JPS63255353A - Compounded powder for thermal spraying and production thereof - Google Patents

Compounded powder for thermal spraying and production thereof

Info

Publication number
JPS63255353A
JPS63255353A JP8832087A JP8832087A JPS63255353A JP S63255353 A JPS63255353 A JP S63255353A JP 8832087 A JP8832087 A JP 8832087A JP 8832087 A JP8832087 A JP 8832087A JP S63255353 A JPS63255353 A JP S63255353A
Authority
JP
Japan
Prior art keywords
powder
particle size
alloy
thermal spraying
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8832087A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kasagoe
笠越 利幸
Ryoichi Shibata
良一 柴田
Tsutomu Iimura
飯村 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP8832087A priority Critical patent/JPS63255353A/en
Publication of JPS63255353A publication Critical patent/JPS63255353A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To produce composite powder giving a thermally sprayed film having stable resistance value by mixing metal oxide powder of a specified particle size with alloy powder of a specified particle size in a specified ratio together with a binder and forming the mixture into particles of a specified particle size. CONSTITUTION:A binder is added to 60-90wt.% metal oxide powder of 1-4mum particle size and 10-40wt.% alloy powder of 5-20mum particle size and they are mixed and slurried. The oxide of Al, Ti or Si may be used as the metal oxide. An Ni-Cr alloy consisting of 70-90% Ni and 10-30% Cr or an Fe-Cr-Al alloy consisting of 65-90% Fe, 10-30% Cr and 2-5% Al is desirably used as the alloy. The resulting slurried mixture is formed into particles of 20-80mum particle size to obtain compounded powder for thermal spraying giving a thermally sprayed film having a uniform thickness and stable resistance value with no segregation.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、溶射して得られる発熱抵抗体の抵抗値が、安
定したものとなる溶射用複合粉末とその製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION "Industrial Application Field" The present invention relates to a composite powder for thermal spraying that provides a stable resistance value of a heating resistor obtained by thermal spraying, and a method for producing the same.

「従来の技術」 金属酸化物および合金との混合物を溶射して溶射被膜を
形成し、その溶射被膜を各種の抵抗発熱体として使用す
る提案がされている。
"Prior Art" It has been proposed to thermally spray a mixture of a metal oxide and an alloy to form a thermally sprayed coating, and to use the thermally sprayed coating as various resistance heating elements.

溶射被膜を抵抗発熱材として用いる場合、溶射用粉末は
流動性を考慮して粒径がlO〜80gm程度のものを使
用している。この種の溶射用粉末には、第4図に示すよ
うな混合粉末と、第5図に示すような複合粉末とがある
。混合粉末は、不定形状に粉砕した形状のアルミナ粉砕
粉(第4図a)中に、はぼ球状に造粒したXl−Cr合
金(第4図b)が単に混合した状態となっている。また
複合粉末は、粒径が301Lm以上のXl−Cr粒子と
粒径2〜3pmのアルミナとを造粒したものであり、第
5図に示すように、旧−Cr合金粉末が54m程度の小
さいものから50pm程度の大きい粒子のものまで不均
一に含有されているものであった。
When the thermal spray coating is used as a resistance heating material, thermal spray powder having a particle size of about 10 to 80 gm is used in consideration of fluidity. This type of powder for thermal spraying includes a mixed powder as shown in FIG. 4 and a composite powder as shown in FIG. 5. The mixed powder is simply a mixture of spherically granulated Xl-Cr alloy (FIG. 4b) in alumina pulverized powder (FIG. 4a) that has been pulverized into an irregular shape. The composite powder is made by granulating Xl-Cr particles with a particle size of 301 Lm or more and alumina with a particle size of 2 to 3 pm, and as shown in Figure 5, the old-Cr alloy powder has a small particle size of about 54 Lm. The particles were unevenly contained, ranging from small particles to large particles of about 50 pm.

「発明が解決しようとする問題点」 従来の溶射用混合粉末又は複合粉末を用いて円筒状基体
外周や平板面に溶射被膜を形成した場合、被膜の厚さを
均一に形成することが困難であり、しかも各位nでの部
分抵抗値特性が不安定であるとともに、再現性が悪いと
いう問題があった。
“Problems to be Solved by the Invention” When a thermal spray coating is formed on the outer periphery of a cylindrical substrate or on a flat plate surface using a conventional thermal spray mixed powder or composite powder, it is difficult to form a coating with a uniform thickness. Moreover, there were problems in that the partial resistance value characteristics at each position n were unstable and the reproducibility was poor.

これらの問題は、従来の溶射粉末を溶射すると粒径が小
さくて軽い金属酸化物が飛び散って付着しにくいからと
考えられる。また比重が3〜4g/CCのアルミナ粉砕
粉と比重が6〜8g/ccの旧−Cr合金粉を混合した
混合粉末、あるいは比較的大きな粒径、例えば30gm
以上の旧−Cr粒子を用いて作成した複合粉末は、アル
ミナ粉と旧−Cr粉との比重が大きいために、溶射され
てできる被膜の成分に偏析が生じるためとも考えられる
These problems are thought to be due to the fact that when conventional thermal spray powders are sprayed, light metal oxides with small particle sizes scatter and are difficult to adhere to. Also, mixed powder of alumina pulverized powder with a specific gravity of 3 to 4 g/cc and old-Cr alloy powder with a specific gravity of 6 to 8 g/cc, or a relatively large particle size, e.g. 30 g
In the composite powder prepared using the above-mentioned prior-Cr particles, the specific gravity of the alumina powder and the prior-Cr powder is high, so it is thought that segregation occurs in the components of the coating formed by thermal spraying.

そこで本発明は、軽い金属酸化物が溶射の際に飛び散る
のを抑制するとともに1合金粒径を小さく均一にして溶
射被膜内での偏析をなくすことにより、安定した抵抗値
の溶射被膜が得られるようにすることを目的とする。
Therefore, the present invention suppresses the scattering of light metal oxides during thermal spraying, and makes it possible to obtain a thermal sprayed coating with a stable resistance value by reducing the grain size of one alloy and making it uniform to eliminate segregation within the thermal sprayed coating. The purpose is to do so.

r問題点を解決するための手段」 本発明は、抵抗発熱体を得るための溶射用複合粉末に関
するものである。
TECHNICAL FIELD The present invention relates to a composite powder for thermal spraying to obtain a resistance heating element.

第1の発明は、金属酸化物中に、旧、Or、 Al、F
eから選ばれる2種以上の合金粒子を分散させた粒径2
0〜80ルmの溶射用複合粉末であり、合金粒子の粒径
は5〜20gmであり、金属酸化物が60〜90重量%
で合金が10〜40重量%であることを特徴とする。
The first invention includes old, Or, Al, F in the metal oxide.
Particle size 2 in which two or more types of alloy particles selected from e are dispersed
It is a composite powder for thermal spraying of 0-80 lm, the particle size of alloy particles is 5-20 gm, and the metal oxide content is 60-90 wt%.
The alloy is characterized by being 10 to 40% by weight.

金属酸化物としては、 Al、Ti、 Siから選ばれ
る酸化物を適用でき、それら酸化物は溶射膜内に連続し
た合金層をより好ましく分散する性質をもっために望ま
しい。
As the metal oxide, oxides selected from Al, Ti, and Si can be used, and these oxides are preferable because they have the property of dispersing a continuous alloy layer in the sprayed film more preferably.

合金としては旧−Cr、 Fe−Cr−Al等があり、
合金粒子の粒径は5〜20ルmとする。これは57zm
以下では溶射被膜中に合金の流動層(第6図a)ができ
ず、所定の抵抗値が得られなくなるからであり、20μ
m以上では被膜表面が粗く発熱体としての使用に不適だ
からである。
The alloys include old-Cr, Fe-Cr-Al, etc.
The grain size of the alloy particles is between 5 and 20 lm. This is 57zm
This is because a fluidized layer of alloy (Fig. 6a) will not be formed in the thermally sprayed coating, making it impossible to obtain the specified resistance value.
This is because if it is more than m, the surface of the coating will be rough and unsuitable for use as a heating element.

溶射被膜の抵抗値を所定のものにするためには、合金と
して旧−Crを使用する場合、それは70〜80重量%
のNiと10〜30重量%のCrからなるものが望まし
く、合金としてFe−Cr−Alを使用する場合、それ
は65〜90重量%のFeと10〜30重量%のCrと
2〜5重量%のAlとからなるものが望ましい。
In order to achieve the desired resistance value of the sprayed coating, when old-Cr is used as the alloy, it must be 70 to 80% by weight.
If Fe-Cr-Al is used as the alloy, it is preferably composed of 65-90% Fe, 10-30% Cr and 2-5% by weight. It is preferable to use Al.

溶射用複合粉末の粒径を20〜801Lmとしたのは、
合金粒子を均一に分散させて、溶射被膜の抵抗値を安定
させるためである。また溶射用複合粉末を球状に形成し
て、溶射時に流動層型粉体供給機による供給量を安定に
し、被膜の膜厚を一様にする。
The particle size of the composite powder for thermal spraying was set to 20 to 801 Lm because
This is to uniformly disperse the alloy particles and stabilize the resistance value of the sprayed coating. Furthermore, the composite powder for thermal spraying is formed into a spherical shape to stabilize the amount supplied by the fluidized bed powder feeder during thermal spraying and to make the thickness of the coating uniform.

金属酸化物を60〜90重量%、合金を10〜40重量
%としたのは、溶射被膜の比抵抗を発熱体として使用す
るのに適切な10−3〜lOΩ11c■とするためであ
る。すなわち、合金が10重量%以下では被膜の抵抗が
lOΩ拳c層より大きくなってしまい、合金が40重蓼
%以上では1O−3Ω・cm以下になってしまうからで
ある。
The reason why the metal oxide content is 60 to 90% by weight and the alloy content is 10 to 40% by weight is to set the resistivity of the sprayed coating to 10 -3 to 10Ω11c, which is appropriate for use as a heating element. That is, if the alloy is less than 10% by weight, the resistance of the coating will be greater than the 1OΩ layer, and if the alloy is more than 40% by weight, the resistance will be less than 1O-3Ω·cm.

合金として旧−Crを使用する場合、旧が70〜90重
量%で、Crが10〜30重量%のものを使用するのが
望ましく、1力i70重量%以下になると抵抗体の温度
係数が高くなり、またXiが90重量%より大きいと温
度係数が高くなり、さらに比抵抗値が小さくなるからで
ある。
When using old-Cr as an alloy, it is preferable to use one containing 70 to 90% by weight of old and 10 to 30% by weight of Cr. If the total i is less than 70% by weight, the temperature coefficient of the resistor will be high. Moreover, if Xi is larger than 90% by weight, the temperature coefficient becomes high and the specific resistance value further becomes small.

第2の発明は、溶射用複合粉末を製造する方法であり、
粒径 1”44mの金属酸化物粉末60〜90重量%と
、粒径5〜20Bmの合金粉末10〜40重量%との混
合粉にバインダを加えてスラリー状にし、このスラリー
状混合物を20〜80μの粒子に造粒して溶射用複合粉
末とする。使用する金属酸化物の粒径を 1〜4 gm
としたのは、合金粒子を均一に分散できるようにするた
めである。また合金粒径を5〜20gmにしたのは、溶
射用複合粉末に造粒したときに合金を適当な粒子径に調
整し易くするためである。
The second invention is a method of manufacturing composite powder for thermal spraying,
A binder is added to a mixed powder of 60 to 90% by weight of metal oxide powder with a particle size of 1"44m and 10 to 40% by weight of an alloy powder with a particle size of 5 to 20Bm to form a slurry. This slurry mixture is The composite powder for thermal spraying is made by granulating into particles of 80 μm.The particle size of the metal oxide used is 1 to 4 gm.
The reason for this is that the alloy particles can be uniformly dispersed. The reason why the alloy particle size is set to 5 to 20 gm is to make it easier to adjust the alloy to an appropriate particle size when granulated into a composite powder for thermal spraying.

また金属酸化物粉末60〜90重量%、合金粉末10〜
40重量%としたのは、所定の抵抗値を得るためである
Also, metal oxide powder 60-90% by weight, alloy powder 10-90% by weight
The reason for setting it to 40% by weight is to obtain a predetermined resistance value.

尚、本発明において、上記粒径範囲はほとんど大部分の
粉末がこの範囲内にあることを示すものであって、この
範囲外の粒径を有する若干の粉末が含まれていても良い
In the present invention, the above particle size range indicates that most of the powder is within this range, and some powder having a particle size outside this range may be included.

「実施例1」 金属酸化物としてアルミナ、合金として旧−Crを使用
した溶射用複合粉末の実施例を説明する。
"Example 1" An example of a composite powder for thermal spraying using alumina as a metal oxide and old-Cr as an alloy will be described.

なおNi−Cr合金は、80重量%のNiと20重量%
のCrからなるものを使用した。
Note that the Ni-Cr alloy contains 80% by weight Ni and 20% by weight
A material made of Cr was used.

粒径5〜20μmのNi−Cr合金粉末を30重量%と
粒径 1〜4ルmのアルミナ粉末70重量%とにバイン
ダ(ポリビニルアルコール)を1重量%加えてボールミ
ルで混合し、スラリー状とした。このスラリー状の混合
物を粒径20〜80μmの粒子状に造粒して、溶射用複
合粉末を製造した。
30% by weight of Ni-Cr alloy powder with a particle size of 5 to 20 μm, 70% by weight of alumina powder with a particle size of 1 to 4 μm, and 1% by weight of a binder (polyvinyl alcohol) were mixed in a ball mill to form a slurry. did. This slurry-like mixture was granulated into particles having a particle size of 20 to 80 μm to produce a composite powder for thermal spraying.

なお、溶射用複合粉末の造粒は第1図に示す装置により
行なった。その装着は造粒槽lの噴出口2から出る前記
スラリー状混合物を噴霧装置3により噴霧状に噴出させ
、造粒槽lを旋回流の状態にしておくと、噴霧されたス
ラリーは旋回しつつ造粒槽l内を落下する。造粒槽lは
、ブロアーとじ一夕とからなる熱風供給装置4に連通さ
れ、その熱風は造粒槽1の上部から下方に向って流れ。
The composite powder for thermal spraying was granulated using the apparatus shown in FIG. To install it, the slurry-like mixture coming out of the spout 2 of the granulation tank 1 is jetted out in the form of a spray by the spray device 3, and when the granulation tank 1 is kept in a swirling flow state, the sprayed slurry is swirled. It falls inside the granulation tank l. The granulation tank 1 is connected to a hot air supply device 4 consisting of a blower and a blower, and the hot air flows downward from the top of the granulation tank 1.

排気装置5を介して排気されるようになっている、その
ため造粒槽l内を旋回しつつ落下する噴霧状スラリーが
乾燥されて球状に造粒され、造粒槽1の下部から取出す
ことができる。なお造粒方法は、この装置を使用するも
のに限るものではなく、他の公知の造粒方法によっても
よい。
It is designed to be exhausted through the exhaust device 5, so that the atomized slurry falling while rotating inside the granulation tank 1 is dried and granulated into spherical shapes, and can be taken out from the lower part of the granulation tank 1. can. Note that the granulation method is not limited to the one using this apparatus, and other known granulation methods may be used.

上記によって得られた溶射用複合粉末の断面の顕微鏡写
真を、第2図(倍率1000倍)と第3図(倍率120
倍)に示した。第2.3図から溶射用複合粉末は、アル
ミナ中に粒子径5〜20μmのNi −Cr合金粒子が
均一に分散していることがわかる。
Micrographs of the cross section of the thermal spray composite powder obtained above are shown in Figure 2 (1000x magnification) and Figure 3 (120x magnification).
times). It can be seen from Figure 2.3 that in the composite powder for thermal spraying, Ni-Cr alloy particles having a particle size of 5 to 20 μm are uniformly dispersed in alumina.

なお比較のために、従来の混合粉末、すなわち、不定形
状に破砕した形状のアルミナ粉砕粉中にほぼ球状に造粒
したXl−Cr合金粒子が含まれているものの顕微鏡写
真(倍率240倍)を第4図に示した。また従来の複合
粉、すなわち粒径3JLm以下のアルミナ粉末を使用し
、粒径30gm以上の旧−Cr粉末を使用した溶射用複
合粉末の断面のJIl!111鏡写真(倍率1000倍
)を第5図に示した。
For comparison, here is a micrograph (magnification: 240x) of a conventional mixed powder, that is, alumina pulverized powder crushed into an irregular shape, containing Xl-Cr alloy particles granulated into approximately spherical shapes. It is shown in Figure 4. In addition, JIl of a cross section of a conventional composite powder, that is, a thermal spraying composite powder using alumina powder with a particle size of 3 JLm or less and old-Cr powder with a particle size of 30 gm or more! 111 mirror photograph (1000x magnification) is shown in Figure 5.

以上から本実施例の溶射用複合粉末(第3図)は、従来
の混合粉や複合粉よりXl−Cr合金粒子が球に近く、
アルミナ中に均一に分散していることがわかる。
From the above, the composite powder for thermal spraying of this example (Fig. 3) has Xl-Cr alloy particles that are more spherical than conventional mixed powders and composite powders.
It can be seen that it is uniformly dispersed in alumina.

前記により得られた溶射用複合粉末を使用して、外径3
0■濡、長さ3201■の鉄パイプの外周に溶射、した
、溶射条件は、電圧70v、電流500A、プラズマガ
スArを38R/win 、 H2を7J/winとし
た。
Using the composite powder for thermal spraying obtained above, the outer diameter is 3.
Thermal spraying was carried out on the outer periphery of an iron pipe with a wetness of 0.0 cm and a length of 3201 cm. The spraying conditions were a voltage of 70 V, a current of 500 A, plasma gas Ar at 38 R/win, and H2 at 7 J/win.

溶射被膜の顕微鏡写真を第6図に示した。第6図で、白
く見える流動層(図中a)がNf−Cr合金であり、黒
く見えるのがアルミナである。この旧−Cr合金の流動
層が次々に連続されて、適切で安定した抵抗となるもの
と考えられる。なお従来の混合粉および複合粉を使用し
て同様に溶射被膜を形成したが、第7図の顕微鏡写真に
示すように本実施例のようなNi −Crの流動層は生
じなかった。
A microscopic photograph of the sprayed coating is shown in FIG. In FIG. 6, the fluidized bed that appears white (a in the figure) is the Nf-Cr alloy, and the fluidized bed that appears black is alumina. It is believed that this fluidized bed of the old-Cr alloy is successively connected to provide appropriate and stable resistance. Incidentally, a thermally sprayed coating was similarly formed using conventional mixed powder and composite powder, but as shown in the micrograph of FIG. 7, a fluidized bed of Ni--Cr was not formed as in this example.

さらに得られた溶射被膜の長手方向の各位置での被膜厚
さを第8図に示し、モして溶射被膜の長手方向の各位置
での部分抵抗値を第9図に示した、また第8.9図には
比較のために、従来の混合粉と複合粉を使用して溶射し
た被膜の厚さと抵抗値をそれぞれ示した。
Furthermore, the coating thickness at each position in the longitudinal direction of the obtained thermal sprayed coating is shown in FIG. 8, and the partial resistance value at each longitudinal position of the thermal sprayed coating is shown in FIG. 9. For comparison, Figure 8.9 shows the thickness and resistance of coatings sprayed using conventional mixed powder and composite powder, respectively.

第8.9図かられかるように、本実施例の溶射被膜は従
来例に比較して、厚さが均一であり、かつ抵抗値も安定
している。
As can be seen from FIG. 8.9, the sprayed coating of this example has a more uniform thickness and a more stable resistance value than the conventional example.

「実施例2」 次に前記実施例1で使用したアルミナとXl−Crの粒
子径を変更して各種の溶射用複合粉末を造粒し、それら
で第1実施例と同様に溶射被膜を形成した。そしてそれ
ぞれの被膜の膜厚の均一性と部分抵抗値の安定性を測定
し、表1に示した。
"Example 2" Next, various composite powders for thermal spraying were granulated by changing the particle sizes of the alumina and Xl-Cr used in Example 1, and a thermal spray coating was formed using them in the same manner as in Example 1. did. The uniformity of the film thickness and the stability of the partial resistance value of each film were measured and shown in Table 1.

表1から、アルミナ粒径は1〜4終mのものが望ましく
、旧−Crの粒径は5〜20μmのものが望ましいこと
がわかる。
From Table 1, it can be seen that the alumina particle size is preferably 1 to 4 μm, and the prior-Cr particle size is 5 to 20 μm.

「実施例3」 次に金属酸化物と合金の種類を変更して第1実施例と同
様の溶射膜を形成し、それぞれの被膜の膜厚の均一性と
部分抵抗値の安定性を測定し、表2に示した。なお金属
酸化物の粒径は 1〜4終■とじ、合金の粒径は5〜2
01Lmとした。
"Example 3" Next, a sprayed film similar to that of the first example was formed by changing the type of metal oxide and alloy, and the uniformity of the film thickness and stability of the partial resistance value of each film were measured. , shown in Table 2. The particle size of the metal oxide is 1 to 4, and the particle size of the alloy is 5 to 2.
01Lm.

表2から金属酸化物として、Al、 Ti、 Siの醸
化物が適切であり、合金としてNi−Cr、 Fe−C
r−Al、旧−Cr−Feが適切であることがわかる。
From Table 2, as metal oxides, brewers of Al, Ti, and Si are suitable, and as alloys, Ni-Cr, Fe-C
It can be seen that r-Al and old-Cr-Fe are suitable.

なおFe−Cr−Al合金は、85〜90重量%のFe
と10〜30重量%のCrと 2〜5重量%のAIとか
らなるものが望ましい、それは、抵抗体の比抵抗値が大
きく、温度係数が小さいためである。
Note that the Fe-Cr-Al alloy contains 85 to 90% by weight of Fe.
A material consisting of 10 to 30% by weight of Cr and 2 to 5% by weight of AI is desirable because the resistor has a large specific resistance value and a small temperature coefficient.

「発明の効果」 本発明の溶射用複合粉末あるいはその製造方法により得
られる溶射用複合粉末を使用すれば、溶射被膜の膜厚に
均一性があり、かつ被膜中に合金の流動層ができる。よ
って被膜の抵抗値が10−3〜lOΩ・cmの範囲内で
安定したものとなり、各種の発熱体として使用し易いも
のとなる。
"Effects of the Invention" When the composite powder for thermal spraying of the present invention or the composite powder for thermal spraying obtained by the method for producing the same is used, the thickness of the thermal spray coating is uniform and a fluidized layer of alloy is formed in the coating. Therefore, the resistance value of the coating becomes stable within the range of 10<-3> to 1O[Omega].cm, making it easy to use as various heating elements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法に使用する造粒装置の概略図
、第2図および第3図は本発明の溶射用複合粉末の顕微
鏡による金属組織写真、第4図は従来の溶射用混合粉の
顕微鏡による金属組織写真、第5図は従来の溶射用複合
粉末の顕微鏡による金属組織写真、第6図は本発明の溶
射用複合粉末を使用した溶射被膜の断面を示す顕微鏡に
よる金属組織写真、第7図は従来の粉末を使用した溶射
被膜の断面を示す顕微鏡による金属組織写真、第8図は
溶射被膜の厚さ分布を示すグラフ、第9図は溶射被膜の
部分抵抗値を示すグラフである。 出願人   日立金属 株式会社 代理人   弁理士 牧 克 次 第1図 メ##Jt4#J 第8図 第9図 被護の長手方向位置(mm)
Figure 1 is a schematic diagram of a granulation device used in the manufacturing method of the present invention, Figures 2 and 3 are microscopic metallographic photographs of the composite powder for thermal spraying of the present invention, and Figure 4 is a conventional mixture for thermal spraying. A microscopic metallographic photograph of the powder, Fig. 5 is a microscopic metallographic photograph of a conventional thermal spray composite powder, and Fig. 6 is a microscopic metallographic photograph showing a cross section of a thermal spray coating using the thermal spraying composite powder of the present invention. , Fig. 7 is a microscopic metallographic photograph showing the cross section of a sprayed coating using conventional powder, Fig. 8 is a graph showing the thickness distribution of the sprayed coating, and Fig. 9 is a graph showing the partial resistance value of the sprayed coating. It is. Applicant Hitachi Metals Co., Ltd. Agent Patent Attorney Katsu Maki Figure 1 Me # # Jt 4 # J Figure 8 Figure 9 Longitudinal position of protection (mm)

Claims (6)

【特許請求の範囲】[Claims] (1)金属酸化物中に粒径5〜20μmのNi、Cr、
Al、Feから選ばれる2種以上の合金粒子が分散した
粒径20〜80μmの複合粉末からなり、金属酸化物が
60〜90重量%で、合金が10〜40重量%であるこ
とを特徴とする溶射用複合粉末。
(1) Ni, Cr with a particle size of 5 to 20 μm in metal oxide,
It consists of a composite powder with a particle size of 20 to 80 μm in which two or more types of alloy particles selected from Al and Fe are dispersed, and the metal oxide is 60 to 90% by weight and the alloy is 10 to 40% by weight. Composite powder for thermal spraying.
(2)合金は、70〜90重量%のNiと10〜30重
量%のCrからなることを特徴とする特許請求の範囲第
1項に記載の溶射用複合粉末。
(2) The composite powder for thermal spraying according to claim 1, wherein the alloy consists of 70 to 90% by weight of Ni and 10 to 30% by weight of Cr.
(3)合金は、65〜90重量%のFeと10〜30重
量%のCrと2〜5重量%のAlとからなることを特徴
とする特許請求の範囲第1項に記載の溶射用複合粉末。
(3) The composite for thermal spraying according to claim 1, wherein the alloy consists of 65 to 90% by weight of Fe, 10 to 30% by weight of Cr, and 2 to 5% by weight of Al. powder.
(4)金属酸化物は、Al、Ti、Siから選ばれる酸
化物であることを特徴とする特許請求の範囲第1項に記
載の溶射用複合粉末。
(4) The composite powder for thermal spraying according to claim 1, wherein the metal oxide is an oxide selected from Al, Ti, and Si.
(5)粒径1〜4μmの金属酸化物粉末60〜90重量
%と、粒径10〜20μmの合金粉末10〜40重量%
とにバインダを加えて混合し、その混合物を20〜80
μmの粒子に造粒することを特徴とする溶射用複合粉末
の製造方法。
(5) 60-90% by weight of metal oxide powder with a particle size of 1-4 μm and 10-40% by weight of alloy powder with a particle size of 10-20 μm
Add the binder to and mix, and the mixture
A method for producing a composite powder for thermal spraying, the method comprising granulating it into μm particles.
(6)金属酸化物がアルミナで、合金がNi−Crであ
ることを特徴とする特許請求の範囲第5項に記載の溶射
用複合粉末の製造方法。
(6) The method for producing a composite powder for thermal spraying according to claim 5, wherein the metal oxide is alumina and the alloy is Ni-Cr.
JP8832087A 1987-04-10 1987-04-10 Compounded powder for thermal spraying and production thereof Pending JPS63255353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8832087A JPS63255353A (en) 1987-04-10 1987-04-10 Compounded powder for thermal spraying and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8832087A JPS63255353A (en) 1987-04-10 1987-04-10 Compounded powder for thermal spraying and production thereof

Publications (1)

Publication Number Publication Date
JPS63255353A true JPS63255353A (en) 1988-10-21

Family

ID=13939625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8832087A Pending JPS63255353A (en) 1987-04-10 1987-04-10 Compounded powder for thermal spraying and production thereof

Country Status (1)

Country Link
JP (1) JPS63255353A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061560A (en) * 1989-06-16 1991-10-29 Shin-Etsu Chemical Co., Ltd. Spherical grains of rare earth oxides and a manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061560A (en) * 1989-06-16 1991-10-29 Shin-Etsu Chemical Co., Ltd. Spherical grains of rare earth oxides and a manufacturing method therefor
US5152936A (en) * 1989-06-16 1992-10-06 Shin-Etsu Chemical Co., Ltd. Method of manufacturing spherical grains of rare earth oxides

Similar Documents

Publication Publication Date Title
JP3247095B2 (en) Powder consisting of chromium carbide and nickel chromium
US5049450A (en) Aluminum and boron nitride thermal spray powder
CA1195701A (en) Hollow sphere ceramic particles for abradable coatings
JPH04228555A (en) Thermal spraying powder mixture
CA1054399A (en) High hardness flame spray nickel-base alloy coating material
US4508788A (en) Plasma spray powder
CN110668812A (en) Nano zirconium oxide spraying powder and preparation method thereof
Ünal Influence of nozzle geometry in gas atomisation of rapidly solidified aluminium alloys
JP3825231B2 (en) Method for producing hollow ceramic powder for thermal spraying
JPH0313303B2 (en)
JPS63255353A (en) Compounded powder for thermal spraying and production thereof
US4361604A (en) Flame spray powder
WO1983001917A1 (en) Nickel-chromium carbide powder and sintering method
JPH0140912B2 (en)
JP3957581B2 (en) Method for producing spherical silica powder
JP2770968B2 (en) Chromium carbide-metal composite powder for high energy spraying
JPS6299449A (en) Chromium carbide-base powder for thermal spraying
JP2012188677A (en) Powder for thermal spraying
KR100321588B1 (en) Manufacturing method of ceramic powder for plasma using rotary spray dryer
US5722602A (en) Process for making flowable powders for coating applications
JPS58113369A (en) Powder material for melt-spraying and its production
JPS5858423B2 (en) powder spray material
JP3473794B2 (en) Porous material and method for producing the same
JPH0360912B2 (en)
US4443521A (en) Coating alloy