical system path of the platinum-rhodium 13% wire 6, the sample holder 4 on the sample side, the platinum wire 8, the sample holder 5 on the reference material side, and the platinum-rhodium 13% vA7 form a differential thermocouple. Therefore, by measuring the voltage between platinum-1 codium 13% vA6 and 7, the temperature difference between the sample holder 4 on the sample side and the sample holder 5 on the reference material side can be detected.

試料側試料ホルダー4内に試料及び試料容器9、基準物
質側試料ホルダー5内に基準物質及び基準物質用容器1
0を設置し、加熱炉11によりヒートンンク1の温度コ
ントロールを行うと、試料及び基準物質はヒートシンク
lから各試料ホルダーを通して熱流が供給される。試料
側と基準物質側の熱流の差は前記示差型熱電対で言1測
される温度差に対応し、この構造は良く知られた熱流束
型DSCの構造である。
A sample and a sample container 9 are placed in the sample holder 4 on the sample side, and a reference substance and a container 1 for the reference substance are placed in the sample holder 5 on the reference material side.
When the temperature of the heat tank 1 is controlled by the heating furnace 11, a heat flow is supplied to the sample and the reference material from the heat sink 1 through each sample holder. The difference in heat flow between the sample side and the reference material side corresponds to the temperature difference measured by the differential thermocouple, and this structure is a well-known structure of a heat flux type DSC.

この実施例に示したI) S Cで、低温域(例えばイ
ンジウムの融点156.6°C付近)で試料を測定した
場合と、高温域(例えば金の融点1063゛c付近)で
試料を測定した場合の熱の流れの比較を第2図に示す。
I) SC shown in this example is used to measure samples in a low temperature range (e.g. around the melting point of indium, 156.6°C) and in a high temperature range (e.g. around the melting point of gold, around 1063°C). Figure 2 shows a comparison of the heat flow in these cases.

第2図では試料側試料ホルダー4周辺部のみ示した。基
準物質側試料ホルダー5周辺部は試料側試料ホルダー4
周辺と対称の形状で熱の流れは第2図に示した流れに準
する。
In FIG. 2, only the peripheral part of the sample holder 4 on the sample side is shown. The periphery of the reference material side sample holder 5 is the sample side sample holder 4.
It has a symmetrical shape with its surroundings, and the heat flow follows the flow shown in Figure 2.

実施例に示したDSCでは試料ホルダー4はヒートンン
ク1の凹状のくぼみ2に埋め込まれ、ヒ−1−ノンク1
に囲まれた構造をしているため、露出部がなく高温域に
おいてもヒートシンクIや、加熱炉壁12からの輻射に
よる熱の流れは低温域と同様はとんど問題にならない。
In the DSC shown in the example, the sample holder 4 is embedded in the concave recess 2 of the heat nok 1, and the sample holder 4 is
Since there are no exposed parts, heat flow due to radiation from the heat sink I and the heating furnace wall 12 does not pose a problem even in a high temperature range as in a low temperature range.

従って試料への熱の流れは低温域でも高温域でも、熱伝
導によるヒートシンクからの熱の流れ14.15が主と
なる。この事は試料及び基準物質への全体の熱の流れの
試料側、基準物質側での熱流差に対する実施例での示差
熱電対で検出され、換算される熱流差の比率が低温域で
も高温域でも大きく変わらない事を示す。
Therefore, the main flow of heat to the sample, whether in the low temperature range or the high temperature range, is the heat flow 14.15 from the heat sink due to thermal conduction. This is detected by the differential thermocouple in the example for the heat flow difference between the sample side and the reference material side of the overall heat flow to the sample and reference material, and the ratio of the converted heat flow difference is in both the low temperature range and the high temperature range. But it shows that there is no big difference.

つまり、実施例においては検出器の熱量検出感度が高温
域でも低下せず測定が可能となる。
In other words, in the embodiment, the sensitivity of the detector for detecting the amount of heat does not decrease even in the high temperature range, and measurement is possible.

さらに、実施例の構造は単に高温域での熱量検出感度の
低下を防くだけでなく、次の様な効果もある。
Furthermore, the structure of the embodiment not only prevents a decrease in heat detection sensitivity in a high temperature range, but also has the following effects.

熱伝導による熱の伝達は、伝達系路にお8ノる2地点の
間の熱抵抗が定まれば、この2地点間の熱流はこの2地
点間の温度差で一義的に定まる。
In the transfer of heat by thermal conduction, if the thermal resistance between two points in the transfer path is determined, the heat flow between these two points is uniquely determined by the temperature difference between these two points.

一方、輻射による2物体間の熱の伝達量は、各物体の絶
対温度の4乗の差に依存すると共に、各物体の表面状態
(表面積及び表面での輻射係数)に依存する。つまり輻
射による熱の伝達量は、熱の伝達を行う。2物体の温度
が変化したり、各物体の形状や表面の色が変化した場合
、大きく変化する。
On the other hand, the amount of heat transferred between two objects by radiation depends on the difference in the fourth power of the absolute temperature of each object, and also on the surface condition (surface area and radiation coefficient at the surface) of each object. In other words, the amount of heat transferred by radiation is the amount of heat transferred. When the temperature of two objects changes, or the shape or surface color of each object changes, a large change occurs.

従来例の様な構造のD S Cの場合、高温域での測定
において、試料ホルダーへの輻射による熱の流入量が多
くなるが、この流入量は先に記述した様に、試料ホルダ
ー表面、ヒートンンク表面加)11=8− 炉壁表面等の温度や表面状態の変化で太き(変わる。従
って、示差熱電対で検出し換算する熱流差も、輻射によ
る熱の流入量の変化により影響を受け、太き(変化する
ため、実質的にこの様な高温域での熱量の定量は再現性
がなく不可能となる。
In the case of a DSC with a conventional structure, a large amount of heat flows into the sample holder due to radiation during measurements in a high temperature range. (Heat tank surface thickness) 11 = 8 - Thickness (changes) due to changes in temperature and surface condition of the furnace wall surface, etc. Therefore, the heat flow difference detected and converted by a differential thermocouple is also affected by changes in the amount of heat inflow due to radiation. Since the amount of heat varies, it is virtually impossible to quantify the amount of heat in such a high temperature range due to lack of reproducibility.

一方、実施例のDSCでは高温域においても、輻射によ
る熱の流入量自体が低温域と同様小さいため、従来例の
DSCでは熱量定量の不可能な高温域においても熱量の
定量が可能となる。
On the other hand, in the DSC of the embodiment, even in the high temperature range, the amount of heat inflow by radiation itself is small as in the low temperature range, so it is possible to quantify the amount of heat even in the high temperature range, where it is impossible to quantify the amount of heat with the conventional DSC.

尚、第2図の実施例の熱の流れ、及び第4図の従来例の
熱の流れにおいて、加熱炉壁12及び62から試料及び
試t1容器9.59へ直接輻射により流入する熱の流れ
は図示していないが、これに対しては良(使われる手法
として、試料及び試料容器に白金等輻射率の小さい材質
で作った輻射遮蔽用のキヤ、ブをかふせる事により防止
できるのは言うまでもない。
In addition, in the heat flow of the embodiment shown in FIG. 2 and the heat flow of the conventional example shown in FIG. Although not shown, this can be prevented by covering the sample and sample container with a radiation shielding cover made of a material with low emissivity such as platinum. Needless to say.

又、実施例では試料ホルダーとしては白金と白金 ロジ
ウム13%線金を溶接−・体化したちのを用いたか、基
本的にヒートシンクの凹状のくほみにはいりヒートシン
クとの熱的接触が定まる構造で比較的熱伝導の良い材質
を用いれば同様の効果が得られる。又、温度差を検出す
る示差型熱電対等は、試料ホルダー表面からヒートシン
ク間の定まった位置に設置されていれば良いのは言うま
でもない。
In addition, in the example, the sample holder used was a welded body of platinum and platinum/rhodium 13% wire gold, or basically a structure in which it fits into a concave hole in the heat sink to establish thermal contact with the heat sink. A similar effect can be obtained by using a material with relatively good thermal conductivity. Furthermore, it goes without saying that a differential thermocouple or the like for detecting temperature differences may be installed at a fixed position between the surface of the sample holder and the heat sink.

ヒートシンクの材質は熱伝導の良い材質であれば、測定
する温度域に合わせ適切なものを選べば良い。又、実施
例ではヒートシンクの温度コントロールする手段として
ヒーターを巻いた加熱炉を用いたが、ヒートシンクを温
度コントロールできる手段であれば、例えばヒートシン
クに直接ヒーターを巻く等でも良く、適切な方法を選べ
ば良い。
As long as the heat sink is made of a material with good thermal conductivity, it can be selected according to the temperature range to be measured. In addition, in the embodiment, a heating furnace wrapped around a heater was used as a means for controlling the temperature of the heat sink, but any means that can control the temperature of the heat sink, such as wrapping a heater directly around the heat sink, may be used, and if an appropriate method is selected. good.

〔発明の効果〕〔Effect of the invention〕

以」二の様に本発明によれば、DSCの熱流検出系の試
料ホルダーをヒートシンクの凹状のくぼみに埋め込む構
造にし、試料ホルダー表面の露出面積を小さくした構成
としたため、高温域(例えば金の融点1063°C付近
)でも輻射による熱の伝達を小さくでき、検出器の熱量
検出感度の低下をおさえ、且つ従来輻射による熱の伝達
の変化の影響を太き(受けるために実質的に熱量の定量
のできなかった高温域(例えば金の融点1063°Cを
越える温度域)でも熱量の定量ができる効果もある。こ
れによりDSCの測定の応用範囲を大きく広げる事がで
きる。
As described above, according to the present invention, the sample holder of the heat flow detection system of the DSC is embedded in the concave recess of the heat sink, and the exposed area of the sample holder surface is reduced. Even when the melting point is around 1063°C, the heat transfer due to radiation can be reduced, suppressing the decrease in the heat detection sensitivity of the detector, and increasing the influence of changes in heat transfer due to conventional radiation (because it is affected by It also has the effect of being able to quantify the amount of heat even in a high temperature range (for example, a temperature range exceeding the melting point of gold, 1063°C), which has not been possible to quantify.This greatly expands the range of applications of DSC measurement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例を示す断面図、第2図(A)
、  (B)は実施例のDSCで試料を測定した時の熱
の流れを示す断面図、第3図は従来例の断面図、第4図
ta1. fblは従来例のDSCで試料を測定した時
の熱の流れを示す断面図である。 ■・・・ヒートシンク 2・・・凹状のくぼみ 3・・・凹状のくぼみ 4・・・試料側試料ホルダー 5・・・基準物質側試料ホルダー 6・・・白金−ロジウム13%線 7・・・白金−ロジウム13%線 8・・・白金線 9・・・試料及び試料容器 10・・・基準物質及び基準物質用容器11・・・加熱
炉 12・・・加熱炉壁 13・・・ヒーター 14・・・ヒートシンクからの熱の流れ15・・・ヒー
トシンクからの熱の流れ20・・・試料ホルダー内側(
白金) 21・・・試料ホルダー外側(白金−ロジウム13%合
金) 51・・・ヒートシンク 52・・・熱抵抗体 54・・・試料側試料ホルダー 55・・・基準物質側試料ホルダー 56・・・示差熱電対 59・・・試料及び試料容器 60・・・基準物質及び基準物質用容器61・・・加熱
炉 62・・・加熱炉壁 64・・・ヒートシンクからの熱の流れ65・・・ヒー
I・シンクからの熱の流れ66・・・ヒートシンクから
の輻射による熱の流れ 67・・・加熱炉壁からの輻射による熱の流れ以上 出願人 セイコー電子工業株式会社 決                 エへ     
  − 罰          ψ 癒紡 叛 聰 貝
Figure 1 is a sectional view showing an embodiment of the present invention, Figure 2 (A)
, (B) is a cross-sectional view showing the flow of heat when a sample is measured with the DSC of the embodiment, FIG. 3 is a cross-sectional view of the conventional example, and FIG. 4 ta1. fbl is a cross-sectional view showing the flow of heat when a sample is measured with a conventional DSC. ■...Heat sink 2...Concave depression 3...Concave depression 4...Sample side sample holder 5...Reference material side sample holder 6...Platinum-rhodium 13% wire 7... Platinum-rhodium 13% wire 8...Platinum wire 9...Sample and sample container 10...Reference material and reference material container 11...Heating furnace 12...Heating furnace wall 13...Heater 14 ... Heat flow from the heat sink 15 ... Heat flow from the heat sink 20 ... Inside the sample holder (
platinum) 21... Sample holder outside (platinum-rhodium 13% alloy) 51... Heat sink 52... Thermal resistor 54... Sample side sample holder 55... Reference material side sample holder 56... Differential thermocouple 59...Sample and sample container 60...Reference material and reference material container 61...Heating furnace 62...Heating furnace wall 64...Heat flow from heat sink 65...Heat I. Flow of heat from the sink 66... Flow of heat due to radiation from the heat sink 67... Flow of heat due to radiation from the heating furnace wall Applicant: Seiko Electronics Co., Ltd.
− Punishment ψ Healing Spinning Rebellion

Claims (1)

【特許請求の範囲】[Claims] 2つ以上の凹状のくぼみをもつヒートシンクと、このヒ
ートシンクの凹状のくぼみにほぼはいる形の試料ホルダ
ーと、前記ヒートシンクを温度コントロールする手段と
から構成されることを特徴とする示差走査熱量計。
A differential scanning calorimeter comprising: a heat sink having two or more concave recesses; a sample holder that fits approximately into the concave recesses of the heat sink; and means for controlling the temperature of the heat sink.
JP62090579A 1987-04-13 1987-04-13 Differential scanning calorimeter Expired - Fee Related JPH0823535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62090579A JPH0823535B2 (en) 1987-04-13 1987-04-13 Differential scanning calorimeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62090579A JPH0823535B2 (en) 1987-04-13 1987-04-13 Differential scanning calorimeter

Publications (2)

Publication Number Publication Date
JPS63255649A true JPS63255649A (en) 1988-10-21
JPH0823535B2 JPH0823535B2 (en) 1996-03-06

Family

ID=14002344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62090579A Expired - Fee Related JPH0823535B2 (en) 1987-04-13 1987-04-13 Differential scanning calorimeter

Country Status (1)

Country Link
JP (1) JPH0823535B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5813764A (en) * 1994-09-23 1998-09-29 Ford Global Technologies, Inc. Catalytic differential calorimetric gas sensor
US6220748B1 (en) * 1999-01-15 2001-04-24 Alcoa Inc. Method and apparatus for testing material utilizing differential temperature measurements
US7588366B2 (en) * 2005-09-01 2009-09-15 Sii Nanotechnology Inc. Heat flow flux type differential scanning calorimeter
CN105388180A (en) * 2014-08-22 2016-03-09 耐驰-仪器制造有限公司 Device and method for thermal analysis

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS424070Y1 (en) * 1964-07-17 1967-03-07
JPS4531585Y1 (en) * 1966-10-25 1970-12-03
JPS5613900A (en) * 1979-07-13 1981-02-10 Matsushita Electric Ind Co Ltd Mobile iron bar type pickup cartridge

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS424070Y1 (en) * 1964-07-17 1967-03-07
JPS4531585Y1 (en) * 1966-10-25 1970-12-03
JPS5613900A (en) * 1979-07-13 1981-02-10 Matsushita Electric Ind Co Ltd Mobile iron bar type pickup cartridge

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5813764A (en) * 1994-09-23 1998-09-29 Ford Global Technologies, Inc. Catalytic differential calorimetric gas sensor
US6220748B1 (en) * 1999-01-15 2001-04-24 Alcoa Inc. Method and apparatus for testing material utilizing differential temperature measurements
US7588366B2 (en) * 2005-09-01 2009-09-15 Sii Nanotechnology Inc. Heat flow flux type differential scanning calorimeter
CN105388180A (en) * 2014-08-22 2016-03-09 耐驰-仪器制造有限公司 Device and method for thermal analysis
JP2016045086A (en) * 2014-08-22 2016-04-04 ネッチ ゲレーテバウ ゲーエムベーハー Thermal analysis device and thermal analysis method

Also Published As

Publication number Publication date
JPH0823535B2 (en) 1996-03-06

Similar Documents

Publication Publication Date Title
NO813234L (en) PROCEDURE AND APPARATUS FOR REGULATING ENERGY BALANCE IN A DEVICE WITH HEAT LOSS
KR20070049188A (en) Flow sensor
US6375350B1 (en) Range pyrometer
MX2007015728A (en) Sensor device for a heating device.
JP2001517120A (en) Probe tip for radiation thermometer
JPH01250730A (en) Thermocouple
JP2003057117A (en) Probe used for infrared thermometer
JPS63255649A (en) Differential scanning calorimeter
US6332709B1 (en) Contact temperature probe with thermal isolation
JPS60209158A (en) Sample cell for heat flux differential scanning calorimeter
JPH0348127A (en) Noncontact temperature measuring method and temperature sensor
US3016412A (en) High-temperature thermocouple device
JP2002214046A (en) Non-contact temperature sensor and infrared clinical thermometer therefor
JPS61296229A (en) Thermocouple and method for mounting the same
US3427882A (en) Contact-free temperature-sensing device
US8821013B2 (en) Thermocouples with two tabs spaced apart along a transverse axis and methods
JPH11166909A (en) Differential scanning calorimeter
JPH0521008Y2 (en)
JPH0462460A (en) Sample temperature detecting device of thermal analyzing device
RU28771U1 (en) Heat flow sensor
JPH08285699A (en) Temperature sensor inside heating vessel
JP2001318068A (en) Thermal analytical device
JPS62231148A (en) Thermal analysis instrument
JP2528886Y2 (en) Electric stove
JPH01280227A (en) Black body furnace

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees