JPS632540B2 - - Google Patents

Info

Publication number
JPS632540B2
JPS632540B2 JP57137931A JP13793182A JPS632540B2 JP S632540 B2 JPS632540 B2 JP S632540B2 JP 57137931 A JP57137931 A JP 57137931A JP 13793182 A JP13793182 A JP 13793182A JP S632540 B2 JPS632540 B2 JP S632540B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
ortho
silica
phenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57137931A
Other languages
Japanese (ja)
Other versions
JPS5927842A (en
Inventor
Tsutomu Katsumata
Masahisa Yokota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP57137931A priority Critical patent/JPS5927842A/en
Priority to US06/521,205 priority patent/US4517389A/en
Priority to EP83201181A priority patent/EP0101138B1/en
Priority to DE8383201181T priority patent/DE3367586D1/en
Publication of JPS5927842A publication Critical patent/JPS5927842A/en
Publication of JPS632540B2 publication Critical patent/JPS632540B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、フエノールまたは/およびトルトク
レゾールとメタノールとをシリカに担持された酸
化バナジウムおよび酸化鉄を含む触媒の存在下
に、気相接触させオルト位メチル化フエノール化
合物を製造する方法に関するものである。 本発明の方法で製造されるオルト位メチル化フ
エノール化合物は、それぞれ工業原料として重要
であり、たとえば2・6−キシレノールはポリフ
エニレンオキサイドの原料であり、オルトクレゾ
ールは農医薬品等の原料である。 フエノールまたは/およびオルトクレゾールと
メタノールとを気相接触させ、オルト位メチル化
フエノール化合物を製造する方法は公知であり、
酸化アルミニウムを触媒とする方法(英国特許第
717588号)、酸化マグネシウムを触媒とする方法
(米国特許第3446856号)が提案されている。しか
しながら、前者の触媒を使用する場合は、活性お
よびオルト位選択性が低く、メタ位、パラ位のメ
チル化フエノールが副生している。これらの混合
物から2・6−キシレノールを分離するには複雑
な分離、精製工程を必要とし、工業的に実施する
上で有利な方法ではない。また、後者の触媒の場
合、触媒活性が低いため反応温度を475〜600℃と
きわめて高温に保つ必要があり、加えて活性の低
下が速い欠点を有している。 一方、これらの欠点を解決するために、酸化バ
ナジウムと酸化鉄を含む触媒が提案されている
(特公昭47−37943)。この触媒は活性が高く、300
〜400℃の比較的低温での反応が可能であり、ま
た、オルト位選択性も高い特徴を有しているが、
触媒の強度が充分でないため、反応中に触媒の割
れ、および粉化を生じ、このため触媒層での圧力
損失が大きくなり、連続運転が不可能となる欠点
を有している。この原因は、反応中に触媒に炭素
析出を生じ、このため膨潤−割れ−粉化を引きお
こすためであると推定される。このため反応系に
水蒸気を添加することによつて、触媒の割れ、お
よび粉化を抑制する方法も提案されているが(特
公昭51−10226)、ある程度の効果は認められるも
のの、長時間の反応を行うと、触媒の割れおよび
粉化を生じ、工業的に実施する上で重大な欠陥が
あり、本質的な解決に到つてない。 本発明者らは、フエノールまたは/およびオル
トクレゾールとメタノールとを気相接触させオル
ト位メチル化フエノール化合物を製造するための
工業触媒、つまり、高活性、高選択性を有し、か
つ反応雰囲気下でも充分な強度を有する寿命の長
い、流動床用、固定床用いずれの反応器にも適す
るバナジウム、鉄組成系触媒を開発するべく鋭意
研究を進めた結果、550℃以上の温度で焼成され
た酸化バナジウムおよび酸化鉄を含み10〜80重量
%のシリカに担持された触媒を使用することによ
り、前記の問題が解決されることを見出し、本発
明を完成するに至つた。 すなわち、本発明は、フエノールまたは/およ
びオルトクレゾールとメタノールとを気相接触さ
せてオルト位メチル化フエノール化合物を製造す
るに当り、550℃以上の温度で焼成された酸化バ
ナジウムおよび酸化鉄を含み10〜80重量%のシリ
カに担持された触媒を使用することを特徴とする
オルト位メチル化フエノール化合物の製造方法で
ある。 本発明において使用する触媒は、担体としてシ
リカを用いることが必須である。特公昭47−
37943号明細書に、「触媒はアルミナ、シリカ、シ
リカ・アルミナ、けい藻土等のごとき適当な担体
と共に用いることもできる」と記載されている
が、アルミナを10重量%担持した実施例が記載さ
れているにすぎない。本発明者らの実験によれ
ば、本反応においては、担体の種類は触媒に付与
すべき活性、選択性および強度に極めて大きな影
響を与えるため、任意に選択すべきものではな
く、厳密に選択されるべきものである。 例えば、アルミナまたはシリカ・アルミナを担
体に選んだ場合、通常の方法では2・6−キシレ
ノールとの分離が不可能であるm−およびp−ク
レゾールの生成が激増する等、オルト位選択性が
著しく低下する。また、けい藻土、シリコンカー
バイト、ジルコニアを担体に用いた場合、オルト
位選択性が低い上、バインダー効果が低いため、
触媒の強度が小さく、はく離、粉化等が短期間の
うちに生じるため、工業的に実施する上で重大な
欠点を有する。これに対してシリカを担体に選
び、かつシリカの担持量が本発明の範囲である10
〜80重量%であれば、触媒の活性、オルト位選択
性および触媒の強度が工業的に充分満足され、長
期間の反応に耐えうるものである。 シリカの担持量が本発明の範囲外である10%未
満の場合、触媒の強度が充分でない。特に流動床
反応器を用いて反応を行う場合、固定床に比べ触
媒の耐摩耗強度は著しく高いことが要求される
が、本発明の範囲であるシリカ担持量が10%以
上、好ましくは20%以上であれば、流動床にも充
分耐えうるものである。一方、シリカの担持量が
80%を超える場合、触媒の活性および選択性が低
下するばかりでなく、触媒の強度も低下するの
で、工業的に実施する上で不利となる。 本発明において使用するシリカ担持触媒は、触
媒の活性、選択性および強度を付与するため通常
は550〜1000℃、場合によつては1000℃を超える
温度、好ましくは650〜900℃の通常の常識を超え
た高い温度で焼成することが必要である。焼成温
度が本発明の範囲より低い場合は、触媒の活性、
選択性および強度が不充分であり、また、活性の
経時的低下が認められる。一方、焼成温度が1000
℃より高い場合は、触媒活性がやゝ低下する傾向
があるものの工業的には使用可能である。しかし
ながら、焼成設備上の問題および省エネルギー上
の問題から有利ではない。なお、触媒におけるバ
ナジウムと鉄の原子比は1:9〜9:1が用いら
れるが、好適には1:2〜2:1が用いられる。 本発明のオルトメチル化フエノール化合物の製
造法は、流動床反応器あるいは固定床反応器のい
ずれでも実施できる。一般に流動床反応器を用い
る場合は、除熱が容易で均一な反応温度が得られ
るため大規模の生産に適する。流動床で反応を実
施する場合、良好な流動性を与えるために、触媒
は直径数十〜百ミクロンの球状を有すること、お
よび触媒粒子間あるいは粒子と器壁間の衝突によ
つて摩耗されるため、これに耐える耐摩耗強度を
有することが必要である。一方、固定床反応器に
用いる場合は、触媒層の圧力損失を減らすため、
一般に柱状、球状、あるいはペレツト状に成形し
た触媒が用いられるが、反応中に触媒が破砕、粉
化すると、触媒層に圧力損失を生じ運転の継続が
困難となるため、充分な触媒強度、ことに反応雰
囲気下に長時間さらされたときに充分な触媒強度
を有することが不可欠である。 本発明における触媒の原料として、バナジウム
源としては、アンモニウム塩、塩化物、オキシ塩
化物が用いられるが、アンモニウム塩の形で用い
るのが好適である。鉄源としては、硝酸塩、塩化
物、硫酸塩あるいは有機酸塩が用いられるが、硝
酸塩の形で用いるのが好適である。また、シリカ
源としては、シリカゾルを用いるのが好適であ
る。 触媒の調製法 (A) 流動床用触媒の調製法の例 先ず原料スラリーの調製は、メタバナジン酸
アンモンを熱水に溶解した液に、撹拌しながら
硝酸第二鉄およびシリカゾルを加えることによ
つて好適に行なうことができる。ここにシリカ
コロイドゾルに均一に分散した微粒懸濁質のス
ラリーが得られる。次いで該スラリーは、公知
の噴霧乾燥装置を用いて乾燥することにより、
球状の乾燥微粒子として得られる。 原料スラリーの噴霧化は、通常工業的実施に
用いられる遠心方式、二流体ノズル方式あるい
は高圧ノズル方式のいずれによつても行いうる
が、特に遠心方式が好適である。粒子径は遠心
方式においてはデイスクの回転速度およびスラ
リーの供給速度を調節することによつて、流動
層反応器に用いるに適した10〜150ミクロンの
間に分布させることができる。 最後に該乾燥品は、通常のトンネル型あるい
はロータリー型のキルンを用いて熱処理焼成さ
れる。 (B) 固定床用触媒の調製法の例 メタバナジン酸アンモンを熱水に溶かし、硝
酸第二鉄を加えたのちアンモニアで中和する。
生成した沈澱を水洗過し、乾燥粉砕したのち
シリカゾルを加え、よく混練し適当な形に成型
する。 あるいは(A)の流動床用触媒の調製法で述べた
噴霧乾燥粒子を低温で脱硝した粒子にシリカゾ
ルを加え、よく混練し適当な形に成型すること
もできる。この成形品を通常のトンネル型キル
ンを用いて熱処理焼成される。 以上から明らかのように、本発明の触媒、すな
わち、550℃以上の温度で焼成された酸化バナジ
ウムおよび酸化鉄を含み10〜80重量%好ましくは
20〜80重量%のシリカに担持された触媒は、秀れ
た活性、選択性および長期間の反応に耐える触媒
強度を有し、さらに驚くべきことに、反応系に水
を存在させない場合においても、長期間の反応に
耐える充分な触媒強度を有し、オルトメチルフエ
ノール化合物を工業的に有利に製造できるもので
ある。 本発明の場合、供給原料中のフエノールまた
は/およびオルトクレゾールに対するメタノール
の比は1:1〜20、好ましくは1:2〜8であ
る。また、水蒸気または不活性ガスは必要に応じ
導入することもできる。反応温度は280〜500℃、
好ましくは300〜400℃の範囲が適している。反応
の圧力は常圧でもよいが、必要に応じて減圧また
は加圧下でも実施できる。ガスと触媒との接触時
間は0.5〜50秒、好ましくは1〜20秒が適してい
る。 以下、実施例により本発明をさらに詳細に説明
する。 実施例中のフエノール転化率、選択率は次式に
よつて定義されるものである。なお、オルトクレ
ゾールの場合も同様である。 フエノール転化率(%)=(1−未反応のフ
エノールのモル数/供給したフエノールのモル数)×10
0 選択率(%)=(生成した目的生成物のモル
数/供給したフエノールのモル数−未反応のフエノール
のモル数)×100 実施例 1 メタバナジン酸アンモニウム(NH4VO3)23.4
gを90℃に加温した純水496gに溶かし、激しく
拌撹しながら、この中に硝酸第二鉄〔Fe
(NO33・9H2O〕80.8gを加えることによつて得
られる原料スラリーを湯浴上で蒸発乾固したの
ち、350℃で2時間予備焼成する。これを20gと
り粉砕したのち、30重量%のSiO2を含むシリカ
ゾル(日産化学製スノーテツクスN)28.6gを加
え、湯浴上で加温しながらよく混練し、成形が可
能な適当な水分濃度に調節したのち、直径5mm、
長さ5mmの円柱状に成型した。これを100℃で12
時間乾燥させたのち、700℃で3時間焼成した。 本触媒6c.c.を内径が2cmのガラス製反応管に充
てんし、反応温度を320℃、圧力を大気圧に保ち、
この中にフエノールとメタノールのモル比が1:
5の原料液を蒸発器を通して導入した。このとき
原料ガスと触媒との接触時間が3.5秒となるよう
に流量を調節し、反応を48時間継続させた。48時
間目に反応器から流出するガスを全量凝縮させ、
凝縮液をガスクロマトグラフイーで分析した。こ
の結果を表1に示す。 また、反応後、触媒を取り出し、16メツシユの
ふるいでふるい、全体の重量に対する網目を通過
したものの割合を粉化率と定義すると、本触媒の
粉化率は0.1%以下であつた。 比較例 1〜3 実施例1とほぼ同様な方法によつて、アルミナ
担持触媒、ベントナイト担持触媒を調製し、実施
例1と同一の装置を用い、同一条件で反応試験を
行つた。 たゞし、アルミナは20重量%アルミナゾル(日
産化学製)を用い、ベントナイトは久木田製薬製
化学用を用いた。試験結果を表1に示す。
The present invention relates to a method for producing an ortho-methylated phenol compound by contacting phenol or/or toltocresol with methanol in the gas phase in the presence of a catalyst containing vanadium oxide and iron oxide supported on silica. . Each of the ortho-methylated phenol compounds produced by the method of the present invention is important as an industrial raw material. For example, 2,6-xylenol is a raw material for polyphenylene oxide, and ortho-cresol is a raw material for agricultural medicines. . A method for producing an ortho-methylated phenol compound by contacting phenol or/and ortho-cresol with methanol in a gas phase is known.
Method using aluminum oxide as catalyst (British patent no.
717588) and a method using magnesium oxide as a catalyst (US Pat. No. 3,446,856). However, when the former catalyst is used, the activity and ortho-position selectivity are low, and methylated phenols at the meta- and para-positions are produced as by-products. Separating 2,6-xylenol from these mixtures requires complicated separation and purification steps, and is not an advantageous method for industrial implementation. Moreover, in the case of the latter catalyst, since the catalytic activity is low, it is necessary to maintain the reaction temperature at an extremely high temperature of 475 to 600° C., and in addition, it has the disadvantage that the activity decreases quickly. On the other hand, in order to solve these drawbacks, a catalyst containing vanadium oxide and iron oxide has been proposed (Japanese Patent Publication No. 47-37943). This catalyst has high activity and 300
It is possible to react at a relatively low temperature of ~400℃, and also has high ortho-position selectivity.
Since the strength of the catalyst is not sufficient, the catalyst cracks and becomes powder during the reaction, resulting in a large pressure loss in the catalyst layer, which has the disadvantage that continuous operation is impossible. The reason for this is presumed to be that carbon is deposited on the catalyst during the reaction, which causes swelling, cracking, and powdering. For this reason, a method has been proposed to suppress cracking and powdering of the catalyst by adding steam to the reaction system (Japanese Patent Publication No. 10226/1973), but although it is effective to some extent, it does not last long. When the reaction is carried out, cracking and powdering of the catalyst occur, which is a serious drawback in industrial implementation, and no fundamental solution has been reached. The present inventors have developed an industrial catalyst for producing ortho-methylated phenolic compounds by bringing phenol or/and ortho-cresol into gas phase contact with methanol, that is, having high activity and high selectivity, and under a reaction atmosphere. However, as a result of intensive research to develop a vanadium-iron composition catalyst that has sufficient strength and a long life, and is suitable for both fluidized bed and fixed bed reactors, we have developed a catalyst that can be fired at a temperature of 550℃ or higher. It has been found that the above-mentioned problem can be solved by using a catalyst supported on silica containing vanadium oxide and iron oxide in an amount of 10 to 80% by weight, leading to the completion of the present invention. That is, the present invention includes vanadium oxide and iron oxide calcined at a temperature of 550°C or higher in producing an ortho-methylated phenol compound by contacting phenol or/and ortho-cresol with methanol in a gas phase. A method for producing an ortho-methylated phenol compound, characterized in that ~80% by weight of a catalyst supported on silica is used. In the catalyst used in the present invention, it is essential to use silica as a carrier. Special Public Service 1977-
The specification of No. 37943 states that ``the catalyst can also be used with a suitable support such as alumina, silica, silica-alumina, diatomaceous earth, etc.'', but it describes an example in which 10% by weight of alumina was supported. It's just that it's being done. According to the experiments conducted by the present inventors, in this reaction, the type of support has an extremely large effect on the activity, selectivity, and strength that should be imparted to the catalyst, so it should not be selected arbitrarily, but must be strictly selected. It is something that should be done. For example, when alumina or silica-alumina is selected as a carrier, the ortho position selectivity is markedly increased, such as the production of m- and p-cresol, which cannot be separated from 2,6-xylenol using normal methods. descend. In addition, when diatomaceous earth, silicon carbide, or zirconia is used as a carrier, the ortho position selectivity is low and the binder effect is low.
Since the strength of the catalyst is low and peeling, powdering, etc. occur in a short period of time, this method has serious drawbacks in industrial implementation. On the other hand, silica is selected as a carrier, and the supported amount of silica is within the range of the present invention.
When the content is 80% by weight, the activity, ortho-position selectivity, and strength of the catalyst are sufficiently satisfied industrially, and the reaction can withstand a long period of time. If the supported amount of silica is less than 10%, which is outside the scope of the present invention, the strength of the catalyst will not be sufficient. In particular, when carrying out a reaction using a fluidized bed reactor, the abrasion resistance of the catalyst is required to be significantly higher than that in a fixed bed, but the amount of silica supported within the scope of the present invention is 10% or more, preferably 20%. If it is above, it can sufficiently withstand a fluidized bed. On the other hand, the amount of silica supported
When it exceeds 80%, not only the activity and selectivity of the catalyst decrease, but also the strength of the catalyst decreases, which is disadvantageous for industrial implementation. The silica-supported catalyst used in the present invention is normally heated at a temperature of 550 to 1000°C, in some cases over 1000°C, preferably 650 to 900°C, in order to impart catalytic activity, selectivity and strength. It is necessary to fire at a high temperature exceeding . When the calcination temperature is lower than the range of the present invention, the activity of the catalyst,
The selectivity and intensity are insufficient, and a decrease in activity over time is observed. On the other hand, the firing temperature is 1000
If the temperature is higher than 0.degree. C., the catalyst activity tends to decrease slightly, but it can still be used industrially. However, this method is not advantageous due to problems with firing equipment and energy saving. The atomic ratio of vanadium to iron in the catalyst is preferably 1:9 to 9:1, preferably 1:2 to 2:1. The method for producing orthomethylated phenol compounds of the present invention can be carried out in either a fluidized bed reactor or a fixed bed reactor. Generally, when a fluidized bed reactor is used, heat can be easily removed and a uniform reaction temperature can be obtained, making it suitable for large-scale production. When carrying out the reaction in a fluidized bed, in order to provide good fluidity, the catalyst must have a spherical shape with a diameter of several tens to hundreds of microns, and be worn out by collisions between catalyst particles or between particles and the vessel wall. Therefore, it is necessary to have abrasion resistance strength that can withstand this. On the other hand, when used in a fixed bed reactor, in order to reduce pressure loss in the catalyst layer,
Generally, catalysts shaped into columns, spheres, or pellets are used, but if the catalyst is crushed or powdered during the reaction, pressure loss will occur in the catalyst layer, making it difficult to continue operation. It is essential that the catalyst has sufficient strength when exposed to the reaction atmosphere for long periods of time. As a raw material for the catalyst in the present invention, ammonium salts, chlorides, and oxychlorides are used as vanadium sources, and it is preferable to use them in the form of ammonium salts. As the iron source, nitrates, chlorides, sulfates, or organic acid salts can be used, and it is preferable to use them in the form of nitrates. Further, as the silica source, it is preferable to use silica sol. Catalyst Preparation Method (A) Example of Preparation Method for Fluidized Bed Catalyst First, a raw material slurry is prepared by adding ferric nitrate and silica sol to a solution of ammonium metavanadate in hot water while stirring. This can be carried out suitably. Here, a slurry of fine suspended solids uniformly dispersed in a silica colloid sol is obtained. The slurry is then dried using a known spray drying device,
Obtained as spherical dry particles. Atomization of the raw material slurry can be carried out by any of the centrifugal, two-fluid nozzle, or high-pressure nozzle methods commonly used in industrial practice, but the centrifugal method is particularly preferred. In the centrifugal system, the particle size can be distributed between 10 and 150 microns, which is suitable for use in a fluidized bed reactor, by adjusting the rotation speed of the disk and the feed rate of the slurry. Finally, the dried product is heat treated and fired using a conventional tunnel or rotary kiln. (B) Example of preparation method for fixed bed catalyst Ammonium metavanadate is dissolved in hot water, ferric nitrate is added, and then neutralized with ammonia.
The formed precipitate is washed with water, dried and pulverized, then silica sol is added, thoroughly kneaded and molded into a suitable shape. Alternatively, silica sol can be added to particles obtained by denitrating the spray-dried particles at a low temperature as described in the method for preparing a fluidized bed catalyst (A), and the particles can be thoroughly kneaded and molded into a suitable shape. This molded product is heat-treated and fired using a conventional tunnel kiln. As is clear from the above, the catalyst of the present invention preferably contains 10 to 80% by weight of vanadium oxide and iron oxide calcined at a temperature of 550°C or higher.
The 20-80% by weight silica-supported catalyst has excellent activity, selectivity and catalytic strength for long-term reactions, and surprisingly, even in the absence of water in the reaction system. , has sufficient catalytic strength to withstand long-term reactions, and allows industrially advantageous production of orthomethylphenol compounds. In the case of the present invention, the ratio of methanol to phenol or/and orthocresol in the feed is from 1:1 to 20, preferably from 1:2 to 8. Moreover, water vapor or inert gas can also be introduced as necessary. Reaction temperature is 280~500℃,
Preferably, a temperature range of 300 to 400°C is suitable. The reaction pressure may be normal pressure, but it can also be carried out under reduced pressure or increased pressure, if necessary. The contact time between the gas and the catalyst is suitably 0.5 to 50 seconds, preferably 1 to 20 seconds. Hereinafter, the present invention will be explained in more detail with reference to Examples. The phenol conversion rate and selectivity in the examples are defined by the following formula. The same applies to ortho-cresol. Phenol conversion rate (%) = (1 - number of moles of unreacted phenol/number of moles of supplied phenol) x 10
0 Selectivity (%) = (Number of moles of target product produced/Number of moles of supplied phenol - Number of moles of unreacted phenol) x 100 Example 1 Ammonium metavanadate (NH 4 VO 3 ) 23.4
Dissolve g in 496 g of pure water heated to 90°C, add ferric nitrate [Fe
A raw material slurry obtained by adding 80.8 g of (NO 3 ) 3 ·9H 2 O] was evaporated to dryness on a hot water bath, and then preliminarily calcined at 350° C. for 2 hours. After taking 20g of this and pulverizing it, 28.6g of silica sol (Snowtex N manufactured by Nissan Chemical) containing 30% by weight of SiO 2 was added, and the mixture was thoroughly kneaded while heating on a hot water bath to reach an appropriate moisture concentration that can be molded. After adjusting, the diameter is 5mm,
It was molded into a cylindrical shape with a length of 5 mm. This at 100℃ for 12
After drying for an hour, it was fired at 700°C for 3 hours. A glass reaction tube with an inner diameter of 2 cm was filled with 6 c.c. of this catalyst, and the reaction temperature was maintained at 320°C and the pressure at atmospheric pressure.
In this, the molar ratio of phenol and methanol is 1:
The raw material solution No. 5 was introduced through the evaporator. At this time, the flow rate was adjusted so that the contact time between the raw material gas and the catalyst was 3.5 seconds, and the reaction was continued for 48 hours. At 48 hours, all the gas flowing out from the reactor is condensed,
The condensate was analyzed by gas chromatography. The results are shown in Table 1. Further, after the reaction, the catalyst was taken out and sieved through a 16-mesh sieve, and the powdering rate was defined as the ratio of the material that passed through the mesh to the total weight, and the powdering rate of this catalyst was 0.1% or less. Comparative Examples 1 to 3 A supported alumina catalyst and a supported bentonite catalyst were prepared in substantially the same manner as in Example 1, and a reaction test was conducted using the same apparatus as in Example 1 under the same conditions. Therefore, 20% by weight alumina sol (manufactured by Nissan Chemical) was used as the alumina, and chemical grade bentonite manufactured by Kukita Pharmaceutical was used. The test results are shown in Table 1.

【表】 比較例 4 実施例1とほぼ同様な方法によつて、けいそう
土担持およびシリコンカーバイト担持した成型触
媒を調製した。この触媒を実施例1と同一装置を
用い、同一条件で反応を行つた。反応後の触媒の
粉化率は、けいそう土担持触媒は8%、シリコン
カーバイト触媒は12%であり、反応中に触媒の粉
化が起り、工業的使用は困難であると判定され
た。 比較例 5 硝酸第二鉄〔Fe(NO33・9H2O〕100gを純水
200c.c.に溶解し、撹拌しながら14%アンモニア水
94c.c.を滴下し、PH6.8に調製した。生成した沈澱
を水洗過後、その25gをメタバナジン酸アンモ
ン(NH4VO3)7.2gと蓚酸1gの水溶液50c.c.に
加え、湯浴上で濃縮乾固した後、空気中で450℃
で3時間焼成し、無担持の酸化バナジウム−酸化
鉄触媒(V/Fe=1)を調製した。この触媒を
粉砕したのち、少量の水および触媒に対し1%の
カーボンブラツクを添加し、油圧プレス機で直径
5mm、長さ5mmの円柱状に成形し、100℃で12時
間乾燥させた。この触媒を実施例1と同一の装置
を用い、同一条件で反応を行つた。 反応後の触媒の粉化率は25%であつた。 実施例 2 メタバナジン酸アンモニウム(NH4VO3)585
gを90℃に加温した純水12400gに溶かし、激し
く撹拌しながら、この中に硝酸第二鉄〔Fe
(NO33・9H2O〕2020gおよび30重量%をSiO2
含むシリカゾル(日産化学製スノーテツクスN)
2850gを加えることによつて得られる原料スラリ
ーを並流式の噴霧乾燥器に送り乾燥した。得られ
た乾燥粉末を、トンネル型キルンを用い、350℃
で2時間予備焼成したのち、750℃で3時間焼成
を行つた。この触媒の表面積をBET法で測定す
ると20.5m2/gであり、電子顕微鏡の観察から流
動床法に適した球状を有していた。 本触媒300gを直経が1.5インチの流動床反応器
に投入し、反応温度を320〜330℃、圧力は大気圧
に保ち、フエノールとメタノールと水の比が1:
5:3の原料液を蒸発器を通して反応器に導入し
た。このとき原料ガスと触媒との接触時間が6.0
秒となるように流量を調節した。 反応器から流出するガスを全量凝縮器に通して
凝縮した液をガスクロマトグラフイーで分析し
た。この反応は240時間連続して行つた。この反
応結果を表2に示す。 また、反応前および反応後の触媒について耐摩
耗試験を行つた。耐摩耗試験は通常FCC触媒の
試験方法として行なわれているように、底部に1/
64インチの三つのオリフイスを有する有孔円板を
備えた内径1.5インチの垂直チユーブに、触媒約
50gを精秤投入し、有孔円板を通して毎時15立方
フイートの速度で空気を流し、激しく流動させ
た。触媒の摩耗度を5〜20時間の間に微細化し
て、垂直チユーブの上部から逸散した触媒の重量
の、初期投入量に対する割合として求めた。この
結果を表2に示す。 実施例3〜8、比較例6〜9 実施例2と同様の方法によつて、シリカ担持量
および焼成温度を変えた触媒を調製し、実施例2
と同様の実験装置を用いて反応を行つた。反応は
24〜120時間継続して行つた。反応成績および反
応前と反応後の触媒の耐摩耗試験結果を表2に示
す。 なお、実施例中のMg源は硝酸塩を使用した。
[Table] Comparative Example 4 In substantially the same manner as in Example 1, shaped catalysts supported on diatomaceous earth and silicon carbide were prepared. A reaction was carried out using this catalyst using the same apparatus as in Example 1 and under the same conditions. The powdering rate of the catalyst after the reaction was 8% for the diatomaceous earth supported catalyst and 12% for the silicon carbide catalyst, and it was determined that the catalyst was powdered during the reaction and would be difficult to use industrially. . Comparative Example 5 100g of ferric nitrate [Fe(NO 3 ) 3・9H 2 O] in pure water
Dissolve in 200c.c. 14% ammonia water with stirring
94c.c. was added dropwise to adjust the pH to 6.8. After washing the generated precipitate with water, 25 g of it was added to 50 c.c. of an aqueous solution of 7.2 g of ammonium metavanadate (NH 4 VO 3 ) and 1 g of oxalic acid, concentrated to dryness on a hot water bath, and then heated in air at 450°C.
The catalyst was fired for 3 hours to prepare an unsupported vanadium oxide-iron oxide catalyst (V/Fe=1). After pulverizing this catalyst, a small amount of water and 1% carbon black were added to the catalyst, and the mixture was formed into a cylinder with a diameter of 5 mm and a length of 5 mm using a hydraulic press, and dried at 100° C. for 12 hours. A reaction was carried out using this catalyst using the same apparatus as in Example 1 and under the same conditions. The powdering rate of the catalyst after the reaction was 25%. Example 2 Ammonium metavanadate (NH 4 VO 3 ) 585
Dissolve g in 12,400 g of pure water heated to 90°C, add ferric nitrate [Fe
(NO 3 ) 3・9H 2 O] Silica sol containing 2020g and 30% by weight of SiO 2 (Snowtex N manufactured by Nissan Chemical)
The raw material slurry obtained by adding 2850 g was sent to a co-current spray dryer and dried. The obtained dry powder was heated at 350℃ using a tunnel kiln.
After preliminarily firing for 2 hours at 750°C, firing was performed for 3 hours. The surface area of this catalyst was measured by the BET method and was 20.5 m 2 /g, and observation with an electron microscope showed that it had a spherical shape suitable for the fluidized bed method. 300 g of this catalyst was put into a fluidized bed reactor with a diameter of 1.5 inches, the reaction temperature was kept at 320-330°C, the pressure was kept at atmospheric pressure, and the ratio of phenol, methanol, and water was 1:
A 5:3 raw material solution was introduced into the reactor through the evaporator. At this time, the contact time between the raw material gas and the catalyst is 6.0
The flow rate was adjusted so that the flow rate was within seconds. All of the gas flowing out from the reactor was passed through a condenser, and the condensed liquid was analyzed by gas chromatography. This reaction was carried out continuously for 240 hours. The reaction results are shown in Table 2. In addition, abrasion resistance tests were conducted on the catalysts before and after the reaction. The abrasion resistance test is carried out as a normal test method for FCC catalysts.
The catalyst was placed in a 1.5 inch inner diameter vertical tube with a perforated disc with three 64 inch orifices.
50 g was accurately weighed and air was forced through the perforated disk at a rate of 15 cubic feet per hour to create a vigorous flow. Catalyst wear was refined over a period of 5 to 20 hours and determined as the ratio of the weight of catalyst lost from the top of the vertical tube to the initial charge. The results are shown in Table 2. Examples 3 to 8, Comparative Examples 6 to 9 Catalysts with different supported silica amounts and calcination temperatures were prepared in the same manner as in Example 2.
The reaction was carried out using the same experimental equipment. The reaction is
It continued for 24 to 120 hours. Table 2 shows the reaction results and the abrasion resistance test results of the catalyst before and after the reaction. Note that nitrate was used as the Mg source in the examples.

【表】 実施例 10〜16 実施例2と同様な方法によつて各種組成、シリ
カ担持量および焼成温度を変えた触媒を調製し、
実施例1と同様の実験装置を用いて反応を行つ
た。反応は24〜120時間継続して行つた。反応成
績の結果を表3に示す。 なお、実施例中のMn源は硝酸塩を使用した。
また、Ti源としては四塩化チタンを使用した。
[Table] Examples 10 to 16 Catalysts with various compositions, silica supported amounts, and calcination temperatures were prepared by the same method as in Example 2,
The reaction was carried out using the same experimental apparatus as in Example 1. The reaction continued for 24-120 hours. The reaction results are shown in Table 3. Note that nitrate was used as the Mn source in the examples.
Furthermore, titanium tetrachloride was used as a Ti source.

【表】 実施例 17 実施例2で用いた触媒を使用して、実施例1と
同一の反応装置によつて、オルトクレゾールとメ
タノールの反応を行つた。このとき反応温度は
320℃、圧力は大気圧、オルトクレゾールとメタ
ノールと水のモル比を1:3:3とし、接触時間
は5秒に保つた。24時間反応を継続したあとの反
応成績は、オルトクレゾールの転化率は99.6%で
あり、2・6−キシレノールの選択率は98.5%で
あつた。
[Table] Example 17 Using the catalyst used in Example 2 and using the same reactor as in Example 1, ortho-cresol and methanol were reacted. At this time, the reaction temperature is
The temperature was 320°C, the pressure was atmospheric pressure, the molar ratio of orthocresol, methanol and water was 1:3:3, and the contact time was maintained at 5 seconds. After continuing the reaction for 24 hours, the reaction results showed that the conversion rate of orthocresol was 99.6% and the selectivity of 2,6-xylenol was 98.5%.

Claims (1)

【特許請求の範囲】[Claims] 1 フエノールまたは/およびオルトクレゾール
とメタノールとを気相接触させてオルト位メチル
化フエノール化合物を製造するに当り、550℃以
上の温度で焼成された酸化バナジウムおよび酸化
鉄を含み10〜80重量%のシリカに担持された触媒
を使用することを特徴とするオルト位メチル化フ
エノール化合物の製造方法。
1 In producing an ortho-methylated phenol compound by contacting phenol or/and ortho-cresol with methanol in the gas phase, 10 to 80% by weight of vanadium oxide and iron oxide calcined at a temperature of 550°C or higher is used. A method for producing an ortho-methylated phenol compound, the method comprising using a catalyst supported on silica.
JP57137931A 1982-08-10 1982-08-10 Method for o-methylation of phenol and/or o-cresol Granted JPS5927842A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57137931A JPS5927842A (en) 1982-08-10 1982-08-10 Method for o-methylation of phenol and/or o-cresol
US06/521,205 US4517389A (en) 1982-08-10 1983-08-08 Process for methylating the ortho position of a phenol
EP83201181A EP0101138B1 (en) 1982-08-10 1983-08-10 A process for methylating the ortho position of a phenol
DE8383201181T DE3367586D1 (en) 1982-08-10 1983-08-10 A process for methylating the ortho position of a phenol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57137931A JPS5927842A (en) 1982-08-10 1982-08-10 Method for o-methylation of phenol and/or o-cresol

Publications (2)

Publication Number Publication Date
JPS5927842A JPS5927842A (en) 1984-02-14
JPS632540B2 true JPS632540B2 (en) 1988-01-19

Family

ID=15210030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57137931A Granted JPS5927842A (en) 1982-08-10 1982-08-10 Method for o-methylation of phenol and/or o-cresol

Country Status (1)

Country Link
JP (1) JPS5927842A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4901684B2 (en) * 2007-10-10 2012-03-21 ミドリ安全株式会社 Air cleaner

Also Published As

Publication number Publication date
JPS5927842A (en) 1984-02-14

Similar Documents

Publication Publication Date Title
US4539409A (en) Process for preparing aromatic nitriles
US3433823A (en) Production of nitriles
EP1174408B1 (en) Catalyst for the preparation of dimethyl ether, method of producing catalyst and method of producing dimethyl ether
JPS6112488B2 (en)
NO153136B (en) ANALOGY PROCEDURE FOR THE PREPARATION OF NEW THERAPEUTIC ACTIVE NAFTHYDRINE DERIVATIVES
WO1996041678A1 (en) Vanadium-containing catalyst, process for the production thereof, and use thereof
RU2351395C2 (en) Method for making catalyst to produce methacrylic acid
JPH05245382A (en) Regeneration of metal oxide catalyst
JPH0122249B2 (en)
US4517389A (en) Process for methylating the ortho position of a phenol
JPH0134222B2 (en)
JP3308974B2 (en) Method for producing ammoxidation catalyst
JPS632540B2 (en)
US4647673A (en) Maleic anhydride process
JPS6041665B2 (en) Method for producing methacrylonitrile
JP4296020B2 (en) Regeneration method of deteriorated catalyst
JPS63315148A (en) Catalyst of synthesis of methacrylic acid and preparation thereof showing excellent reproducibility
US3756965A (en) Process for the preparation of oxidation catalysts
US4070379A (en) Process for the manufacture of maleic anhydride
JPH031059B2 (en)
US6921831B2 (en) Modified BiMo catalyst and process for use thereof
JPH0232265B2 (en)
JPS5942332A (en) Orthomethylation of phenol and/or o-cresol
JPH0625041A (en) Production of o-alkylphenol
KR850000280B1 (en) Coated catalysts containing high loading of active phase particularly useful in the preparation of maleic anhydride