JPS63254242A - Multilayered coil spring - Google Patents

Multilayered coil spring

Info

Publication number
JPS63254242A
JPS63254242A JP8834187A JP8834187A JPS63254242A JP S63254242 A JPS63254242 A JP S63254242A JP 8834187 A JP8834187 A JP 8834187A JP 8834187 A JP8834187 A JP 8834187A JP S63254242 A JPS63254242 A JP S63254242A
Authority
JP
Japan
Prior art keywords
coil
diameter
coil spring
wire
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8834187A
Other languages
Japanese (ja)
Inventor
Katsuhisa Sekine
勝久 関根
Yoshitaka Sonoda
吉隆 園田
Manabu Madokoro
間所 学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8834187A priority Critical patent/JPS63254242A/en
Publication of JPS63254242A publication Critical patent/JPS63254242A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F3/00Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic
    • F16F3/02Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic with springs made of steel or of other material having low internal friction
    • F16F3/04Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic with springs made of steel or of other material having low internal friction composed only of wound springs
    • F16F3/06Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic with springs made of steel or of other material having low internal friction composed only of wound springs of which some are placed around others in such a way that they damp each other by mutual friction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/04Wound springs
    • F16F1/12Attachments or mountings
    • F16F1/125Attachments or mountings where the end coils of the spring engage an axial insert
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F3/00Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic
    • F16F3/02Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic with springs made of steel or of other material having low internal friction
    • F16F3/04Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic with springs made of steel or of other material having low internal friction composed only of wound springs

Abstract

PURPOSE:To obtain the load supporting performance over a certain value per unit installation area without increasing the close adhesion stress by winding at least two wire materials in concentric and multilayered form in the same winding direction and setting the coil diameter of the wire material so that each wire material is superposed in the axial direction. CONSTITUTION:Coil springs 1 and 2 in double winding form are formed by winding two wire materials having an equal wire diameter in concentric form in the same winding direction into an equal coil diameter, together with an upper flange 3 and a lower flange 4. Therefore, the load supporting performance over a certain value per unit installation area can be obtained without increasing the wire diameter and increasing the close adhesion stress, even if the rigidity ratio between the shaft and the direction perpendicular to the shaft is reduced, and a suitable coil spring for a vibrationproof device can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本装置は免震装置に係り、たとえば原子炉の如き重量物
の上下免震あるいは3次元免震に好適な免震装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present device relates to a seismic isolation device, and is suitable for vertical seismic isolation or three-dimensional seismic isolation of a heavy object such as a nuclear reactor.

〔従来の技術〕[Conventional technology]

上下免震あるいは3次元免震に好適な免震装置のニーズ
は原子炉や、コンピュータ、半導体の製造設備、核燃料
濃縮設備、等々幅広い。特に原子炉(高速増殖炉)は、
免震により大幅な合理化の可能性を有する原子炉である
。ところが、原子炉は8000トンにも及ぶ重量物であ
り、免震装置としては少なくとも単位据付面積あたり後
述するように100トン程度の支持荷重が必要である。
The needs for seismic isolation devices suitable for vertical seismic isolation or three-dimensional seismic isolation are wide-ranging, including nuclear reactors, computers, semiconductor manufacturing equipment, and nuclear fuel enrichment equipment. In particular, nuclear reactors (fast breeder reactors)
This is a nuclear reactor that has the potential for significant rationalization through seismic isolation. However, a nuclear reactor is a heavy object weighing as much as 8,000 tons, and the seismic isolation device must support at least about 100 tons of load per unit installation area, as will be described later.

水平免震装置としては、200 hン/ m 2程度の
積層ゴムが考えられているが、上下免震あるいは3次元
免震装置としては、現在採用可能なものがない。そして
、この免震装置にコイルバネを使うことが考えられてい
る。
Laminated rubber of about 200 h/m2 is considered as a horizontal seismic isolation device, but there is currently no available vertical or three-dimensional seismic isolation device. The use of coil springs in this seismic isolation device is being considered.

従来、コイルバネについては、たとえば「機械設計便覧
、機械設計便覧編集委員全編、丸善株式会社、12、ば
ねおよび防振ゴム、1235頁〜1264頁jにおいて
論じられている。通常、コイルバネの荷重支持能力は、
線径とコイル径で決定され、支持荷重は線径の3乗に比
例し、コイル径に反比例する。よって、線径を太くして
、コイル径を小さくすることが、支持荷重を大きくする
ために有効である。しかしながら、製作性の観点からは
、線径を太く、コイル径を小さくすることは限界があり
、製作可能と考えられる最大線径は100mm程度であ
る。また、最小コイル径の限界としては、線径の3.3
倍程度、すなわち、線径100mmの場合にはコイルの
平均径は330mm程度必要である。
Conventionally, coil springs have been discussed, for example, in "Mechanical Design Handbook, Complete Edition of Mechanical Design Handbook Editorial Committee," Maruzen Co., Ltd., 12, Springs and Vibration Isolation Rubber, pp. 1235-1264. teeth,
It is determined by the wire diameter and the coil diameter, and the supported load is proportional to the cube of the wire diameter and inversely proportional to the coil diameter. Therefore, it is effective to increase the supporting load by increasing the wire diameter and decreasing the coil diameter. However, from the viewpoint of manufacturability, there is a limit to increasing the wire diameter and reducing the coil diameter, and the maximum wire diameter that can be manufactured is about 100 mm. In addition, the minimum coil diameter limit is 3.3 of the wire diameter.
In other words, in the case of a wire diameter of 100 mm, the average diameter of the coil needs to be about 330 mm.

次に、コイルバネの剛性について述べる。一般に、コイ
ルバネの軸方向剛性KVは で与えられる。((B、L、α:定数、d:線径、D:
コイル径、N:有効巻き数)したがって、コイルバネの
軸方向剛性KVは、線径d、コイル径D、有効巻数Nで
決定され、線径dの4乗に比例し、コイル径りの3乗と
有効巻線Nに反比例する。コイルバネの軸直角方向の剛
性KHは、 KH=Rc−KV Rc=f (D、Lo) で与えられる。(但し、Lo :コイルバネの自然長)
このようにKHは、軸方向剛性KVとコイルの自然長L
oで決定され、軸方向剛性KVが高いほど高く、またコ
イルの自然長LOが長いほど低いことがわかっている。
Next, the rigidity of the coil spring will be described. Generally, the axial stiffness KV of a coil spring is given by: ((B, L, α: constant, d: wire diameter, D:
(coil diameter, N: effective number of turns) Therefore, the axial stiffness KV of a coil spring is determined by the wire diameter d, the coil diameter D, and the effective number of turns N, and is proportional to the fourth power of the wire diameter d, and is proportional to the cube of the coil diameter. is inversely proportional to the effective winding N. The stiffness KH of the coil spring in the direction perpendicular to the axis is given by: KH=Rc-KV Rc=f (D, Lo). (However, Lo: Natural length of coil spring)
In this way, KH is the axial stiffness KV and the natural length L of the coil.
It is known that the higher the axial stiffness KV is, the higher the stiffness is, and the longer the natural length LO of the coil is, the lower the stiffness is.

一方、3次元免震装置としては、軸直角方向剛性K H
と軸方向剛性KVの比K)I/KVが小さいほど、被免
震構造物の回転振動が抑制されるため都合がよい。もつ
ともあまり小さくすることはできず発明者は K I( 角方向固有振動数fHは、 景物の質量) そこで、定格荷重載荷時の軸方向固有振動数fvを2H
z、軸直角方向固有振動数fHを1Hz以下を目標に、
コイルバネを設計すると、前記最大線径100mm及び
前記最小コイル平均径330mmを採用した場合、有効
巻数Nを7、コイルの自由長Loを1100mm程度必
要となり、支持荷重は24トン、単位据付面積あたりの
支持荷重は86トン程度となり、目標支持荷重の100
トンには足りない。
On the other hand, as a three-dimensional seismic isolation device, the rigidity in the axis perpendicular direction K H
The smaller the ratio K)I/KV of the axial stiffness KV and the axial stiffness KV, the more convenient the rotational vibration of the seismically isolated structure is suppressed. However, it could not be made too small, so the inventor decided to reduce the axial natural frequency fv to 2H when the rated load is applied.
z, aiming for the axis-perpendicular direction natural frequency fH to be 1Hz or less,
When designing a coil spring, if the maximum wire diameter is 100 mm and the minimum average coil diameter is 330 mm, the effective number of turns N must be 7, the coil free length Lo must be approximately 1100 mm, the supporting load is 24 tons, and the minimum coil diameter per unit installation area is approximately 1,100 mm. The supporting load is approximately 86 tons, which is 100 tons of the target supporting load.
Not enough for a ton.

また、逆に100トン/m2以上の支持荷重を有するバ
ネを、定格荷重載荷時の軸方向固有振動数2 Hz、軸
直角方向固有振動数I Hzという目標で設計すると、
線径125mm、コイルの平均径410mm、有効巻線
Nは5.7、コイル自由長Loは1400mm程度が必
要となるが、前述の如く、線径125mmは製作が非常
に困難であり、製作実績はもちろんない。さらに、この
線径125mmのバネは、仮りに製作したとしても、密
着応力(コイルを密着するまで圧縮したときに生じる応
力)が非常に高く、140 kg/mm2にも達するた
め(バネ材の引張り強さは、例えば5UPIIAで12
5kg/mm2程度)好ましくない(密着応力が引張り
強さよりも小さくなるよう設計することが慣例である)
。したがって、一つの線材によってつくられるコイルバ
ネにより、前記目標を達成することは困難である。
Conversely, if a spring with a supporting load of 100 tons/m2 or more is designed with the goal of having a natural frequency of 2 Hz in the axial direction and a natural frequency of I Hz in the direction perpendicular to the axis when loaded with the rated load,
A wire diameter of 125 mm, an average coil diameter of 410 mm, an effective winding N of 5.7, and a coil free length Lo of about 1400 mm are required, but as mentioned above, it is extremely difficult to manufacture a wire diameter of 125 mm, and the manufacturing results are limited. Of course not. Furthermore, even if a spring with a wire diameter of 125 mm were manufactured, the adhesion stress (the stress generated when the coil is compressed until it is tightly attached) is extremely high, reaching 140 kg/mm2 (the tension of the spring material For example, the strength is 5UPIIA and 12
(approximately 5 kg/mm2) Not desirable (it is customary to design so that the adhesion stress is smaller than the tensile strength)
. Therefore, it is difficult to achieve the above goal with a coil spring made of a single wire.

次に、荷重支持能力を増大させる案としては。Next, as a plan to increase load bearing capacity.

第5図に示す多重巻きコイルが考えられる。これは、コ
イル径の異なる二つのコイルバネ1,2を同心状に配置
したもので、外側コイル1の内径よりも内側コイル2の
外径の方が小さく、外側コイル1の内側の空きスペース
に内側コイル2を配置したものである。この場合、外側
コイル1を例えば、前記最大線径100+nrrl、前
記最小コイル平均径330mmのコイルバネとすると、
内側の空きスペースは直径230mmの円筒上空間であ
る。このスペースに設置可能なコイルバネ2を設計して
みると、定格荷重載荷時の軸方向固有振動数2Hz、軸
直角方向固有振動数I Hz以下という条件では、設計
不可能である。設計可能な2重コイルとしては例えば、
外側コイルが線径に最大線径100mmを採用し、コイ
ル平均径をすこし太きくL400mm、内側コイル線径
50mm、コイル平均径を200mm程度とするものと
なる。この場合、支持荷重は外側コイルが20トン、内
側コイルが5トンで合計251−ンであり、前述の線径
100m+++、コイル径330mmのコイルバネより
はわずかに支持荷重が増加する。しかしながら、単位据
付面積あたりの支持荷重は70トン/ m 2程度にと
どまってしまい、目標の100トン/m2にはとどかな
い。
A multi-turn coil shown in FIG. 5 can be considered. This is a system in which two coil springs 1 and 2 with different coil diameters are arranged concentrically, and the outer diameter of the inner coil 2 is smaller than the inner diameter of the outer coil 1. A coil 2 is arranged. In this case, if the outer coil 1 is, for example, a coil spring with the maximum wire diameter of 100+nrrl and the minimum coil average diameter of 330 mm,
The empty space inside is a cylindrical space with a diameter of 230 mm. When designing a coil spring 2 that can be installed in this space, it is impossible to design it under the conditions that the natural frequency in the axial direction is 2 Hz or less and the natural frequency in the axis perpendicular direction is I Hz or less when the rated load is applied. Examples of double coils that can be designed include:
The outer coil has a maximum wire diameter of 100 mm, the average coil diameter is slightly thicker L400 mm, the inner coil wire diameter is 50 mm, and the average coil diameter is about 200 mm. In this case, the supported load is 20 tons for the outer coil and 5 tons for the inner coil, for a total of 251 tons, which is slightly more than the above-mentioned coil spring with a wire diameter of 100 m+++ and a coil diameter of 330 mm. However, the supported load per unit installation area remains at around 70 tons/m2, falling short of the target of 100 tons/m2.

そこで、剛性に関する条件を多少緩めて、軸方向及び軸
直角方向とも剛性が多少増加し固有振動数が増加しても
よいとするならば、前述の線径100mm、コイル径3
30mmのコイルバネの内側に、線径40mm、コイル
径130mm程度のコイルを配置することが可能である
。この場合、支持荷重は合計28トンとなり、単位据付
面積あたり支持荷重は100トン/ m 2となり、目
標を達成する。
Therefore, if we loosen the conditions regarding the rigidity a little and allow the rigidity to increase somewhat in both the axial direction and the axis-perpendicular direction, and the natural frequency to increase, then the above-mentioned wire diameter of 100 mm and coil diameter of 3.
It is possible to arrange a coil with a wire diameter of 40 mm and a coil diameter of about 130 mm inside a 30 mm coil spring. In this case, the total supported load will be 28 tons, and the supported load per unit installation area will be 100 tons/m2, achieving the target.

しかしながら、外側コイル径を400mmとした場合も
、330mmとした場合も密着応力についてはなんら改
善されておらず、外側コイル径を330mmとした場合
には、前述の如< 140 kg/ mm2生ずる。ま
た、外側コイル径を400mmとした場合には密着応力
は、250 kg/mm”も生ずる。
However, there is no improvement in adhesion stress either when the outer coil diameter is 400 mm or 330 mm, and when the outer coil diameter is 330 mm, <140 kg/mm2 occurs as described above. Further, when the outer coil diameter is 400 mm, the adhesion stress is as high as 250 kg/mm''.

C発明が解決しようとする問題点〕 従来技術は、単位据付面積あたりの支持荷重を100ト
ン/ m 2以上にするという点、及び、軸方向剛性と
軸直角方向剛性の両方を適切に設定する、言い換えると
、例えば軸方向剛性KVと軸直角方向剛性KOの比をK
H/KV=−程度にするという点について配慮がなされ
ておらず、バネを設計してみると製作が非常に困難な太
さの線が必要となったり、密着応力がバネ材の引張り強
さを越えてしまうという問題があった。
Problems to be solved by the invention] The conventional technology requires that the supported load per unit installation area be 100 tons/m2 or more, and that both the axial rigidity and the axis-perpendicular rigidity are appropriately set. In other words, for example, the ratio of the axial stiffness KV to the perpendicular stiffness KO is K
No consideration was given to the point that H/KV = -, and when designing a spring, it became necessary to use a wire with a thickness that was extremely difficult to manufacture, and the adhesion stress was too high for the tensile strength of the spring material. The problem was that it exceeded the limit.

本発明の目的は、■線径dを製作困難なほど太くせず(
例えば8510mm)に、■かつ密着応力を極端に大き
くすることなく(例えば125kg/mm2以下)、■
単位据付面積あたり一定(例えば100トン/m2)以
上の荷重支持能力を有し、且つ■KH/KVが所定の小
さな値(例えばに1(/KV =−程度)であるコイル
バネを提供することにある。
The purpose of the present invention is to (1) avoid making the wire diameter d so thick that it is difficult to manufacture (
(e.g. 8510 mm), (i) and without increasing the adhesion stress extremely (e.g. 125 kg/mm2 or less), (i)
To provide a coil spring that has a load bearing capacity of a certain value (e.g., 100 tons/m2) or more per unit installation area, and in which KH/KV is a predetermined small value (e.g., about 1 (/KV = -)) be.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の多重巻きコイルバネば、免震装置に使用される
コイルバネであって、2以」二の線材を同(q) 心状に且つ同一巻方向に多重巻きとし、各線材は軸方向
に互いに重なりうるように各コイル径が設定されている
ものである。
The multi-wound coil spring of the present invention is a coil spring used in a seismic isolation device, in which two or more wire rods are wound multiple times in the same (q) core shape and in the same winding direction, and each wire rod is wound with respect to each other in the axial direction. The diameters of each coil are set so that they can overlap.

線材の数は二つの場合が最も実施の可能性が高いと考え
る。そして二つの線材のコイル径と線径が同一の場合は
もちろん、コイル径と線径が異なる場合でも本発明を構
成することができる。すなわち二つの線材のコイル径の
差が、線径の和以上となるようにコイル径が設定されて
いれば、各線材は軸方向に互いに重なりうるようになる
We believe that it is most likely to be implemented when the number of wire rods is two. The present invention can be implemented not only when the coil diameter and the wire diameter of the two wires are the same, but also when the coil diameter and the wire diameter are different. That is, if the coil diameters are set such that the difference in coil diameter between the two wire rods is greater than or equal to the sum of the wire diameters, the wire rods can overlap each other in the axial direction.

本発明のように各線材が軸方向に互いに重なりうるよう
な隙間を有しているコイルバネが使用される免震装置と
しては、例えば原子炉を支持する免震装置が考えられる
。回転振動を抑制するため軸方向剛性KVに対し軸直角
方向剛性KHが小さくなければならず、したがってコイ
ルバネの各巻き間が大きく隙間のあいたものとなりうる
がらである。
An example of a seismic isolation device that uses a coil spring having gaps such that wire rods can overlap each other in the axial direction as in the present invention is, for example, a seismic isolation device that supports a nuclear reactor. In order to suppress rotational vibration, the rigidity KH in the direction perpendicular to the axis must be smaller than the rigidity KV in the axial direction, and therefore, there may be large gaps between each winding of the coil spring.

〔作用〕[Effect]

本発明の多重巻きコイルバネは、各線材が軸方向に互い
に重なりうるように各コイル径が設定されている。換言
すれば一つの線材の巻回しの間隙に他の線材が巻回され
て存在する形状となっていることにより、各線材が構成
する各コイルの荷重支持能力を似かよったものとするこ
とができ、したがって単位据付面積あたりの荷重支持能
力を大きくすることができる。従来の多重巻きコイルバ
ネ(前記掲げた機械設計便覧の1242頁図12゜10
)のように内側に存在するコイルのコイル径がホさくな
ってしまい必然的に線径が小さくなってしまうものに比
べ、大きな荷重を支持できるからである。また各コイル
が圧縮されたときに軸方向に互いに重なるので各コイル
間の間隙が小さく前記密着応力を小さくできる。
In the multi-wound coil spring of the present invention, the coil diameters are set so that the wire rods can overlap each other in the axial direction. In other words, by having a shape in which another wire is wound in the gap between the windings of one wire, it is possible to make the load bearing capacity of each coil constituted by each wire similar. Therefore, the load supporting capacity per unit installation area can be increased. Conventional multi-wound coil spring (Figure 12゜10 on page 1242 of the mechanical design handbook listed above)
This is because it can support a larger load compared to the case where the coil diameter of the inner coil becomes thinner, resulting in a smaller wire diameter. Further, since the coils overlap each other in the axial direction when compressed, the gap between the coils is small, and the adhesion stress can be reduced.

よって従来のように■線径■剛性の比の条件を満足させ
ることができ■密着応力あるいは■単位据付面積あたり
の荷重支持能力の条件を満たさないということがなく■
■■■の条件を全て満たすコイルバネを提供することが
できる。
Therefore, unlike conventional products, it is possible to satisfy the conditions of wire diameter and rigidity ratio, and there is no need to meet the conditions of adhesion stress or load bearing capacity per unit installation area.
It is possible to provide a coil spring that satisfies all of the conditions of ■■■.

〔実施例〕〔Example〕

第1図に、本発明の第一実施例を示す。本実施例は、二
つの同一線径の線材を同心状に且つ同一巻方向に同一コ
イル径のコイルバネ]、2として2重巻きとしたもので
、上フランジ3と下フランジ4と前記コイルバネ1とコ
イルバネ2とで構成される。コイルバネ1とコイルバネ
2は全く同じもので、その仕様は、線径dを100++
++n(前記目的の)、コイル平均径りを400mm、
コイル内径300mm、コイル外径500mm、有効巻
数Nを5、コイル自由長Loを1360mmとしている
FIG. 1 shows a first embodiment of the invention. In this embodiment, two wire rods of the same diameter are wound concentrically and in the same winding direction as a coil spring with the same coil diameter. It is composed of a coil spring 2. Coil spring 1 and coil spring 2 are exactly the same, and their specifications are such that the wire diameter d is 100++
++n (for the above purpose), the average diameter of the coil is 400 mm,
The coil inner diameter is 300 mm, the coil outer diameter is 500 mm, the effective number of turns N is 5, and the coil free length Lo is 1360 mm.

本実施例のコイルバネの設計式は、以下の通りである。The design formula for the coil spring of this example is as follows.

ND3 Ko=Rc−KV KV ;軸方向剛性 KH;軸直角方向剛性 τ■ ;軸方向荷重による応力 τH;軸直角方向荷重による応力 G;せん断罪性係数 d;線径 N;有効巻線 D;コイル平均径 Rc ;コイルの形状で決まる係数 Fv;軸方向荷重 FH;軸直角方向荷重 Rτ;コイルの形状で決まる係数 これらの式に基づき、本実施例のコイルバネの仕様は設
定されており、定格荷重はコイルバネ1本で20トン、
単位据付面積あたり支持荷重は55トン/m2、この定
格荷重載荷時の軸方向固有振動数が2 Hz、軸直角方
向固有振動数はIHz以下となっている(前記目的の■
)。このコイルバネを同心状に2重巻きとしであるため
、本実施例のコイルバネば、支持荷重40トン、単位据
付面積あたりの支持荷重が110トン/ m 2となり
(前記目的の■)、Loot−27m2以上という目標
を達成している。また本実施例のコイルバネは、荷重を
載荷しない状態では、密着までに260mmのストロー
クを有しているが、これは、2重巻きとしなければ密着
までに、さらに500mm程度のストロークが存在した
ものが、2重巻きとしたことで大幅に低減したものであ
る。1重巻コイルの場合の密着応力は前述の如<250
kg/mm”に達するが、2重巻コイルの場合には85
0kg/mm2程度となり(前記目的■)、大幅に低減
されている。
ND3 Ko=Rc-KV KV; Axial rigidity KH; Axis-perpendicular rigidity τ; Stress due to axial load τH; Stress G due to axis-perpendicular load; Shear susceptibility coefficient d; Wire diameter N; Effective winding D; Coil average diameter Rc; Coefficient Fv determined by coil shape; Axial load FH; Axis-perpendicular load Rτ; Coefficient determined by coil shape Based on these formulas, the specifications of the coil spring in this example are set, and the rated The load is 20 tons with one coil spring.
The supported load per unit installation area is 55 tons/m2, the natural frequency in the axial direction when this rated load is applied is 2 Hz, and the natural frequency in the direction perpendicular to the axis is less than IHz (for the above purpose
). Since this coil spring is double-wound concentrically, the coil spring of this example has a supporting load of 40 tons, a supporting load per unit installation area of 110 tons/m2 (objective (■) above), and a Loot of 27 m2. We have achieved the above goals. Furthermore, the coil spring of this example has a stroke of 260 mm before coming into close contact when no load is applied, but this is because if it were not wound twice, there would have been an additional stroke of about 500 mm before coming into close contact. However, by using double winding, it was significantly reduced. The adhesion stress in the case of a single-wound coil is <250 as described above.
kg/mm”, but in the case of a double-wound coil it reaches 85
It is approximately 0 kg/mm2 (objective (above)), which is a significant reduction.

なお、本実施例のコイルバネは定格荷重載荷時にその重
量により約60mm縮む。したがって、260mmとい
うストロークは、上下方向的3Gの地震荷重が作用した
ときに初めて密着に至る量であり、免震装置としては充
分な容量といえる。
Note that the coil spring of this example contracts by about 60 mm due to its weight when the rated load is applied. Therefore, the stroke of 260 mm is the amount that will only reach close contact when an earthquake load of 3 G in the vertical direction is applied, and can be said to be a sufficient capacity for a seismic isolation device.

第2図は、第1図の実施例のフランジ部分の詳細図であ
る。下フランジ4(上フランジ3も同様である)は、平
板部分5と円筒部分6とで構成され、平板部分5と円筒
部分6とは溶接等で接合さく14) れた一体物である。コイルバネ1とコイルバネ2とは2
重巻きの状態で円筒部分6の内側に挿入収納されている
。コイルバネ1及びコイルバネ2の外径は、円筒部分6
の内径よりもわずかに(例えば5 mm)小さく、挿入
に際しては特別な配慮は不要であるようにしである。本
実施例の場合は、軸方向荷重を平板部分5で負担し、軸
直角方向荷重を円筒部分6で負担するものである。また
、本実施例の場合、上下方向の農地荷重が3Gを越える
とコイルバネは荷重支持能力を失うが、通常免震された
構造物の地震応答はIGを越えるような設計をしないの
で問題はない。
FIG. 2 is a detailed view of the flange portion of the embodiment of FIG. 1. The lower flange 4 (the same applies to the upper flange 3) is composed of a flat plate part 5 and a cylindrical part 6, and the flat plate part 5 and the cylindrical part 6 are joined together by welding or the like (14) to form an integral body. What is coil spring 1 and coil spring 2?
It is inserted and stored inside the cylindrical portion 6 in a heavily rolled state. The outer diameter of the coil spring 1 and the coil spring 2 is the cylindrical portion 6.
The inner diameter of the tube is slightly smaller (for example, 5 mm) than the inner diameter of the tube, so that no special considerations are required during insertion. In the case of this embodiment, the axial load is borne by the flat plate portion 5, and the axially perpendicular load is borne by the cylindrical portion 6. In addition, in the case of this example, if the vertical farmland load exceeds 3G, the coil spring will lose its load-bearing capacity, but this is not a problem because the seismic response of a seismically isolated structure is usually not designed to exceed IG. .

第3図は、本発明の他の実施例のフランジ部分を示して
いる。フランジは、平板部分5と円柱部分7で構成され
、平板部分5と円柱部分7とは溶接等で接合されている
。第2図の実施例と異なるのは、円柱部分7にネジ切り
がなされており、このネジ切りは、コイルバネ1及びコ
イルバネ2の線径及びピッチと合致するようにしである
。そしてコイルバネ1及びコイルバネ2は円筒部分7の
ネジ切り部分にねじ込まれている。本実施例のコイルバ
ネの場合は、軸方向荷重を平板部分5とネジ切り部分と
で負担し、軸直角方向荷重をネジ切り部分で負担するも
のである。本実施例の場合には、万一上下方向地震力が
IGを越えても、コイルバネは荷重支持能力を失わず、
免震効果を維持できるという利点がある。
FIG. 3 shows the flange portion of another embodiment of the invention. The flange is composed of a flat plate portion 5 and a cylindrical portion 7, and the flat plate portion 5 and the cylindrical portion 7 are joined by welding or the like. The difference from the embodiment shown in FIG. 2 is that the cylindrical portion 7 is threaded, and this threading is made to match the wire diameter and pitch of the coil springs 1 and 2. The coil spring 1 and the coil spring 2 are screwed into the threaded portion of the cylindrical portion 7. In the case of the coil spring of this embodiment, the axial load is borne by the flat plate portion 5 and the threaded portion, and the axis-perpendicular load is borne by the threaded portion. In the case of this embodiment, even if the vertical seismic force exceeds IG, the coil spring will not lose its load supporting capacity.
It has the advantage of maintaining a seismic isolation effect.

以上のような多重巻きコイルバネを、例えば高速増殖炉
の免震装置として採用した場合には原子炉を軽量化する
ことが可能となる。また半導体製造設備の免震装置とし
て採用した場合には地震による被害をより免れることで
製品の歩留まりを向上する効果がある。
When such a multi-wound coil spring as described above is employed, for example, as a seismic isolation device for a fast breeder reactor, it becomes possible to reduce the weight of the nuclear reactor. Furthermore, when adopted as a seismic isolation device for semiconductor manufacturing equipment, it has the effect of improving product yield by further protecting against damage caused by earthquakes.

第4図は、本発明のさらに他の実施例を示すものである
。第1図の実施例と異なるのは、2本のコイルバネ1,
2が、線径、コイル径とも異なる点である。第1図の実
施例は、コイルバネのピッチが同一線径のコイルバネを
間に置くに充分広い場合の実施例であるが、この第4図
の実施例は、外側コイルバネ1のピッチが、同一線径の
コイルバネを間に置けるほど広くない場合の実施例であ
る。このような場合、2本のコイルバネの線径の和以上
であれば、内側コイルの外径が外側コイルの内径より小
さい従来技術となんら径わるところはないが、本実施例
の場合、コイル径の差を2本のコイルバネの線径の和以
上の適切な値(設計による)に設定し、軸方向圧縮に対
して2本のコイルバネが軸方向に重なる(接触する)よ
うにしであるため、密着応力が低減される。第1図の実
施例よりは荷重支持能力においてやや劣るが、このよう
な設計をせざるを得ない場合には次善の案として有望で
ある。
FIG. 4 shows yet another embodiment of the present invention. The difference from the embodiment shown in FIG. 1 is that the two coil springs 1,
The second point is that both the wire diameter and the coil diameter are different. The embodiment shown in Fig. 1 is an embodiment in which the pitch of the coil springs is wide enough to allow coil springs of the same wire diameter to be placed between them, but in the embodiment shown in Fig. 4, the pitch of the outer coil springs 1 is the same This is an example in which the diameter is not wide enough to allow a coil spring to be placed between the coil springs. In such a case, as long as the wire diameter is greater than or equal to the sum of the wire diameters of the two coil springs, there is no difference in diameter from the conventional technology in which the outer diameter of the inner coil is smaller than the inner diameter of the outer coil, but in the case of this example, the coil diameter The difference is set to an appropriate value (by design) that is greater than the sum of the wire diameters of the two coil springs, so that the two coil springs overlap (contact) in the axial direction against axial compression. Adhesion stress is reduced. Although the load supporting capacity is slightly inferior to the embodiment shown in FIG. 1, it is promising as the next best option when such a design is unavoidable.

以上、本発明の実施例として、同一線径、同一コイル径
のコイルバネを2重巻きとするものと、線径、コイル径
とも異なるコイルバネを2重巻きとするものについて述
べたが、本発明はこれらに限定されるものではない。
Above, as embodiments of the present invention, two coil springs with the same wire diameter and the same coil diameter are wound twice, and a coil spring with different wire diameters and coil diameters is double wound. It is not limited to these.

例えば、線径の異なるコイルバネを同一コイル径で2重
巻きとすることも可能であり、コイルバネの本数も2重
巻きに限られるものではなく、3重巻き以上でもよい。
For example, coil springs with different wire diameters can be wound twice with the same coil diameter, and the number of coil springs is not limited to two turns, but may be three or more turns.

さらに、コイルバネの断面も円形に限られるものではな
い。コイルバネとフランジ部の取り合いも、これら実施
例に限られるものではなく、例えば、タイロッドの如き
ものを用いてももちろん有効である。
Furthermore, the cross section of the coil spring is not limited to a circular shape either. The connection between the coil spring and the flange portion is not limited to these embodiments, and it is of course also effective to use something such as a tie rod, for example.

〔発明の効果〕〔Effect of the invention〕

本発明の多重巻きコイルバネによれば、■線径dを製作
困難なほど太くせず■且つ軸方向剛性KVと軸直角方向
剛性K Hの比Kl(/KVが所定の小さな値をとるよ
うに設計しても■密着応力を極端に大きくすることなく
■単位据付面積あたり一定以上の荷重支持能力を有する
コイルバネを提供することができる。
According to the multi-wound coil spring of the present invention, (1) the wire diameter d is not made so thick that it is difficult to manufacture (2) and (2) the ratio Kl (/KV) of the axial stiffness KV and the axially perpendicular stiffness KH takes a predetermined small value. Even when designed, it is possible to provide a coil spring that has a load-bearing capacity of more than a certain level per unit installation area;

【図面の簡単な説明】 第1図は本発明の一実施例を示す側面図、第2図は第1
図の部分詳細断面図、第3図は本発明の他の実施例の部
分詳細断面図、第4図は本発明のさらに他の実施例を示
す側面図、第5図は従来技術を示す側面図である。 1・・・コイルバネ、2・・・コイルバネ、3・・・上
フランジ、4・・・下フランジ、5・・フランジの平板
部分、6・・・フランジの円筒部分、7・・・フランジ
の円柱部分。
[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 is a side view showing one embodiment of the present invention, and Fig. 2 is a side view showing an embodiment of the present invention.
3 is a partial detailed sectional view of another embodiment of the present invention, FIG. 4 is a side view of still another embodiment of the present invention, and FIG. 5 is a side view of the prior art. It is a diagram. 1... Coil spring, 2... Coil spring, 3... Upper flange, 4... Lower flange, 5... Flat plate part of flange, 6... Cylindrical part of flange, 7... Cylindrical column of flange. part.

Claims (1)

【特許請求の範囲】 1、免震装置に使用されるコイルバネであつて、2以上
の線材を同心状に且つ同一巻方向に多重巻きとし、各線
材は軸方向に互いに重なりうるように各コイル径が設定
されていることを特徴とする多重巻きコイルバネ。 2、特許請求の範囲第1項において、二つの線材が、コ
イル径の差が線径の和以下となるよう各コイル径が設定
されている多重巻きコイルバネ。 3、特許請求の範囲第2項において、コイル径及び線径
が同一である多重巻きコイルバネ。 4、特許請求の範囲第3項において、多重巻きコイルは
原子炉を支持する免震装置に使用されるものであり軸方
向剛性K_Vと軸直角方向K_Hとが 1/5<K_H/K_V<1/2 の値を有する多重巻きコイルバネ。
[Claims] 1. A coil spring used in a seismic isolation device, in which two or more wire rods are wound multiple times concentrically and in the same winding direction, and each coil is wound so that the wire rods can overlap each other in the axial direction. A multi-wound coil spring characterized by a set diameter. 2. The multi-wound coil spring according to claim 1, wherein the coil diameters of the two wire rods are set such that the difference in coil diameter is less than or equal to the sum of the wire diameters. 3. A multi-wound coil spring according to claim 2, in which the coil diameter and the wire diameter are the same. 4. In claim 3, the multi-wound coil is used in a seismic isolation device that supports a nuclear reactor, and the axial stiffness K_V and the axis-perpendicular direction K_H are 1/5<K_H/K_V<1. A multi-turn coil spring with a value of /2.
JP8834187A 1987-04-10 1987-04-10 Multilayered coil spring Pending JPS63254242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8834187A JPS63254242A (en) 1987-04-10 1987-04-10 Multilayered coil spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8834187A JPS63254242A (en) 1987-04-10 1987-04-10 Multilayered coil spring

Publications (1)

Publication Number Publication Date
JPS63254242A true JPS63254242A (en) 1988-10-20

Family

ID=13940149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8834187A Pending JPS63254242A (en) 1987-04-10 1987-04-10 Multilayered coil spring

Country Status (1)

Country Link
JP (1) JPS63254242A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207589A (en) * 2003-12-24 2005-08-04 Sairensu:Kk Damping coil spring and vibration damping device
JP2012211702A (en) * 2012-07-24 2012-11-01 Mitsubishi Steel Mfg Co Ltd Coil spring
WO2013124281A1 (en) * 2012-02-22 2013-08-29 Sanofi-Aventis Deutschland Gmbh Spring assembly for a drug delivery device
CN106725823A (en) * 2016-12-30 2017-05-31 苏州达力客自动化科技有限公司 A kind of soft brill spring
KR101941905B1 (en) * 2018-09-18 2019-01-24 주식회사 에스앤와이시스템 Seismic isolation equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207589A (en) * 2003-12-24 2005-08-04 Sairensu:Kk Damping coil spring and vibration damping device
WO2013124281A1 (en) * 2012-02-22 2013-08-29 Sanofi-Aventis Deutschland Gmbh Spring assembly for a drug delivery device
CN104245012A (en) * 2012-02-22 2014-12-24 赛诺菲-安万特德国有限公司 Spring assembly for a drug delivery device
JP2012211702A (en) * 2012-07-24 2012-11-01 Mitsubishi Steel Mfg Co Ltd Coil spring
CN106725823A (en) * 2016-12-30 2017-05-31 苏州达力客自动化科技有限公司 A kind of soft brill spring
KR101941905B1 (en) * 2018-09-18 2019-01-24 주식회사 에스앤와이시스템 Seismic isolation equipment

Similar Documents

Publication Publication Date Title
US5791636A (en) Compact profile wire cable isolator and energy absorbing restraint
US4791243A (en) Compact device for long stroke energy absorption
JPS63254242A (en) Multilayered coil spring
US20150187489A1 (en) Transformer, amorphous transformer and method of manufacturing the transformer
JPS59231857A (en) High-tension thyristor valve
CN115821733A (en) Shock absorption and isolation bridge support
JPH02272160A (en) Shock absorber
JPS58166152A (en) Vibration-isolation bearing and its manufacture
JP3503712B2 (en) Lead encapsulated laminated rubber
JP2968379B2 (en) Bushing for high voltage
US20230274871A1 (en) Transformer core and transformer
JPH0464164B2 (en)
JP3068922B2 (en) Superconducting magnet
JP2003106004A (en) Seismically isolated structure of cable reinforcement
JPS61189342A (en) Damper
JPS5832033Y2 (en) Deformed compression coil spring with linear spring characteristics
JPS61294230A (en) Vibration energy absorbing device
JP2624804B2 (en) Foil-wound transformer
JPS62220735A (en) Vibrational energy absorbing device
JPH05182819A (en) Manufacture of superconducting coil
JPS6057688B2 (en) Pancake wrapped superconducting coil
JPH06349640A (en) Transformer
RU1768808C (en) Coil spring of polymer
JPS61294231A (en) Vibration energy absorbing device
RU2066798C1 (en) Vibration isolating support of internal combustion engine