JPS6325408B2 - - Google Patents

Info

Publication number
JPS6325408B2
JPS6325408B2 JP59064952A JP6495284A JPS6325408B2 JP S6325408 B2 JPS6325408 B2 JP S6325408B2 JP 59064952 A JP59064952 A JP 59064952A JP 6495284 A JP6495284 A JP 6495284A JP S6325408 B2 JPS6325408 B2 JP S6325408B2
Authority
JP
Japan
Prior art keywords
signal
recording
light
recording medium
recorded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59064952A
Other languages
Japanese (ja)
Other versions
JPS59193544A (en
Inventor
Kyonobu Endo
Yoshinori Sugiura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59064952A priority Critical patent/JPS59193544A/en
Publication of JPS59193544A publication Critical patent/JPS59193544A/en
Publication of JPS6325408B2 publication Critical patent/JPS6325408B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/18Error detection or correction; Testing, e.g. of drop-outs
    • G11B20/1816Testing
    • G11B20/182Testing using test patterns
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/36Monitoring, i.e. supervising the progress of recording or reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Description

【発明の詳細な説明】 TV信号をデイスク状の記録媒体に記録した記
録体は、ビデオデイスクとして知られており、そ
の信号記録方法は、通常のオーデイオ・レコード
の如くメカニカル・カツターで記録する方法、レ
ーザの如き高輝度光源からの光をレンズで微細な
パターンに絞つて記録媒体に照射し、信号を記録
する方法、あるいは電子線で記録する方法等が報
告されている。なかでもレーザと電子線を用いる
記録方法は、再生時間と同じ時間で信号を記録で
きる利点があるため、有望視されている記録方法
である。
[Detailed Description of the Invention] A recording medium in which TV signals are recorded on a disk-shaped recording medium is known as a video disk, and the signal recording method is a method of recording with a mechanical cutter like a normal audio record. , a method of recording signals by focusing light from a high-intensity light source such as a laser into a fine pattern using a lens and irradiating it onto a recording medium, and a method of recording with an electron beam have been reported. Among these, a recording method using a laser and an electron beam is considered to be a promising recording method because it has the advantage of being able to record a signal in the same time as the reproduction time.

従来、レーザや電子線を用いて信号を記録する
方法は、記録媒体としてフオト・レジストの如き
高分子感光材料が使用されており、光あるいは電
子線の照射後の現像処理後に得られる凹凸のレリ
ーフで信号を記録していた。フオト・レジストの
如き記録媒体は、すぐれた記録密度(即ち解像
力)を持つにもかかわらず、光あるいは電子線の
照射後に現像処理を行なわねばならないというわ
ずらわしさがあり、光あるいは電子線の照射強
度、現像処理をすべて適切な条件に保たねばなら
ず、現像処理が終了するまで、記録状態がわから
ないという欠点を有していた。
Conventionally, in the method of recording signals using laser or electron beam, a polymer photosensitive material such as a photoresist is used as the recording medium, and the uneven relief obtained after development processing after irradiation with light or electron beam was recording the signal. Although recording media such as photoresists have excellent recording density (i.e. resolution), they have the trouble of having to be developed after being irradiated with light or electron beams. However, the development process must be maintained under appropriate conditions, and the recording state cannot be determined until the development process is completed.

しかしながら近年、例えばロジウム、ビスマ
ス、金、クロウム等の金属薄膜、或いは本発明者
等が提案したカルコーゲン物質等、熱エネルギー
により溶解、あるいは蒸発せしめることにより信
号を記録できるヒート・モード型の記録媒体が開
発されてきた。
However, in recent years, heat mode recording media have been developed that can record signals by melting or evaporating them using heat energy, such as metal thin films such as rhodium, bismuth, gold, and chromium, or chalcogen substances proposed by the present inventors. has been developed.

とりわけ、カルコーゲン物質はその解像力も高
く、高密度信号記録用の記録媒体として充分使用
し得るものである。
In particular, chalcogen substances have high resolution and can be used satisfactorily as recording media for high-density signal recording.

このような、ヒート・モード型の記録媒体は現
像処理が不必要で、熱エネルギー線照射後ただち
に信号を再生する事ができるという利点がある。
従つて記録状態は即時観測でき、常に良い記録状
態を保ち良好な記録板を作製する事ができる。
Such a heat mode type recording medium does not require development processing, and has the advantage that a signal can be reproduced immediately after being irradiated with thermal energy rays.
Therefore, the recording condition can be observed immediately, and a good recording plate can be manufactured by always maintaining a good recording condition.

本発明は上記のようなヒート・モード型の記録
媒体を用いた信号記録方法において、記録光強度
の最適値を決定し、常に良好な記録を行なうこと
を目的とした方法を提案するものである。
The present invention proposes a method for determining the optimum value of the recording light intensity in a signal recording method using a heat mode type recording medium as described above, with the aim of always performing good recording. .

以下、図面に従つて説明を行なう。第1図は、
ヒート・モード型記録媒体への信号記録の様子を
示したものである。第1図において、例えば、レ
ーザ光源からの光1は、光変調器2によつて信号
源3から光変調器2に送られる電気信号によつて
明暗の変調を受ける。その後、光1は光学系4に
より適当な断面形状を持つ光束5に変換され、記
録レンズ6により基板8にコートされたヒート・
モード型記録媒体7上に微小な光スポツトとして
集光する。この光スポツトは通常1μm以下であ
り、レーザ光の熱エネルギーがすべてこの光スポ
ツトに集中しているため、記録媒体7を溶解また
は蒸発させるに充分な熱エネルギーを記録媒体7
に与える事ができる。
Description will be made below with reference to the drawings. Figure 1 shows
This figure shows how signals are recorded on a heat mode recording medium. In FIG. 1, for example, light 1 from a laser light source is modulated in brightness and darkness by an electrical signal sent from a signal source 3 to the optical modulator 2 by an optical modulator 2. Thereafter, the light 1 is converted into a light beam 5 having an appropriate cross-sectional shape by an optical system 4, and a heat beam coated on a substrate 8 by a recording lens 6.
The light is focused on the mode type recording medium 7 as a minute light spot. This light spot is usually 1 μm or less in size, and all the thermal energy of the laser beam is concentrated in this light spot, so that enough thermal energy to melt or evaporate the recording medium 7 is applied to the recording medium 7.
can be given to

従つて今、第1図aに示す如く、記録媒体7が
矢印A方向に走行するものとすると、基板8の記
録媒体7には信号に応じた凹凸のレリーフが記録
される事となる。第1図bは、記録すべき信号と
ヒート・モード型記録媒体7上に記録せられた凹
凸のレリーフとの関係を示すものである。(b―
1)に示したのは記録すべき電気信号の一例で、
時間t1〜t2、t3〜t4、t5〜t6、t7〜t8に波高VRのパ
ルス信号が信号源3から光変調器2に送られる
と、レーザ光1は時間t1〜t2、t3〜t4、t5〜t6、t7
〜t8においては光変調器2を通過するが如く構成
せられているがために明暗の変調を受け、パルス
入射時に強い光エネルギーが記録媒体7を照射し
記録媒体7は溶解または蒸発して(b―2)のよ
うに表面が凹凸となり、信号が記録される。
Therefore, if the recording medium 7 is now run in the direction of the arrow A as shown in FIG. FIG. 1b shows the relationship between the signal to be recorded and the uneven relief recorded on the heat mode recording medium 7. FIG. (b-
1) is an example of the electrical signal to be recorded.
When a pulse signal with a wave height V R is sent from the signal source 3 to the optical modulator 2 at times t 1 to t 2 , t 3 to t 4 , t 5 to t 6 , and t 7 to t 8 , the laser beam 1 t1 ~ t2 , t3 ~ t4 , t5 ~ t6 , t7
At ~ t8 , since the light is configured to pass through the optical modulator 2, it is modulated in brightness, and when the pulse enters, strong optical energy irradiates the recording medium 7, causing the recording medium 7 to melt or evaporate. As shown in (b-2), the surface becomes uneven and a signal is recorded.

またこの時、記録媒体7の記録せられる深さd
は光が記録媒体を照射する光の強さIに比例して
おり、又光変調器2が電気光学効果を利用した構
成においては光の強さIは電気信号の波高VRと I∝sin2VR/V〓/2の関係がある。
Also, at this time, the recording depth d of the recording medium 7
is proportional to the intensity I of the light that irradiates the recording medium, and in a configuration where the optical modulator 2 uses the electro-optic effect, the intensity I of the light is proportional to the wave height V R of the electric signal and I∝sin There is a relationship of 2 V R /V〓 /2 .

但し、V〓/2は、ここでは半波長電圧と呼ばれて
いるものである。
However, V〓 /2 is called a half-wavelength voltage here.

第2図は、上述で説明した如く記録された記録
媒体7からの信号再生の原理を示すものである。
第2図aにおいて信号再生用の例えば直線偏光の
レーザ光9は、偏光ビーム・スプリツター10を
通過した後、光学系11で適当な断面形状例えば
円形にせられた光束12となり、λ/4板13を
通過し、偏光状態が円または楕円偏光とされ、再
生レンズ14によつて信号が記録された記録媒体
7の表面上に微小スポツトとして集光される。こ
の時のレーザ光9は記録時のレーザ光のエネルギ
ーより小さく、記録媒体7が溶解または蒸発する
程大きくはない事は勿論である。微小スポツトと
記録せられた凹凸のレリーフとの位置関係は、第
2図bに示したような関係になつている。ここ
で、矩形の形状を成す部分7′(ハツチング部)
が記録媒体7の凹部即ち、記録時に記録媒体が溶
解あるいは蒸発したところで、円形のハツチング
で示している12′は読み出し用の微小スポツト
である。光束12は、記録媒体7上に微小スポツ
ト12′に集光された後、記録媒体の表面で反射
され、再び、再生レンズ14、λ/4板13、光
学系11を通り、偏光ビームスプリツター10に
より反射されて、光検出器15に入射する。ここ
で反射された光束は、再びλ/4板13を通過す
る時、その偏光状態が入射時と90゜の角度を持つ
た直線偏光状態となり、偏光ビーム・スプリツタ
ー10で有効に光検出器15に入射するものであ
る。
FIG. 2 shows the principle of reproducing a signal from the recording medium 7 recorded as described above.
In FIG. 2a, for example, a linearly polarized laser beam 9 for signal reproduction passes through a polarizing beam splitter 10, and then becomes a light beam 12 with an appropriate cross-sectional shape, for example, circular, in an optical system 11. The polarized light is circularly or elliptically polarized, and is focused by the reproducing lens 14 as a minute spot on the surface of the recording medium 7 on which the signal has been recorded. The energy of the laser beam 9 at this time is smaller than that of the laser beam during recording, and it goes without saying that it is not so large that the recording medium 7 will melt or evaporate. The positional relationship between the minute spot and the recorded unevenness relief is as shown in FIG. 2b. Here, a part 7' (hatching part) forming a rectangular shape
is a concave part of the recording medium 7, that is, a place where the recording medium melts or evaporates during recording, and 12' indicated by circular hatching is a minute spot for reading. After the light beam 12 is focused on a minute spot 12' on the recording medium 7, it is reflected on the surface of the recording medium, passes through the reproduction lens 14, the λ/4 plate 13, and the optical system 11 again, and enters the polarizing beam splitter. 10 and enters the photodetector 15. When the reflected light flux passes through the λ/4 plate 13 again, its polarization state becomes a linear polarization state having an angle of 90 degrees with respect to the incident state, and the light beam is effectively transmitted to the photodetector 15 by the polarizing beam splitter 10. is incident on .

今、記録媒体7に記録された信号と読み出し用
レーザ光のスポツトの大きさの関係が第2図bの
如く、即ち記録媒体が溶解あるいは蒸発した部分
に比して、レーザ光のスポツトが大きい場合、記
録媒体7から反射し、光検出器15に入射する光
は記録媒体7の表面と溶解あるいは蒸発し凹部と
なつた底からの反射光の干渉光である。今、凹部
の深さが零、即ち、光スポツトが凹部にかかつて
いない場合、両光の位相差は零であり、光検出器
15に入る光量は大となるが、光スポツト凹部に
かかり両光に位相差が生じると、その位相差に応
じて光検出器15に入る光量は小となる。即ち、
光検出器15で得られる電気信号は、第2図cの
如く記録時の信号波形と関連するものであること
は明らかである。第2図aにおける光検出器15
の出力のP―P値は、上で説明した干渉の度合に
関係しており、その値が最大になるのは良く知ら
れているように両光の位相差がπの奇数倍、即
ち、凹部の深さdが記録レーザ光の波長の1/4の
奇数倍(d=(2n―1)λ/4)の時である。従
つて、ヒート・モード型記録媒体に信号を記録す
ると同時に信号再生を行ない、再生時に光検出器
15からの信号の出力が最大となるように記録レ
ーザ光の強さを制御することにより常に最適な深
さ(d=(2n―1)λ/4)で信号を記録する事
ができる。
Now, the relationship between the signal recorded on the recording medium 7 and the size of the reading laser beam spot is as shown in Figure 2b, that is, the laser beam spot is larger than the area where the recording medium has melted or evaporated. In this case, the light reflected from the recording medium 7 and incident on the photodetector 15 is interference light between the surface of the recording medium 7 and the reflected light from the bottom of the concave portion that has been dissolved or evaporated. Now, when the depth of the recess is zero, that is, when the light spot is not placed in the recess, the phase difference between the two lights is zero, and the amount of light entering the photodetector 15 is large, but the light spot entering the recess and both When a phase difference occurs in the light, the amount of light entering the photodetector 15 decreases in accordance with the phase difference. That is,
It is clear that the electrical signal obtained by the photodetector 15 is related to the signal waveform during recording as shown in FIG. 2c. Photodetector 15 in FIG. 2a
The P-P value of the output of This is when the depth d of the recess is an odd multiple of 1/4 of the wavelength of the recording laser beam (d=(2n-1)λ/4). Therefore, by recording a signal on a heat mode recording medium and reproducing the signal at the same time, and controlling the intensity of the recording laser beam so that the signal output from the photodetector 15 is maximized during reproduction, it is possible to always achieve optimum results. The signal can be recorded at a depth (d=(2n-1)λ/4).

第3図は本発明の信号記録方法を実施すべく構
成した記録装置の一例を示したものである。高輝
度光源、例えばレーザ光源20から発せられた光
21はビームスプリツター22により2光束に分
けられ、一方は信号記録のための光23、他方は
再生のための光束24となる。ここで光24は記
録媒体30を溶解または蒸発させる程強いエネル
ギーを持たないよう、ビーム・スプリツター22
の反射率が設定せられているものである。光23
は、光変調器25によつて記録すべき信号に応じ
て明暗の変調を受けビーム・スプリツター33を
経た後、適当な光学系26(例えばビームエクス
パンダー)によりその断面形状を変えられ、ミラ
ー34を介して光結合器(例えばビーム・スプリ
ツター、偏光ビーム・スプリツター等)27を通
過し、レンズ28により、基板29に塗布された
記録媒体30の表面に集光し、記録すべき信号に
応じて記録媒体30を溶解あるいは蒸発させ記録
を行なう。また31は信号源で記録すべき信号を
発生し、増幅器32で信号を増幅し、光変調器2
5を駆動し、光23を変調させる。光変調器25
によつて変調を受けた光はビーム・スプリツター
33により、その一部が取り出され、ミラー35
を介して光検出器36に送られる。光検出器36
は光電変換素子で、光の信号を電気の信号に変換
させる働きを持つものである。光検出器36で得
られる電気信号は公知のp―p値測定電気系37
に送り込まれ、そのP―P値が読み取られる。ま
た一方、再生のための光24はミラー38で反射
された後、偏光ビーム・スプリツター39を通過
後、光学系40によりその断面を適当な形状、大
きさに変えられλ/4板41を通過し、光結合器
27で光23と結合され、レンズ28により記録
媒体30上に微小な光スポツトとして集光する。
レンズ28に入射する光24の光路は光23の光
路とわずかな角度を持つように、光結合器27あ
るいはミラー38あるいはビーム・スプリツター
22で調整され、集光された両光によるスポツト
の位置関係は、第3図bに示す如く構成される。
第3図bにおいて42は記録媒体が溶解あるいは
蒸発した凹部で、43は再生光のスポツト、44
は記録光のスポツトである。信号再生用の光24
は、記録媒体30の表面で反射し、再びもとの光
路を戻り偏光ビーム・スプリツター39により、
光検出器45へ入射すべく取り出される。
FIG. 3 shows an example of a recording apparatus configured to carry out the signal recording method of the present invention. Light 21 emitted from a high-intensity light source, such as a laser light source 20, is split into two beams by a beam splitter 22, one beam 23 for signal recording and the other beam 24 for reproduction. Here, the beam splitter 22 is used so that the light 24 does not have enough energy to melt or evaporate the recording medium 30.
The reflectance is set. light 23
After being modulated in brightness and darkness by the optical modulator 25 according to the signal to be recorded and passing through the beam splitter 33, its cross-sectional shape is changed by an appropriate optical system 26 (for example, a beam expander), and the mirror 34 The light passes through an optical coupler (for example, a beam splitter, a polarizing beam splitter, etc.) 27, and is focused by a lens 28 onto the surface of a recording medium 30 coated on a substrate 29, depending on the signal to be recorded. Recording is performed by melting or evaporating the recording medium 30. A signal source 31 generates a signal to be recorded, an amplifier 32 amplifies the signal, and an optical modulator 2
5 to modulate the light 23. Optical modulator 25
A part of the light modulated by the beam splitter 33 is taken out by the mirror 35.
is sent to the photodetector 36 via. Photodetector 36
is a photoelectric conversion element, which has the function of converting optical signals into electrical signals. The electrical signal obtained by the photodetector 36 is transferred to a known p-p value measuring electrical system 37.
and its P-P value is read. On the other hand, the light 24 for reproduction is reflected by a mirror 38, passes through a polarizing beam splitter 39, has its cross section changed to an appropriate shape and size by an optical system 40, and passes through a λ/4 plate 41. The light is then combined with the light 23 by the optical coupler 27, and focused by the lens 28 onto the recording medium 30 as a minute light spot.
The optical path of the light 24 entering the lens 28 is adjusted by the optical coupler 27, mirror 38, or beam splitter 22 so that it has a slight angle with the optical path of the light 23, and the positional relationship between the spots of the two condensed lights is adjusted. is constructed as shown in FIG. 3b.
In Fig. 3b, 42 is a recess where the recording medium has melted or evaporated, 43 is a spot of reproduction light, and 44
is the recording light spot. Light 24 for signal reproduction
is reflected on the surface of the recording medium 30 and returns to the original optical path again by the polarizing beam splitter 39.
The light is taken out to be incident on the photodetector 45.

光検出器45からの電気信号は、一部デイスプ
レイ装置46において信号を再生し、記録装置操
作者は目視により観測を行なう事ができる。ま
た、光検出器45からの電気信号は、再生波形即
ち、第2図cの波形のP―P値を測定するP―P
値測定電気系47に送られ再生波形のP―P値を
測定すると同時に、表示部47′に表示される。
A portion of the electrical signal from the photodetector 45 is reproduced on a display device 46, allowing the recording device operator to visually observe the signal. Further, the electrical signal from the photodetector 45 is used to measure the P-P value of the reproduced waveform, that is, the waveform shown in FIG. 2c.
The PP value of the reproduced waveform is sent to the value measurement electrical system 47 and is displayed on the display section 47' at the same time.

信号記録の始めに信号源31からテストパター
ン波形が送られ、同時に増幅器32の増幅度を
徐々に変え、光変調器25に送る電気信号の波高
値即ちP―P値を変える。この値により、記録媒
体30へは凹部の深さが異なつて記録される。
At the beginning of signal recording, a test pattern waveform is sent from the signal source 31, and at the same time, the amplification degree of the amplifier 32 is gradually changed to change the peak value, that is, the PP value of the electrical signal sent to the optical modulator 25. Depending on this value, the recesses are recorded on the recording medium 30 with different depths.

光検出器45で得られる再生波形のP―P値
(表示部47′に表示される)は、前に説明した如
く、凹部の深さdに関係しており、P―P値が最
大となつた時に対応する光検出器36から得られ
る信号波形のP−P値をP―P値測定電気系37
で測定し、その値が最適値としてスイツチS―1
を開放しS―2を閉じる事に依つてメモリ48に
記憶される。この状態に設定された後、スイツチ
S―1を閉じS―2を開放して信号記録をスター
トし、順次光検出器36から得られる信号波形の
P―P値とメモリ48に記憶されたP―P値とを
比較電気系49において比較を行ない、その差分
信号で増幅器32の増幅度を制御することにより
常に最適な条件の下で信号記録が行なえる。
As explained earlier, the P-P value of the reproduced waveform obtained by the photodetector 45 (displayed on the display section 47') is related to the depth d of the recess, and the P-P value is the maximum. The P-P value measurement electrical system 37 measures the P-P value of the signal waveform obtained from the photodetector 36 corresponding to the
The value is determined as the optimum value for switch S-1.
is stored in the memory 48 by opening S-2 and closing S-2. After this state is set, switch S-1 is closed and switch S-2 is opened to start signal recording. -P value is compared in the electric system 49, and by controlling the amplification degree of the amplifier 32 using the difference signal, signal recording can always be performed under optimal conditions.

第4図は本発明の方法を用いる装置の他の例
で、再生用の光を得るために、別の光源50を設
けたものである。その他の系の機能は第3図の説
明と全く同じであるが、別光源を用いる利点は、
カルコーゲン系物質等のヒート・モード型記録媒
体においては波長により反射率が異なるので、再
生のための光の波長を適当に選択することによ
り、より有効に記録媒体からの反射光を受光する
事ができることにある。
FIG. 4 shows another example of an apparatus using the method of the invention, in which a separate light source 50 is provided to obtain light for reproduction. The functions of the other systems are exactly the same as explained in Figure 3, but the advantage of using a separate light source is
Since the reflectance of heat mode recording media such as chalcogen-based materials differs depending on the wavelength, it is possible to more effectively receive the reflected light from the recording medium by appropriately selecting the wavelength of the light for reproduction. It's all about what you can do.

また、第3図、第4図に例においては、信号記
録のための光を集光させるレンズと再生のための
光を集光させるためのレンズが同一であるが、第
5図の如く、それぞれの光に専用の集光レンズを
用いても良い。第5図において、51は信号記録
のための光、52は再生のための光、53は信号
記録のための光を集光させるためのレンズ、54
は再生のための光を集光させるためのレンズ、5
5は記録媒体である。
In addition, in the examples shown in FIGS. 3 and 4, the lens for condensing light for signal recording and the lens for condensing light for reproduction are the same, but as shown in FIG. A dedicated condensing lens may be used for each light. In FIG. 5, 51 is light for signal recording, 52 is light for reproduction, 53 is a lens for condensing the light for signal recording, and 54
is a lens for condensing light for reproduction, 5
5 is a recording medium.

第6図は、TV信号をデイスク状の記録媒体に
記録する、即ちビデオデイスクの記録装置に本発
明を適用した場合の一実施例である。60は信号
記録用のレーザ光源で、レーザ光61は光変調器
62により明暗の変調を受ける。TV信号発生器
63からのTV信号は変調系64で例えばFM変
調され、光変調器ドライバーアンプ65で適度に
増幅されて光変調器62に送られる。変調を受け
たレーザ光61は一部ビーム・スプリツター66
によつて取り出され、光検出器67に入る。ビー
ム・スプリツター66を通過したレーザ光61
は、図においてミラー68の背後に位置する図示
されないミラーにより、紙面に垂直手前方向に曲
げられ、さらに、ミラー68により図の如く左方
へ曲げられ、ビーム・エクスパンダー69により
広げられ、ミラー70により下方に曲げられ、光
結合器71を通過し、レンズ72により記録体7
3面に微小スポツトに集光される。また信号再生
用のレーザ光源74からのレーザ光75は、図に
おいてミラー76の背後に位置する図示されない
ミラーにより紙面に垂直手前方向に曲げられ、更
にミラー76で左方に曲げられ、偏光ビーム・ス
プリツター77を通過後、ビーム・エクスパンダ
ー78により広げられ、λ/4板79を通つた
後、光結合器71で下方に曲げられ、レンズ72
により、記録体73上に微小スポツトに集光さ
れ、さらに記録体73で反射され、再びもとの光
路を戻り、偏光ビーム・スプリツター77によ
り、光検出器80方向へ取り出される。各光学素
子68〜72,76〜80を乗せた移動部材81
は紙面に直角に設けた不図示のガイド棒に移動自
在に結合せられたガイド穴83とガイド棒に平行
に設けられた送り雄ネジと噛み合う雌ネジ82に
より紙面に垂直方向に移動し、一方、円板状の記
録体73はモーター84により回転駆動され、信
号は螺旋状あるいは同心円状に記録されるもので
ある。光検出器80からの再生信号は一部復調系
85に入り、FM信号をもとにTV信号に戻し、
テレビ86でデイスプレイする。また一部は、再
生信号波形のP―P値測定系87に送られ、P―
P値が測定され表示部87′に表示される。今、
ドライバーアンプ65の増幅度を徐々に変え再生
信号波形のP―P値即ち表示部87′の表示が最
大になつた時、スイツチS―3を開放しS―4を
閉じることに依り、光検出器67で得られた信号
波形のP―P値測定系88よりの出力信号のP―
P値がメモリ89に記憶される。
FIG. 6 shows an embodiment in which the present invention is applied to a video disk recording apparatus that records TV signals on a disk-shaped recording medium. 60 is a laser light source for signal recording, and the laser light 61 is modulated in brightness and darkness by an optical modulator 62. A TV signal from a TV signal generator 63 is subjected to, for example, FM modulation in a modulation system 64, appropriately amplified in an optical modulator driver amplifier 65, and sent to an optical modulator 62. Part of the modulated laser beam 61 passes through a beam splitter 66
and enters the photodetector 67. Laser light 61 passed through beam splitter 66
is bent toward the front perpendicular to the plane of the paper by a mirror (not shown) located behind mirror 68 in the figure, further bent to the left by mirror 68 as shown in the figure, expanded by beam expander 69, and then mirror 70 The recording medium 7 is bent downward by the lens 72, passes through the optical coupler 71, and is
The light is focused on tiny spots on three sides. Further, a laser beam 75 from a laser light source 74 for signal reproduction is bent in the front direction perpendicular to the plane of the paper by a mirror (not shown) located behind a mirror 76 in the figure, and further bent to the left by the mirror 76, so that it becomes a polarized beam. After passing through the splitter 77, the beam is expanded by the beam expander 78, passes through the λ/4 plate 79, is bent downward by the optical coupler 71, and is bent downward by the lens 72.
As a result, the light is focused on a minute spot on the recording medium 73, further reflected by the recording medium 73, returns to the original optical path, and is extracted by the polarizing beam splitter 77 toward the photodetector 80. A moving member 81 carrying each optical element 68-72, 76-80
is moved in a direction perpendicular to the plane of the paper by means of a guide hole 83 movably connected to a guide rod (not shown) provided perpendicular to the plane of the paper, and a female screw 82 that engages with a male feed screw provided parallel to the guide bar; A disk-shaped recording medium 73 is rotationally driven by a motor 84, and signals are recorded in a spiral or concentric pattern. A part of the reproduced signal from the photodetector 80 enters a demodulation system 85 and returns it to a TV signal based on the FM signal.
Display on TV86. A portion is also sent to the P-P value measurement system 87 of the reproduced signal waveform, and
The P value is measured and displayed on the display section 87'. now,
When the amplification degree of the driver amplifier 65 is gradually changed and the P-P value of the reproduced signal waveform, that is, the display section 87' reaches its maximum, the light detection is performed by opening the switch S-3 and closing the switch S-4. P of the signal waveform obtained by the device 67 - P of the output signal from the P value measurement system 88
The P value is stored in memory 89.

信号記録の際スイツチS―3を閉じS―4を開
放することに依り順次P―P値測定系88で得ら
れる信号波形のP―P値とメモリ89に記憶され
た最適な信号波形のP―P値は比較回路90で比
較されており、両者の差分を信号としてドライバ
ー・アンプ65の増幅度を制御し、常に最良の状
態で信号を記録する。
When recording a signal, by closing switch S-3 and opening switch S-4, the P-P value of the signal waveform obtained by the P-P value measurement system 88 and the P of the optimal signal waveform stored in the memory 89 are sequentially calculated. -P values are compared in a comparator circuit 90, and the difference between the two is used as a signal to control the amplification degree of the driver amplifier 65, so that the signal is always recorded in the best condition.

以上の如く本発明の信号記録方法は、始めに記
録光の強度を変化させながら信号を記録し、この
記録された信号を再生して再生信号が最良の状態
となる前記記録光強度の最適値を決定した後、前
記記録光強度が最適値となるように制御しながら
信号記録を行なう事により常に最良の状態で信号
記録を行なえる特徴を持つものである。
As described above, in the signal recording method of the present invention, a signal is first recorded while changing the intensity of the recording light, and the recorded signal is reproduced to obtain the optimal value of the recording light intensity so that the reproduced signal is in the best condition. After determining the recording light intensity, the signal recording is performed while controlling the recording light intensity to the optimum value, so that signal recording can always be performed in the best condition.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは光学的信号記録装置の要部を示す概
要図、第1図bは夫々記録信号と記録体の相関関
係図、第2図aは記録体からの情報読出装置の要
部を示す概要図、第2図bは記録体と再生光との
関係を示す上面図、第2図cは再生出力を示す波
形図、第3図aは本発明の信号記録方法を用いた
装置を示す概要図、第3図bは記録体と記録光・
再生光との関係を示す上面図、第4図は本発明を
用いた他の信号記録装置を示す図、第5図は本発
明を用いた装置の他の構成例を示す要部側面図、
第6図は本発明を適用した更に他の実施例である
信号記録装置を示す図である。 ここで、20,50,60,74はレーザ光
源、25,62は光変調器、28,53,54は
レンズ、30,55,73は記録体、45,67
は光検出器、46,47,87,88はP―P値
測定電気系;48,89はメモリ、49,90は
比較回路、32は増幅器、65は光変調ドライバ
ーアンプ、31,64は変調器である。
Fig. 1a is a schematic diagram showing the main parts of an optical signal recording device, Fig. 1b is a diagram showing the correlation between the recorded signals and the recording medium, and Fig. 2a shows the main parts of the information reading device from the recording medium. FIG. 2b is a top view showing the relationship between the recording medium and reproduction light, FIG. 2c is a waveform diagram showing the reproduction output, and FIG. 3a is an apparatus using the signal recording method of the present invention. The schematic diagram shown in Figure 3b shows the recording medium and recording light.
4 is a diagram showing another signal recording device using the present invention; FIG. 5 is a side view of main parts showing another configuration example of the device using the present invention; FIG.
FIG. 6 is a diagram showing a signal recording device according to still another embodiment of the present invention. Here, 20, 50, 60, 74 are laser light sources, 25, 62 are optical modulators, 28, 53, 54 are lenses, 30, 55, 73 are recording bodies, 45, 67
is a photodetector, 46, 47, 87, 88 is a P-P value measurement electrical system; 48, 89 is a memory, 49, 90 is a comparison circuit, 32 is an amplifier, 65 is an optical modulation driver amplifier, 31, 64 is a modulation It is a vessel.

Claims (1)

【特許請求の範囲】[Claims] 1 記録媒体に記録光を照射する事によつて情報
信号を記録する方法において、始めに記録光の強
度を変化させながら信号を記録し、この記録され
た信号を再生して再生信号が最良の状態となる前
記記録光強度の最適値を決定した後、前記記録光
強度が最適値となるように制御しながら信号記録
を行なう事を特徴とする信号記録方法。
1 In a method of recording information signals by irradiating a recording medium with recording light, the signal is first recorded while changing the intensity of the recording light, and then this recorded signal is reproduced to find the best reproduced signal. 1. A signal recording method, comprising: determining an optimum value of the recording light intensity for a state, and then performing signal recording while controlling the recording light intensity to the optimum value.
JP59064952A 1984-03-30 1984-03-30 Signal recording method Granted JPS59193544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59064952A JPS59193544A (en) 1984-03-30 1984-03-30 Signal recording method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59064952A JPS59193544A (en) 1984-03-30 1984-03-30 Signal recording method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP50079777A Division JPS523405A (en) 1975-06-27 1975-06-27 Signal recording appliance

Publications (2)

Publication Number Publication Date
JPS59193544A JPS59193544A (en) 1984-11-02
JPS6325408B2 true JPS6325408B2 (en) 1988-05-25

Family

ID=13272880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59064952A Granted JPS59193544A (en) 1984-03-30 1984-03-30 Signal recording method

Country Status (1)

Country Link
JP (1) JPS59193544A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3650466T2 (en) * 1985-09-02 1996-08-08 Sharp Kk Optical disc player
JPS62167620A (en) * 1986-01-18 1987-07-24 Sanyo Electric Co Ltd Optical disc file device
JP2592086B2 (en) * 1988-02-12 1997-03-19 日立マクセル株式会社 Recording sensitivity correction method for recording media
JPH02128326A (en) * 1988-11-09 1990-05-16 Nec Corp Optical recording and reproducing device
JP2764965B2 (en) * 1988-11-29 1998-06-11 ソニー株式会社 Optical output setting control device and optical output setting control method
US5303217A (en) * 1989-06-23 1994-04-12 U.S. Philips Corporation Optical recording device wherein recording beam intensity is set in accordance with an optimum value of the DC component of a recorded signal
JPH0393047A (en) * 1989-09-05 1991-04-18 Nec Corp Optical recording and reproducing device
US5361247A (en) 1989-09-12 1994-11-01 Sharp Kabushiki Kaisha Information recording and reproducing device with reproduction and automatic gain control circuit
JPH03171437A (en) * 1989-11-30 1991-07-24 Matsushita Electric Ind Co Ltd Signal recording method and optimum power setting device
JP2557555B2 (en) * 1990-07-20 1996-11-27 株式会社ケンウッド Laser output setting method for optical disk recording
US5648952A (en) * 1994-09-28 1997-07-15 Ricoh Company, Ltd. Phase-change optical disc recording method and apparatus, and information recording apparatus and recording pre-compensation method

Also Published As

Publication number Publication date
JPS59193544A (en) 1984-11-02

Similar Documents

Publication Publication Date Title
JP2772514B2 (en) Device for recording electrical information signals
JP3487001B2 (en) Optical head, light irradiation method, recording medium driving device
US7372602B2 (en) Method for recording and reproducing holographic data and an apparatus therefor
US4334299A (en) Optical signal recording and reproducing system
JPS58161159A (en) Information processor
US4656618A (en) Optical information recording and reproducing apparatus
US5329517A (en) Optical information recording and reproducing apparatus utilizing a plurality of recording light spots
JP3707812B2 (en) Optical recording method, optical recording apparatus, and optical recording medium
JPS6235168B2 (en)
JPS6325408B2 (en)
US4695992A (en) Optical information recording-reproducing apparatus in which the relative position of a primary beam and secondary beams on recording medium is varied during recording and reproduction of information
JPS6132734B2 (en)
KR930003039A (en) Optical head unit
US4682316A (en) Optical information processing apparatus for light beam focus detection and control
CA1085050A (en) Method for recording information on a rotatable medium
JPS6325409B2 (en)
GB2139784A (en) Optical information processing apparatus
US5706263A (en) Method and apparatus for high-density reproduction
JP2528822B2 (en) Information recording medium and recording / reproducing apparatus thereof
JP2600704B2 (en) Optical recording / reproducing device
JPH06150364A (en) Data recording and reproducing device
JP2875290B2 (en) Optical recording / reproducing method
JPS61206937A (en) Optical information processor
JPH0799591B2 (en) Optical head
JP2634221B2 (en) Optical recording / reproducing device