JP2003106004A - Seismically isolated structure of cable reinforcement - Google Patents

Seismically isolated structure of cable reinforcement

Info

Publication number
JP2003106004A
JP2003106004A JP2001302023A JP2001302023A JP2003106004A JP 2003106004 A JP2003106004 A JP 2003106004A JP 2001302023 A JP2001302023 A JP 2001302023A JP 2001302023 A JP2001302023 A JP 2001302023A JP 2003106004 A JP2003106004 A JP 2003106004A
Authority
JP
Japan
Prior art keywords
seismic isolation
cable
frame
isolation structure
deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001302023A
Other languages
Japanese (ja)
Inventor
Kozo Fukao
康三 深尾
Shinya Igarashi
信哉 五十嵐
Ryuta Hirose
隆太 広瀬
Yasusuke Suzuki
庸介 鈴木
Daisaku So
大作 荘
Masayoshi Nakai
政義 中井
Kazuo Aoki
和雄 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2001302023A priority Critical patent/JP2003106004A/en
Publication of JP2003106004A publication Critical patent/JP2003106004A/en
Pending legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the seismically isolated structure of cable reinforcement in which noxious pull-out force and a floating generated in the structure are inhibited. SOLUTION: The seismically isolated structure is composed of the combination of a bending-deflection reducing main frame consisting of a shaft having a structure mainly resisting horizontal force and a cable, which is installed in arrangement in which the horizontal deformation of the shaft is suppressed and to which pretension is introduced, and a slave frame constructed in a juxtaposing structure independent of the main frame. Base isolation layers are mounted on the upper and lower sections of the slave frame, and a section between the main and slave frames is connected by a damper.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、高層乃至超高層
建物、或いは塔状比が大きい構造物であって免震システ
ムが適用されている免震構造物の変形をケーブルで抑制
するケーブル補強型免震構造物の技術分野に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cable reinforced type for suppressing deformation of a high-rise building or a super-high-rise building, or a structure having a large tower ratio and a seismic isolation system to which a seismic isolation system is applied, by a cable. It belongs to the technical field of seismic isolation structures.

【0002】[0002]

【従来の技術】免震構造物の地震応答を長周期化する免
震システムとして現在一般的に使用されている積層ゴム
系の免震支承aによる免震構造物の例を図5Aに示し
た。積層ゴム支承aは、圧縮軸力に対する許容範囲はす
こぶる大きいが、許容できる引張り軸力は小さい。より
長周期で免震効果を高める免震システムとして、図5B
には、滑り支承(転がり支承)bを主体として、僅かな
積層ゴム支承a等による復元機構を併用した免震構造物
を示している。これらの免震構造物は、現在一般的に実
施されている。
2. Description of the Related Art FIG. 5A shows an example of a seismic isolation structure using a laminated rubber type seismic isolation bearing a which is generally used at present as an seismic isolation system for lengthening the seismic response of seismic isolation structures. . The laminated rubber bearing a has a very large allowable range for the compression axial force, but has a small allowable tensile axial force. Fig. 5B shows a seismic isolation system that enhances the seismic isolation effect over a longer period.
In the figure, a seismic isolation structure is shown in which a sliding bearing (rolling bearing) b is mainly used and a restoring mechanism including a slight laminated rubber bearing a is also used. These seismic isolation structures are now commonly practiced.

【0003】免震構造物は、図5A、Bのように免震層
(免震装置a、b)の位置より上方部分が低層建物で剛
体的な挙動を示す場合、或いは上部構造に曲げ変形が発
生しても引き抜き力が発生しない場合には免震効果が有
効である。
As shown in FIGS. 5A and 5B, the seismic isolation structure has a structure in which the upper part of the seismic isolation layer (seismic isolation device a, b) shows a rigid behavior in a low-rise building, or is bent and deformed into an upper structure. The seismic isolation effect is effective when the pull-out force does not occur even if the occurrence occurs.

【0004】しかし、塔状比の大きい建物、又は高層な
いし超高層建物になるにしたがい、図6A、Bに示すよ
うに、地震応答として曲げ変形による引き抜き力Nが積
層ゴム支承aに作用したり、或いは滑り支承bの「浮き
上がり」というような問題が発生することが、免震構造
物の構造的限界になっている。
However, when a building with a large tower-like ratio or a high-rise or super-high-rise building is used, as shown in FIGS. 6A and 6B, the pull-out force N due to bending deformation acts on the laminated rubber bearing a as an earthquake response. Alternatively, the occurrence of a problem such as "lifting" of the sliding bearing b is the structural limit of the seismic isolation structure.

【0005】そこで、上記引き抜き力Nに対しては、引
張りに抵抗する積層ゴム支承の開発が、「浮き上がり」
に対してはこれを許容する免震システムの開発がそれぞ
れ進められ、免震構造物の高層化が進んでいる。しか
し、より高層ないし超高層建物、或いは一層塔状比の大
きい免震構造物を実現するためには、現状の技術では未
だ十分といえない。
Therefore, the development of a laminated rubber bearing that resists pulling against the pulling force N is "floating".
The seismic isolation system that allows this is being developed, and the seismic isolation structure is being made higher. However, in order to realize higher-rise or super-high-rise buildings or seismic isolation structures with a larger tower ratio, the current technology is still insufficient.

【0006】現在、免震構造物の技術分野で公知の従来
技術の代表的な例を説明すると、例えば以下に説明する
発明などが公知である。
At present, representative examples of conventional techniques known in the technical field of seismic isolation structures will be described. For example, the inventions described below are known.

【0007】(1)特許第2631486号公報(平成
9年7月16日発行)には、免震構造物に発生する引き
抜き力(負の軸力=引張り軸力)を全部転倒防止用の積
層ゴム体で受け止めて負担し、アースアンカーを通じて
地盤に反力を取る技術(例えば同公報の2頁右欄の35
行〜39行目の記載)が開示されている。
(1) Japanese Patent No. 2631486 (issued on July 16, 1997) discloses a laminated structure for preventing the pulling-out force (negative axial force = tensile axial force) generated in a seismic isolated structure from all overturning. A technique of receiving and bearing the load with a rubber body and applying a reaction force to the ground through the earth anchor (for example, 35 in the right column of page 2 of the same publication).
The description of lines 39 to 39) is disclosed.

【0008】(2)特開平11−270174号公報に
は、センターコアタイプの免震構造物であって、コア頂
部のトップガーダーと基礎との間に外周柱に沿ってPC
鋼材を垂直に配置し、同PC鋼材に予張力を導入して地
震時の減衰効果を期待する免震構造物が開示されてい
る。
(2) Japanese Unexamined Patent Publication No. 11-270174 discloses a center core type seismic isolation structure in which a PC is installed along the outer peripheral column between the top girder at the top of the core and the foundation.
A seismic isolation structure is disclosed in which steel materials are arranged vertically and pre-tension is introduced into the PC steel material to expect a damping effect during an earthquake.

【0009】(3)特開平11−229662号公報に
は、免震装置で支持された建物の外壁上部に一端を止着
したケーブルの他端を、建物下部に用意した引張り力発
生機構と連結してケーブルに予張力を付与し、地震時の
建物の浮き上がりを防止する免震構造物が開示されてい
る。
(3) In Japanese Unexamined Patent Publication No. 11-229662, the other end of a cable, which is fixed to the upper part of the outer wall of a building supported by a seismic isolation device, is connected at the other end to a tensile force generating mechanism provided at the lower part of the building. Then, a pre-tension is applied to the cable, and a seismic isolation structure that prevents the building from rising during an earthquake is disclosed.

【0010】[0010]

【本発明が解決しようとする課題】上記(1)、
(2)、(3)に説明した従来の免震構造物はいずれ
も、平時においても、転倒防止用の積層ゴム体、或いは
プレストレスを導入した積層ゴム支承体の水平剛性を高
めており、ひいては免震層の水平剛性を高める構成であ
るから、免震層に必要な水平方向の柔軟性を減殺する。
その結果、免震構造物に作用する地震応答が増大して免
震効果が低減するという問題がある。
[Problems to be Solved by the Invention]
All of the conventional seismic isolation structures described in (2) and (3) increase the horizontal rigidity of the laminated rubber body for fall prevention or the laminated rubber bearing body to which prestress is introduced, even in normal times. As a result, the horizontal rigidity of the seismic isolation layer is increased, which reduces the horizontal flexibility required for the seismic isolation layer.
As a result, there is a problem that the seismic response acting on the seismic isolation structure is increased and the seismic isolation effect is reduced.

【0011】本発明の目的は、高層乃至超高層建物、或
いは塔状比が大きい免震構造物などの主架構をケーブル
で補強して変形を抑制することにより、同免震構造物に
発生する有害な引き抜き力(引張り軸力)や浮き上がり
を抑制し、それでいて免震層の水平剛性に及ぼす悪影響
が少なく、免震構造物に作用する地震応答を増大させ
ず、免震効果が良好な、ケーブル補強の免震構造物を提
供することである。
An object of the present invention is to generate a high-rise or ultra-high-rise building or a seismic isolated structure having a large tower ratio by reinforcing the main frame of the seismic isolated structure with a cable to suppress deformation. A cable that suppresses harmful pull-out force (tensile axial force) and lifting, yet has little adverse effect on the horizontal rigidity of the base isolation layer, does not increase the seismic response that acts on the base isolation structure, and has a good seismic isolation effect. It is to provide a reinforced seismic isolation structure.

【0012】[0012]

【課題を解決するための手段】上述した従来技術の課題
を解決するための手段として、請求項1記載の発明に係
るケーブル補強の免震構造物は、高層乃至超高層建物、
或いは塔状比が大きい免震構造物の変形をケーブルで抑
えるケーブル補強の免震構造物において、主に水平力に
抵抗する構造のシャフトと、該シャフトの水平変形を抑
える配置に設置し予張力を導入したケーブルとから成る
曲げ変形低減主架構と、前記主架構とは独立した並立構
造で構築された従架構との組み合わせで構成されてお
り、従架構の上下に免震層を設け、主・従の架構間はダ
ンパーで連結されていることを特徴とする。
As a means for solving the above-mentioned problems of the prior art, a cable-reinforced seismic isolation structure according to the invention of claim 1 is a high-rise building or a super-high-rise building,
Alternatively, in a cable-reinforced seismic isolation structure that suppresses deformation of a seismic isolation structure with a large tower ratio by a cable, a shaft with a structure that mainly resists horizontal force and a pretension installed in an arrangement that suppresses horizontal deformation of the shaft The main structure is a combination of a bending deformation reducing main frame composed of a cable and a subframe structure that is independent of the main frame, and seismic isolation layers are provided above and below the subframe.・ The feature is that the subframes are connected by dampers.

【0013】請求項2記載の発明に係るケーブル補強の
免震構造物は、高層乃至超高層建物、或いは塔状比が大
きい免震構造物の変形をケーブルで抑えるケーブル補強
の免震構造物において、主に水平力に抵抗する構造のシ
ャフトと、該シャフトの水平変形を抑える配置に設置し
予張力を導入したケーブルとから成る曲げ変形低減主架
構と、前記主架構とは独立した並立構造で構築された従
架構との組み合わせで構成されており、従架構の上下及
び中間部に免震層を設け、主・従の架構間はダンパーで
連結されていることを特徴とする。
A cable-reinforced seismic isolation structure according to a second aspect of the present invention is a cable-reinforced seismic isolation structure for suppressing deformation of a high-rise building or a super-high-rise building or a seismic isolation structure having a large tower ratio with a cable. , A bending-deformation-reducing main frame composed mainly of a shaft having a structure for resisting horizontal force, and a cable installed in an arrangement for suppressing horizontal deformation of the shaft and introducing pretension, and a side-by-side structure independent of the main frame. It is constructed in combination with the constructed subframe. It is characterized in that seismic isolation layers are provided at the top and bottom and in the middle of the subframe, and the main and subframes are connected by dampers.

【0014】請求項3記載の発明は、請求項1又は2に
記載したケーブル補強の免震構造物において、従架構は
一層又は多層構造で構成されていることを特徴とする。
The invention according to claim 3 is the seismic isolation structure for cable reinforcement according to claim 1 or 2, characterized in that the subframe is composed of a single-layer or multi-layer structure.

【0015】請求項4記載の発明は、請求項1〜3のい
ずれか一に記載したケーブル補強の免震構造物におい
て、多層構造の従架構は、主架構に用意したトップガー
ダー及び中間ガーダーの層間に構築されていることを特
徴とする。
According to a fourth aspect of the present invention, in the cable-reinforced seismic isolation structure according to any one of the first to third aspects, the multi-layered subframe includes a top girder and an intermediate girder prepared for the main frame. It is characterized by being constructed between layers.

【0016】請求項5記載の発明は、請求項1又は2に
記載したケーブル補強の免震構造物において、ケーブル
に導入した予張力の反力は、個々単独の地中アンカー
で、又は構造物全体での自己釣り合いにより処理されて
いることを特徴とする。
According to a fifth aspect of the present invention, in the cable-reinforced seismic isolation structure according to the first or second aspect, the reaction force of the pretension introduced into the cable is an individual underground anchor or a structure. It is characterized in that it is processed by self-balancing as a whole.

【0017】[0017]

【発明の実施形態】以下に、請求項1〜5記載の発明に
係る免震構造物の実施形態を、図面に基いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the seismic isolation structure according to the invention described in claims 1 to 5 will be described below with reference to the drawings.

【0018】図1と図2は、請求項1記載の発明に係
る、従架構を一層で構成したケーブル補強の免震構造物
の実施形態を示している。なお、本発明で云うケーブル
とは、PC鋼棒等のロッド材を含む概念であることを理
解されたい。
FIG. 1 and FIG. 2 show an embodiment of a cable-reinforced seismic isolation structure according to the first aspect of the present invention, in which a subframe is composed of one layer. It should be understood that the cable referred to in the present invention is a concept including a rod material such as a PC steel rod.

【0019】本実施形態は、高層乃至超高層建物、或い
は塔状比が大きい免震構造物の変形をケーブルで抑える
ケーブル補強の免震構造物であって、中央位置に主に水
平力に抵抗する構造で構築したシャフト1と、該シャフ
ト1の水平変形を抑えるようにシャフト1上端から地面
の間に、平面的に見て直交4方向に対称なハの字形配置
に設置し、且つ予張力を導入したケーブル3、3とから
成る曲げ変形低減主架構と、前記主架構とは独立した並
立構造で構築された従架構4との組み合わせで構成され
ている。
The present embodiment is a cable-reinforced seismic isolation structure that suppresses deformation of a high-rise or ultra-high-rise building or a seismic isolation structure having a large tower ratio with a cable. The shaft 1 constructed by the structure described above is installed between the upper end of the shaft 1 and the ground so as to suppress the horizontal deformation of the shaft 1, and is installed in a C-shaped arrangement symmetrical in four directions orthogonal to each other in plan view, and pre-tensioned. The bending deformation-reducing main frame composed of the cables 3 and 3 and the sub-frame 4 constructed in a side-by-side structure independent of the main frame are combined.

【0020】主架構のシャフト1と従架構4との平面的
配置は、図2Bに示したように、主架構のシャフト1を
中心(コア)としてその外周の4位置に4個の従架構4
が対称的に配置されている。各従架構4は、通常の建物
における居室又は事務室を有する構造とされている。
As shown in FIG. 2B, the shaft 1 of the main frame and the subframe 4 are arranged in four positions at four positions on the outer periphery of the shaft 1 of the main frame as a center (core).
Are arranged symmetrically. Each subframe 4 is structured to have a living room or an office in a normal building.

【0021】前記従架構4は、その上下に免震層を設け
てあり、積層ゴム支承又は滑り支承等の免震支承5によ
って水平剛性の柔らかい状態に支持され、地震入力の低
減化を図っている。従架構4の上端の免震層は、シャフ
ト1の上端に設けたトップガーダー2との間に設けられ
ている。下端の免震層は地上レベルの基礎との間に設け
ている。しかも主架構を構成するシャフト1と従架構4
との間は上下方向に複数配置したダンパー6で水平方向
に連結されている(以上、請求項1に記載した発明)。
The subframe 4 is provided with seismic isolation layers above and below, and is supported by seismic isolation bearings 5 such as laminated rubber bearings or sliding bearings in a horizontal rigid state to reduce seismic input. There is. The seismic isolation layer at the upper end of the subframe 4 is provided between the top girder 2 provided at the upper end of the shaft 1. The seismic isolation layer at the bottom is provided between the ground level foundation. Moreover, the shaft 1 and the sub-frame 4 that compose the main frame
And a plurality of dampers 6 arranged in the vertical direction are connected in the horizontal direction (above, the invention described in claim 1).

【0022】上記したケーブル補強の免震構造物におい
て、ケーブル3に導入する予張力の大きさは、当該免震
構造物の地震応答変形、特に従架構4の浮き上がりや引
き抜き力を抑える効果のある大きさに設定される。そし
て、ケーブル3の反力は、具体的に図示することは省略
したが、個々単独に用意した地中アンカーで処理する
か、又は当該免震構造物全体の鉛直荷重を利用した自己
釣り合い方式により処理される(請求項5に記載した発
明)。
In the above-described cable-reinforced seismic isolation structure, the magnitude of the pre-tension introduced into the cable 3 has the effect of suppressing the seismic response deformation of the seismic isolation structure, particularly the lifting and pulling-out force of the subframe 4. Set to size. Although the reaction force of the cable 3 is not specifically shown, it is processed by an underground anchor prepared individually or by a self-balancing method using the vertical load of the seismic isolation structure. Processed (the invention according to claim 5).

【0023】上記構成の免震構造物は、水平力が卓越す
る地震応答としては、図1に概念図を示したように、主
架構1、2の変位をケーブル3の張力によって抑制さ
れ、従架構4は上下の免震層5が有する水平剛性とダン
パー6の減衰作用にしたがって水平方向に柔らかく長周
期の免震応答を呈する。しかも周期特性が異なる主架構
のシャフト1と従架構4とをダンパー6で連結している
ので、水平荷重に関しては両者の応答を減衰させること
が可能である。
In the seismic isolation structure having the above-mentioned structure, as a seismic response in which the horizontal force is predominant, the displacement of the main frames 1 and 2 is suppressed by the tension of the cable 3 as shown in the conceptual diagram in FIG. The frame 4 exhibits horizontal seismic isolation response that is soft in the horizontal direction according to the horizontal rigidity of the upper and lower seismic isolation layers 5 and the damping action of the damper 6. Moreover, since the shaft 1 of the main frame and the subframe 4 having different periodic characteristics are connected by the damper 6, it is possible to attenuate the response of both with respect to the horizontal load.

【0024】上記したように、本発明の免震構造物は、
水平荷重を主架構1、2が主に負担するので、主架構か
ら独立して並立する従架構4は通常の建物に比して軽微
な構造で構築することが可能である。よってプレキャス
トコンクリート部材による簡易な架構による積層化構造
の実施、或いは部材の画一化(カルバート構造の積層)
の実施などが可能であり、施工性の向上が図れる。
As mentioned above, the seismic isolation structure of the present invention is
Since the main frames 1 and 2 mainly bear the horizontal load, it is possible to construct the sub frame 4 that stands side by side independently of the main frame with a lighter structure than an ordinary building. Therefore, implementation of laminated structure by simple frame with precast concrete members, or uniformization of members (lamination of culvert structure)
It is possible to improve the workability.

【0025】一方、有害な浮き上がりや引き抜き力が卓
越する地震応答の場合は、主架構たるケーブル3で補強
されたシャフト1及びそのトップガーダー2が従架構4
の上端の免震層5を介して浮き上がりや引き抜きを抑
え、従架構4の曲げ変形を抑制する。よって、より一層
の高層建物や塔状比が大きい建物の免震化が可能となる
のである。
On the other hand, in the case of an earthquake response in which harmful lifting and pulling force are outstanding, the shaft 1 and its top girder 2 reinforced by the cable 3 which is the main frame and the subframe 4 are attached.
Uplifting and pulling out are suppressed through the seismic isolation layer 5 at the upper end of, and bending deformation of the subframe 4 is suppressed. Therefore, it is possible to further isolate the tall buildings and buildings with a large tower ratio.

【0026】なお、ケーブル3へ導入する予張力の大き
さの設定如何により、免震構造物の剛性を調節したり、
浮き上がりや引き抜きを制御することも可能となる。
The rigidity of the seismic isolation structure can be adjusted by adjusting the magnitude of the pretension introduced to the cable 3.
It is also possible to control lifting and pulling.

【0027】次に、図3と図4は、請求項2に記載した
発明に係る多層構造のケーブル補強の免震構造物の実施
形態を示している。
Next, FIG. 3 and FIG. 4 show an embodiment of a cable-reinforced seismic isolation structure having a multilayer structure according to the second aspect of the present invention.

【0028】この免震構造物も、高層乃至超高層建物、
或いは塔状比が大きい免震構造物の変形をケーブルの補
強効果で抑えるケーブル補強の免震構造物である点にお
いて上記請求項1記載の発明と多くの共通点を有する。
This seismic isolation structure is also used for high-rise or super high-rise buildings,
Alternatively, it has many common points with the invention of claim 1 in that it is a cable-reinforced seismic isolation structure that suppresses deformation of the seismic isolation structure having a large tower-like ratio by the reinforcing effect of the cable.

【0029】即ち、主に水平力に抵抗する構造のシャフ
ト1と、該シャフト1の水平変形を抑える配置に設置し
予張力を導入したケーブル30、31とから成る曲げ変
形低減主架構と、前記主架構とは独立した並立構造で構
築された従架構4との組み合わせで構成されている。
That is, a bending-deformation-reducing main frame composed mainly of a shaft 1 having a structure for resisting horizontal force, and cables 30 and 31 installed in an arrangement for suppressing horizontal deformation of the shaft 1 and having pretension introduced therein, It is configured in combination with the subframe 4 constructed in a side-by-side structure independent of the main frame.

【0030】但し、従架構4を多層化する手段として、
シャフト1には頂部のトップガーダー2の他に、各層毎
に水平な中間ガーダー20を複数、図4の場合には上下
2段に設けて、従架構4を3層で構成している。前記ト
ップガーダー2および中間ガーダー20を利用すること
により、各層の従架構4はやはり上下に免震層5を有す
る構成とされている。そして、各層の従架構4は、主架
構たるシャフト1との間を上下方向に複数配置したダン
パー6で水平方向に連結されている。
However, as means for making the subframe 4 multi-layered,
In addition to the top girder 2 on the top of the shaft 1, a plurality of horizontal intermediate girders 20 are provided for each layer, in the case of FIG. 4, two upper and lower stages are provided, and the subframe 4 is composed of three layers. By using the top girder 2 and the intermediate girder 20, the subframe 4 of each layer is also configured to have the seismic isolation layer 5 at the top and bottom. The sub frames 4 of the respective layers are horizontally connected to the main frame shaft 1 by a plurality of dampers 6 arranged vertically.

【0031】曲げ変形低減主架構を構成するケーブル
は、トップガーダー2および各中間ガーダー20の外周
部分を垂直に地上の基礎部分と連結するアウターケーブ
ル30と、地上1段目の中間ガーダー20の外周部位と
直上(2段目)の中間ガーダー20のシャフト付け根と
の間、及び2段目の中間ガーダー20の外周部位と直上
のトップガーダー2のシャフト付け根との間にそれぞれ
対称なハの字形配置に設置したインナーケーブル31と
の組み合わせで構成されている。アウターケーブル30
及びインナーケーブル31のそれぞれに適度な大きさの
予張力を導入して主架構の補強と剛性の調節などを行う
ことは、上記第1の実施形態と同様である。アウターケ
ーブル30に関しては、上記図1、図2の実施形態と同
様に、ハの字形配置で実施することも有効的である。
The cables constituting the main frame for reducing the bending deformation are an outer cable 30 for vertically connecting the outer peripheral portions of the top girder 2 and each intermediate girder 20 to the ground foundation portion, and the outer periphery of the first intermediate girder 20 on the ground. Symmetrical C-shaped arrangement between the part and the shaft root of the intermediate girder 20 immediately above (second step), and between the outer peripheral part of the second intermediate girder 20 and the shaft root of the top girder 2 immediately above. It is configured in combination with the inner cable 31 installed in. Outer cable 30
Introducing an appropriate amount of pretension to each of the inner cable 31 and the inner cable 31 to reinforce the main frame and adjust the rigidity is the same as in the first embodiment. Regarding the outer cable 30, it is also effective to implement the outer cable 30 in a V-shaped arrangement, as in the embodiment shown in FIGS.

【0032】本実施形態の場合も、主架構と従架構4と
の平面的な配置は、およそ図2Bのようにシャフト1を
中心とする対称的配置とされる。
Also in the case of this embodiment, the planar arrangement of the main frame and the subframe 4 is symmetrical with respect to the shaft 1 as shown in FIG. 2B.

【0033】[0033]

【本発明が奏する効果】請求項1〜5に記載した発明に
係るケーブル補強の免震構造物は、主架構をケーブルで
補強し、主架構とは独立した並立構造で構築された従架
構の上下に免震層を設け、更に従架構と主架構とをダン
パーで水平方向に連結しているので、構造物の高層化に
もかかわらず、免震層の水平剛性に悪影響を及ぼさず、
一定の免震性能が発揮される。
The effects of the present invention are as follows. The cable-reinforced seismic isolation structure according to the invention described in claims 1 to 5 is of a sub-frame structure constructed by arranging a main frame structure with cables and a side-by-side structure independent of the main frame structure. Since seismic isolation layers are provided on the top and bottom, and the subframe and the main frame are connected horizontally by dampers, the horizontal rigidity of the seismic isolation layer will not be adversely affected even though the structure is made higher.
A certain level of seismic isolation performance is demonstrated.

【0034】また、ケーブルで補強した主架構が、従架
構の浮き上がりや引き抜きを効果的に抑制するので、一
層高層化した建物、又は塔状比の大きい構造物の免震化
が可能となるのである。
Further, since the main frame structure reinforced with cables effectively suppresses the lifting and pulling out of the sub frame structure, it is possible to seismically isolate a higher-rise building or a structure having a large tower ratio. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る一層のケーブル補強の免震構造物
の概念図である。
FIG. 1 is a conceptual diagram of a single-layer cable-reinforced seismic isolation structure according to the present invention.

【図2】Aは具体化した一層のケーブル補強の免震構造
物の立面図、Bは平面配置図である。
FIG. 2A is an elevation view of the embodied single-layer cable-reinforced seismic isolation structure, and B is a plan layout view.

【図3】本発明に係る多層構造のケーブル補強の免震構
造物の概念図である。
FIG. 3 is a conceptual diagram of a multi-layer cable-reinforced seismic isolation structure according to the present invention.

【図4】具体化した多層構造のケーブル補強の免震構造
物の立面図である。
FIG. 4 is an elevation view of the embodied multilayered cable-reinforced seismic isolation structure.

【図5】AとBは剛体的な挙動を呈する従来の免震構造
物を示した説明図である。
5A and 5B are explanatory views showing a conventional seismic isolation structure that exhibits a rigid behavior.

【図6】AとBは曲げ変形に伴う浮き上がり挙動を生ず
る従来の免震構造物を示した説明図である。
FIG. 6A and FIG. 6B are explanatory views showing a conventional seismic isolation structure that causes a floating behavior due to bending deformation.

【符号の説明】[Explanation of symbols]

3、30、31 ケーブル 1 シャフト 4 従架構 5 免震層(免震支承) 6 ダンパー 2 トップガーダー 20 中間ガーダー 3, 30, 31 cable 1 shaft 4 subframe 5 seismic isolation layer (seismic isolation support) 6 damper 2 top girder 20 Intermediate girder

フロントページの続き (72)発明者 広瀬 隆太 東京都中央区銀座八丁目21番1号 株式会 社竹中工務店東京本店内 (72)発明者 鈴木 庸介 東京都中央区銀座八丁目21番1号 株式会 社竹中工務店東京本店内 (72)発明者 荘 大作 東京都中央区銀座八丁目21番1号 株式会 社竹中工務店東京本店内 (72)発明者 中井 政義 東京都中央区銀座八丁目21番1号 株式会 社竹中工務店東京本店内 (72)発明者 青木 和雄 東京都中央区銀座八丁目21番1号 株式会 社竹中工務店東京本店内Continued front page    (72) Inventor Ryuta Hirose             8-21-21 Ginza, Chuo-ku, Tokyo Stock market             Takenaka Corporation Tokyo Main Store (72) Inventor Yosuke Suzuki             8-21-21 Ginza, Chuo-ku, Tokyo Stock market             Takenaka Corporation Tokyo Main Store (72) Inventor Sou Daisaku             8-21-21 Ginza, Chuo-ku, Tokyo Stock market             Takenaka Corporation Tokyo Main Store (72) Inventor Masayoshi Nakai             8-21-21 Ginza, Chuo-ku, Tokyo Stock market             Takenaka Corporation Tokyo Main Store (72) Inventor Kazuo Aoki             8-21-21 Ginza, Chuo-ku, Tokyo Stock market             Takenaka Corporation Tokyo Main Store

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】高層乃至超高層建物、或いは塔状比が大き
い免震構造物の変形をケーブルで抑えるケーブル補強の
免震構造物において、 主に水平力に抵抗する構造のシャフトと、該シャフトの
水平変形を抑える配置に設置し予張力を導入したケーブ
ルとから成る曲げ変形低減主架構と、 前記主架構とは独立した並立構造で構築された従架構と
の組み合わせで構成されており、 従架構の上下に免震層を設け、主・従の架構間はダンパ
ーで連結されていることを特徴とする、ケーブル補強の
免震構造物。
1. A shaft reinforcement having a structure mainly resisting horizontal force in a cable-reinforced seismic isolation structure for suppressing deformation of a high-rise building or a super-high-rise building or a seismic isolation structure having a large tower ratio by a cable, and the shaft. The main structure is a combination of a bending-deformation-reducing main frame that is installed in a position that suppresses horizontal deformation and that has pre-tension introduced, and a sub-frame structure that is independent of the main frame and that has a side-by-side structure. A seismic isolation structure with cable reinforcement, in which seismic isolation layers are provided above and below the frame, and the main and secondary frames are connected by dampers.
【請求項2】高層乃至超高層建物、或いは塔状比が大き
い免震構造物の変形をケーブルで抑えるケーブル補強の
免震構造物において、 主に水平力に抵抗する構造のシャフトと、該シャフトの
水平変形を抑える配置に設置し予張力を導入したケーブ
ルとから成る曲げ変形低減主架構と、 前記主架構とは独立した並立構造で構築された従架構と
の組み合わせで構成されており、 従架構の上下及び中間部に免震層を設け、主・従の架構
間はダンパーで連結されていることを特徴とする、ケー
ブル補強の免震構造物。
2. In a seismic isolation structure for cable reinforcement, which suppresses deformation of a high-rise building or a super-high-rise building or a seismic isolation structure having a large tower ratio, a shaft mainly having resistance to horizontal force, and the shaft. The main structure is a combination of a bending-deformation-reducing main frame that is installed in a position that suppresses horizontal deformation and that has pre-tension introduced, and a sub-frame structure that is independent of the main frame and that has a side-by-side structure. A cable-reinforced seismic isolation structure characterized in that seismic isolation layers are provided above and below and in the middle of the frame, and the main and secondary frames are connected by dampers.
【請求項3】従架構は一層又は多層構造で構成されてい
ることを特徴とする、請求項1又は2に記載したケーブ
ル補強の免震構造物。
3. The cable-reinforced seismic isolation structure according to claim 1 or 2, wherein the sub-frame structure has a single-layer or multi-layer structure.
【請求項4】多層構造の従架構は、主架構に用意したト
ップガーダー及び中間ガーダーの層間に構築されている
ことを特徴とする、請求項1〜3のいずれか一に記載し
たケーブル補強の免震構造物。
4. The cable reinforcement according to any one of claims 1 to 3, wherein the multi-layered sub-frame is constructed between layers of a top girder and an intermediate girder prepared in the main frame. Seismic isolation structure.
【請求項5】ケーブルに導入した予張力の反力は、個々
単独の地中アンカーで、又は構造物全体での自己釣り合
いにより処理されていることを特徴とする、請求項1又
は2に記載したケーブル補強の免震構造物。
5. The pretension reaction force introduced into the cable is treated by an individual underground anchor or by self-balancing in the entire structure, according to claim 1 or 2. Seismic isolation structure with cable reinforcement.
JP2001302023A 2001-09-28 2001-09-28 Seismically isolated structure of cable reinforcement Pending JP2003106004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001302023A JP2003106004A (en) 2001-09-28 2001-09-28 Seismically isolated structure of cable reinforcement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001302023A JP2003106004A (en) 2001-09-28 2001-09-28 Seismically isolated structure of cable reinforcement

Publications (1)

Publication Number Publication Date
JP2003106004A true JP2003106004A (en) 2003-04-09

Family

ID=19122340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001302023A Pending JP2003106004A (en) 2001-09-28 2001-09-28 Seismically isolated structure of cable reinforcement

Country Status (1)

Country Link
JP (1) JP2003106004A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202240A (en) * 2007-02-16 2008-09-04 Mitsubishi Electric Corp Columnar structure
JP2011069068A (en) * 2009-09-24 2011-04-07 Shimizu Corp Base isolating and seismic response control structure
JP6181894B1 (en) * 2017-06-09 2017-08-16 国立大学法人 東京大学 Axial force introducing device for seismic retrofitting frame
JP2018193818A (en) * 2017-05-19 2018-12-06 清水建設株式会社 Structure
CN114109067A (en) * 2021-12-15 2022-03-01 长江师范学院 Protection and reinforcement method for old wall

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07310457A (en) * 1994-05-19 1995-11-28 Shimizu Corp Damping structure
JPH09242386A (en) * 1996-03-08 1997-09-16 Shimizu Corp Damping structure
JPH1061248A (en) * 1996-08-16 1998-03-03 Ando Corp Vibration damping structure of excellent bending type building
JPH11200661A (en) * 1998-01-14 1999-07-27 Ohbayashi Corp Vibration control method for connected structure
JPH11270174A (en) * 1998-03-23 1999-10-05 Kajima Corp Reinforcing construction of bending deformation control type antiseismic structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07310457A (en) * 1994-05-19 1995-11-28 Shimizu Corp Damping structure
JPH09242386A (en) * 1996-03-08 1997-09-16 Shimizu Corp Damping structure
JPH1061248A (en) * 1996-08-16 1998-03-03 Ando Corp Vibration damping structure of excellent bending type building
JPH11200661A (en) * 1998-01-14 1999-07-27 Ohbayashi Corp Vibration control method for connected structure
JPH11270174A (en) * 1998-03-23 1999-10-05 Kajima Corp Reinforcing construction of bending deformation control type antiseismic structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202240A (en) * 2007-02-16 2008-09-04 Mitsubishi Electric Corp Columnar structure
JP2011069068A (en) * 2009-09-24 2011-04-07 Shimizu Corp Base isolating and seismic response control structure
JP2018193818A (en) * 2017-05-19 2018-12-06 清水建設株式会社 Structure
JP6181894B1 (en) * 2017-06-09 2017-08-16 国立大学法人 東京大学 Axial force introducing device for seismic retrofitting frame
JP2018204398A (en) * 2017-06-09 2018-12-27 国立大学法人 東京大学 Axial force introduction device of vibration control reinforcement frame column
CN114109067A (en) * 2021-12-15 2022-03-01 长江师范学院 Protection and reinforcement method for old wall

Similar Documents

Publication Publication Date Title
JP4247496B2 (en) Seismic reinforcement structure
JP2007046410A (en) Vibration proof device
JP2003106004A (en) Seismically isolated structure of cable reinforcement
JP4597660B2 (en) Building having seismic reinforcement structure and method for seismic reinforcement of building
JP4128517B2 (en) Seismic strengthening frame using tendons
CN216973814U (en) Multilayer vibration-suppressing cantilever structure
JPH11223041A (en) Vibration control construction for mid-to-low-rise building or structure
JP4010981B2 (en) Upper extension method for existing buildings
JPH10280725A (en) Damping skeleton construction
JP4706302B2 (en) Triple tube structure and damping system for triple tube structure
JP3677703B2 (en) Damping building
Bianco et al. Seismic amelioration of existing reinforced concrete buildings. Strategy to optimize the amount of reinforcement for joints
JP5411375B1 (en) Buildings using seismic control columns
JP2000328810A (en) Vibration control frame
JP2009256962A (en) Building prolonging natural period
JP5290786B2 (en) Damping structure
JP5378242B2 (en) Building frame structure
JP2004052494A (en) Rc beam damper
JPH10266620A (en) Vibration damping frame structure and construction method therefor
JP2000204787A (en) Vibration controlled building
JPH04277274A (en) Construction with mixed construction members
JP2010189903A (en) Damping frame for building
JP3690468B2 (en) Seismic reinforcement structure
JP2009197501A (en) Vibration control structure for building
JP2514839B2 (en) Seismic structure of high-rise buildings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110705