JPS63253814A - Method of keeping communication cable - Google Patents

Method of keeping communication cable

Info

Publication number
JPS63253814A
JPS63253814A JP62087743A JP8774387A JPS63253814A JP S63253814 A JPS63253814 A JP S63253814A JP 62087743 A JP62087743 A JP 62087743A JP 8774387 A JP8774387 A JP 8774387A JP S63253814 A JPS63253814 A JP S63253814A
Authority
JP
Japan
Prior art keywords
nitrogen gas
communication cable
pressure
cable
communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62087743A
Other languages
Japanese (ja)
Inventor
玄馬 恒夫
和潔 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Chemical Co Ltd
Sanyo Electronic Industries Co Ltd
Original Assignee
Kuraray Chemical Co Ltd
Sanyo Electronic Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Chemical Co Ltd, Sanyo Electronic Industries Co Ltd filed Critical Kuraray Chemical Co Ltd
Priority to JP62087743A priority Critical patent/JPS63253814A/en
Publication of JPS63253814A publication Critical patent/JPS63253814A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Gas Or Oil Filled Cable Accessories (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は通信用の搬送ケーブル、市内外鉛被ケーブル、
中継ケーブル、同軸ケーブル等(以下。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to communication carrier cables, internal and external lead-sheathed cables,
Relay cables, coaxial cables, etc. (below).

通信ケーブルという。)の性能維持を目的とした保守方
法に関する。
It is called a communication cable. ) related to maintenance methods aimed at maintaining performance.

(従来技術) 通信ケーブルは通常長距離にわたって架設されており、
その一部にでも障害が発生すれば疎通不能となり、長時
間広範囲の地域が孤立化に到る危険性をひめでいる。ケ
ーブル被覆の損傷による雨水の侵入又はケーブル内湿気
の凝縮等による絶縁不良、或いは1発錆に基づ(接触抵
抗の増大、その他のトラブルを未然に防止する目的で、
主要な通信ケーブルは窒素ガスを用いた永久封入方式が
古くから採用されている。
(Prior art) Communication cables are usually installed over long distances.
If a problem occurs in even one part of the network, communication will become impossible and there is a danger that a wide range of areas will become isolated for a long period of time. Due to poor insulation due to rainwater intrusion or condensation of moisture inside the cable due to damage to the cable sheath, or due to a single rusting (in order to prevent an increase in contact resistance and other problems,
Major communication cables have long been permanently sealed with nitrogen gas.

一部1通信ケーブルの外被部分は、電蝕、化学線、屈曲
疲労、振動や地盤沈下、或いは工事の際の人為的損傷等
に起因する経年劣化が避けられず、古くなるとガス圧の
点検、ガスの補充填等ケーブル保守のための作業量は急
激に増大する。
Some 1 communication cable jackets inevitably deteriorate over time due to electrolytic corrosion, chemical radiation, bending fatigue, vibration, ground subsidence, or human damage during construction, and as they get older, gas pressure inspection is required. , the amount of work required for cable maintenance such as gas refilling increases rapidly.

使用する窒素ガスは深冷分離装置等によって工場生産さ
れ、高圧ガスボンベに充填して通信ケーブルの端末設置
場所まで搬送される。
The nitrogen gas used is produced in a factory using cryogenic separation equipment, etc., filled into high-pressure gas cylinders, and transported to the location where the communication cable terminal is installed.

通信ケーブルは空中或いは地下に架設され、かつ長距離
にわたっており、現実に0.5mmφ以下の微細なピン
ホールの検出並びに補修は極めて困難で、内圧維持は殆
どの場合ガス補充に頼るため重量の大きな高圧ガスボン
ベの交換頻度が上昇して来ると通信ケーブル保守の面で
大きな障害となる。この対策として、冷凍式或いは乾燥
剤を用いた乾燥空気供給装置が通信ケーブル端末等に設
置され、永久ガス封入方式より吹流しガス方式に一部転
換されるようになって来た。
Communication cables are installed in the air or underground and span long distances, and in reality, it is extremely difficult to detect and repair minute pinholes of 0.5 mm diameter or less.In most cases, maintaining internal pressure relies on gas replenishment, which is heavy. As the frequency of replacing high-pressure gas cylinders increases, communication cable maintenance becomes a major problem. As a countermeasure to this problem, dry air supply devices of the refrigerating type or using a desiccant have been installed at communication cable terminals, etc., and the permanent gas filling system has been partially replaced with a streamer gas system.

゛乾燥剤による装置は、初期において空気圧縮機と乾燥
剤充填槽よりなり定期的に槽内の乾燥剤を交換していた
が、現地で乾燥剤を加熱により再生するため複数の充填
槽を設置する方法が試みられた。然し、この乾燥空気供
給装置は複雑で再生に長時間を要し、トラブル等による
保守面の問題もあり、乾燥剤の再生法は順次減圧再生の
方向に移行した。
゛In the early days, desiccant-based equipment consisted of an air compressor and a desiccant filling tank, and the desiccant in the tank was replaced regularly, but multiple filling tanks were installed to regenerate the desiccant by heating on site. A method was tried. However, this dry air supply device is complicated and takes a long time to regenerate, and there are maintenance problems due to troubles, so the desiccant regeneration method has gradually shifted to reduced pressure regeneration.

窒素ガスは通信回路において接触抵抗の原因となる金属
の発錆、或いは有機絶縁物の酸化劣化を防止する上で極
めて有効であり、又、水分が残存すると絶縁抵抗の点で
マイナス効果となる。
Nitrogen gas is extremely effective in preventing rusting of metals or oxidative deterioration of organic insulators that cause contact resistance in communication circuits, and remaining moisture has a negative effect on insulation resistance.

冷凍式による乾燥空気の残存水分量は大気圧露点として
通常−14℃〜−21°C近傍であり、乾燥剤による方
法も必ずしも満足すべき水準にはない。
The residual moisture content of air dried by the refrigeration method is usually in the vicinity of -14°C to -21°C as an atmospheric dew point, and methods using a desiccant are not necessarily at a satisfactory level.

従って、酸素濃度のほか周囲温度による結露の点等より
寒冷地の架空ケーブル、その他重要な通信ケーブルには
依然として窒素ガス封入方式が多数残されている。
Therefore, many overhead cables in cold regions and other important communication cables still use the nitrogen gas filling method because of dew condensation caused by ambient temperature as well as oxygen concentration.

この様な状況のもとで9通信ケーブルの保全に関し、よ
り確実で作業量の軽減が図られる方法の開発に対する要
望が強まって来た。
Under these circumstances, there has been an increasing demand for the development of a method that is more reliable and reduces the amount of work involved in maintaining the 9 communication cables.

(発明が解決しようとする問題点) 近年、空気を原料とした圧力変動吸着方式(以下、PS
A方式という。)の窒素ガス分離装置は広く知られるよ
うになった。この方式の窒素ガス分離装置は一般に、空
気圧縮機、吸着剤である分子篩炭等の性能劣化を防止す
るための冷凍式等の除湿機、酸素の吸着及び脱着及び脱
着再生と言う二つの操作を交互に繰返すため2本の吸着
槽、脱着再生時減圧状態にするための真空ポンプ、得ら
れた窒素ガスの性能を均一化するための貯槽、並びにこ
れらを結合する配管類、及び制御系統等で構成され、長
期間にわたって高純度、低大気圧露点の窒素ガスを連続
的に製造することができる。
(Problems to be solved by the invention) In recent years, pressure fluctuation adsorption methods (hereinafter referred to as PS) using air as a raw material have been developed.
It is called method A. )'s nitrogen gas separation equipment has become widely known. This type of nitrogen gas separation equipment generally requires an air compressor, a dehumidifier such as a refrigerating type to prevent performance deterioration of the molecular sieve charcoal used as an adsorbent, and two operations: oxygen adsorption and desorption and desorption regeneration. Two adsorption tanks for alternate repetition, a vacuum pump to reduce the pressure during desorption and regeneration, a storage tank to equalize the performance of the nitrogen gas obtained, piping to connect these, and a control system. It is possible to continuously produce nitrogen gas with high purity and low atmospheric pressure dew point over a long period of time.

もともと、PSA方式の窒素ガス分離装置で得られる窒
素ガスは主として工業用分野に使用され、既存の深冷分
離装置による液体窒素と競合関係にある。PSA方式の
窒素ガス分離装置は上記で説明した如く、多くの機器よ
りなりたっており。
Originally, nitrogen gas obtained by a PSA type nitrogen gas separation device was mainly used in the industrial field, and is in competition with liquid nitrogen produced by existing cryogenic separation devices. As explained above, the PSA type nitrogen gas separation device consists of many devices.

規模が小さくなって来ると窒素ガスコストに占める固定
費の割合は著しく上昇する。
As the scale becomes smaller, the proportion of fixed costs in nitrogen gas costs increases significantly.

従って、実用化されているPSA方式窒素ガス分離装置
の窒素ガス発生能力は通常1ONrrr/Hr〜50’
ONrI′r/Hrの範囲内にある。
Therefore, the nitrogen gas generation capacity of the PSA type nitrogen gas separation equipment that has been put into practical use is usually 1ONrrr/Hr to 50'
It is within the range of ONrI'r/Hr.

一方1通信ケーブルに供給する必要ガス量は。On the other hand, what is the amount of gas required to be supplied to one communication cable?

ケーブル内に存在する空気を一旦置換した後、対象とな
る設備の規模及び使用状態によっても異なるが100g
/cIflG −1,000g/c1ilG近傍の特定
値まで与圧した状態を維持するに要するピンホール等か
らのリーク量に対応するものである。
After once replacing the air existing in the cable, it will be 100g depending on the scale of the target equipment and usage conditions.
/cIflG - This corresponds to the amount of leakage from pinholes etc. required to maintain a pressurized state to a specific value near 1,000g/c1ilG.

従って、当該ケーブルに供給するガス供給装置としては
0.5N 1 /m1n(0,03Nnf/1lr) 
〜100N l /m1n(6Nnf/Hr)程度の能
力もち、然も低価格でなければならない。
Therefore, the gas supply device for supplying the cable is 0.5N 1 /m1n (0.03Nnf/1lr)
It must have a capacity of ~100Nl/m1n (6Nnf/Hr) and be inexpensive.

(問題点を解決するための手段) 本発明者等は2図面中で例示する如き安価で然も高純度
、低大気圧露点の窒素ガスが安定に得られる超小型PS
A方式窒素ガス分離装置の開発に成功し、この装置を利
用して通信ケーブルの優れた保守方法について鋭意研究
の結果2次に述べる発明に到った。
(Means for Solving the Problems) The present inventors have developed an ultra-compact PS that can stably obtain nitrogen gas of low cost, high purity, and low atmospheric pressure dew point, as illustrated in the two drawings.
We succeeded in developing a Type A nitrogen gas separation device, and as a result of intensive research into an excellent maintenance method for communication cables using this device, we arrived at the invention described below.

すなわち、PSA方式の気体分離装置で空気中の窒素を
分離し、得られた窒素ガスを通信ケーブル内へ連続的に
供給することを特徴とする通信ケーブルの保守方法であ
る。
That is, this communication cable maintenance method is characterized by separating nitrogen from the air using a PSA type gas separation device and continuously supplying the obtained nitrogen gas into the communication cable.

以下本発明を更に詳しく説明する。The present invention will be explained in more detail below.

PSA方式窒素ガス分離装置の能力は1通信ケーブルの
設備規模に対応し、 0.5Nffi/min”1oO
Nf  −/minと言う超小型の領域にあるが、得ら
れる窒素ガスの品質を確保するに必要な機能は全て備え
なければならない。
The capacity of the PSA type nitrogen gas separation equipment corresponds to the equipment scale of one communication cable, and is 0.5Nffi/min"1oO
Although it is in the ultra-small region of Nf - /min, it must have all the functions necessary to ensure the quality of the nitrogen gas obtained.

然も、安価な窒素ガスを供給するためには、設備費の大
巾な低減が不可避となる。本発明者等はこれ等の相反課
題を解決することに成功した。
However, in order to supply inexpensive nitrogen gas, a drastic reduction in equipment costs is inevitable. The present inventors have succeeded in solving these conflicting problems.

PSA方式窒素ガス分離装置に使用する吸着剤としては
、空気中の酸素ガスに対する初期吸着速度が大きい分子
篩炭と、窒素ガスの平衡吸着量が高い合成ゼオライト系
吸着剤が実用化されているが、超小型を前Iにとする場
合、プロセスの単純な前者の方がより好ましい。又吸着
槽の原料空気供給側に活性アルミナ等減圧再生可能な吸
湿剤を分子篩炭に対しl/20〜1/3容量充填し1分
子篩炭との二層構造をとれば除湿機が不要となり、更に
吸着槽自体も1本とし、同一圧縮機で本来の圧縮機能と
、脱着時真空ポンプに相当する減圧機能を交互に実施さ
す等、大巾な装置の簡略化は、低価格、超小型を指向す
る上で非常に有効である。
As adsorbents used in PSA nitrogen gas separation equipment, molecular sieve charcoal, which has a high initial adsorption rate for oxygen gas in the air, and synthetic zeolite adsorbents, which have a high equilibrium adsorption amount of nitrogen gas, have been put into practical use. When considering ultra-small size, the former method is more preferable because of its simple process. In addition, if the raw air supply side of the adsorption tank is filled with a moisture absorbent such as activated alumina that can be regenerated under reduced pressure in a volume of 1/20 to 1/3 of the molecular sieve charcoal, and a two-layer structure with the 1-molecular sieve charcoal is created, a dehumidifier is not required. Furthermore, the adsorption tank itself is reduced to one, and the same compressor alternately performs the original compression function and the depressurization function equivalent to a vacuum pump during desorption. It is very effective for orientation.

これ等の吸着剤は自動的に吸着操作と再生脱着操作を繰
り返すことによって半永久的に連続使用が可能であり、
従来実施していたボンベ或いは乾燥剤交換に頚する通信
ケーブルの保守作業は全て排除できる。
These adsorbents can be used semi-permanently and continuously by automatically repeating adsorption and regeneration/desorption operations.
All communication cable maintenance work associated with cylinder or desiccant replacement, which was conventionally performed, can be eliminated.

通信ケーブルに供給するPSA方式窒素ガス分離装置の
窒素ガス品質として、当該通信ケーブルの機能を正常に
維持するために必要な水分量は一40’C以下、望まし
くは一60’C以下の大気圧露点、及び窒素ガス純度(
窒素とアルゴンの合計容量%、以下省略)では使用する
無被覆金属部分。
Regarding the nitrogen gas quality of the PSA type nitrogen gas separator that supplies communication cables, the amount of moisture required to maintain the normal function of the communication cables is an atmospheric pressure of -40'C or less, preferably -60'C or less. Dew point, and nitrogen gas purity (
Total volume % of nitrogen and argon (hereinafter omitted) uses uncoated metal parts.

有機絶縁材料の酸化を防止するため95%以上。95% or more to prevent oxidation of organic insulating materials.

望ましくは98%以上確保できるよう装置仕様を選定す
る。
Preferably, equipment specifications are selected to ensure 98% or more.

PSA方式窒素ガス分離装置より得られる窒素ガス圧力
は吸着圧に支配され、貯槽部において通常2〜6kg/
cnlGの範囲であり9通信ケーブルに供給する場合2
0°Cで100g/cfflG〜1000g/cffl
G近傍の当該ケーブル特性に合致した特定値にまで制御
弁を用いて減圧する。
The nitrogen gas pressure obtained from a PSA type nitrogen gas separation device is controlled by the adsorption pressure, and is usually 2 to 6 kg/kg in the storage tank.
cnlG range and supplying to 9 communication cables 2
100g/cfflG to 1000g/cffl at 0°C
The pressure is reduced using a control valve to a specific value that matches the characteristics of the cable in the vicinity of G.

この圧力が高過ぎると1通信ケーブルを破壊する原因と
なり、χ限界圧以下であればリーク量に対し供給不足の
状態となり、湿気がケーブル内に侵入して本来の機能を
発揮出来なくなる。
If this pressure is too high, it will cause damage to the communication cable, and if it is less than the χ limit pressure, there will be insufficient supply for the amount of leakage, and moisture will enter the cable, making it impossible to perform its original function.

同一のPSA窒素ガス分離装置で複数の通信ケーブルに
供給する場合、特定圧力に調節した後ヘングーを設は各
ケーブルに分配する。各ケーブルの注入口には流量計を
設置する事が保守上望ましい。又各ケーブルの必要圧力
が同一でない時は複数のヘングー、或いは各ケーブルの
直前でそれぞれの特定圧力に調節する様な方法をとらな
ければならない。
When the same PSA nitrogen gas separator is used to supply multiple communication cables, the pressure is adjusted to a specific level and then the gas is distributed to each cable. For maintenance purposes, it is desirable to install a flow meter at the inlet of each cable. Also, if the required pressure of each cable is not the same, it is necessary to use a plurality of pressure gauges or to adjust the pressure to a specific pressure just in front of each cable.

通信ケーブルは長距離にわたって架設されている場合が
多く、一方供給ガスの有効区間は大体lOkm近傍であ
り、約20kmごとに中継点を設は両端より窒素ガスを
注入する。又、このガス区間内に複数の圧力センサーを
設置すると、圧力傾斜の状況からピンホール等の異常位
置が限定され早期補修に役立てることが出来る。
Communication cables are often constructed over long distances, and the effective section for supplying gas is approximately 10 km, with relay points set up every 20 km and nitrogen gas injected from both ends. Furthermore, if a plurality of pressure sensors are installed within this gas section, the location of abnormalities such as pinholes can be limited from the pressure gradient situation, which can be useful for early repair.

PSA方式窒素ガス分離装置の貯槽には圧力上、下限の
センサーを設は上限を超えるとPSA方式窒素ガス分離
装置の運転を停止し、又下限に到達すると運転を再開す
る様な自動制御系統を付加する。運転再開時窒素ガス純
度が基準を下廻わる恐れがあれば、正常値に到るまでの
窒素ガスを系外に自動放出する等の処置が必要となる。
The storage tank of the PSA type nitrogen gas separation equipment is equipped with pressure and lower limit sensors, and an automatic control system is installed that stops the operation of the PSA type nitrogen gas separation equipment when the upper limit is exceeded, and resumes operation when the lower limit is reached. Add. If there is a risk that the nitrogen gas purity will fall below the standard when restarting operation, measures such as automatically releasing nitrogen gas to the outside of the system until it reaches a normal value are required.

これ等のプロセスはPSA方式窒素ガス分離装置により
得られる高純度低露点の窒素ガスを用い、通信ケーブル
の保守に関する一例を示したもので本発明において同等
制約されるものではない。
These processes use high-purity, low-dew point nitrogen gas obtained by a PSA nitrogen gas separation device, and are merely examples of communication cable maintenance, and are not equally restricted in the present invention.

本発明は通信ケーブルの性能を保全する上で極めて良質
のガスを連続的に、然も安定に供給することが可能とな
り、当該ケーブル自体のトラブルを未然に防止できるば
かりでなく、従来、苛酷な作業であったボンベ等の頻繁
な交換は全〈実施する必要もなくなり1通信ケーブルの
保守に関し。
The present invention makes it possible to continuously and stably supply extremely high-quality gas to maintain the performance of communication cables. This invention not only prevents problems with the cable itself, but also makes it possible to maintain the performance of communication cables. Frequent replacement of cylinders, etc., which used to be a work, no longer needs to be carried out, and maintenance of communication cables is no longer necessary.

極めてすぐれた方法を提供するものである。This provides an extremely superior method.

(実施例) 以下2本発明の実施例を図面に基づいて説明する。(Example) Hereinafter, two embodiments of the present invention will be described based on the drawings.

三方弁8より取り入れた原料空気は、圧縮機1で加圧し
、フィルター2において、外気に含まれている粉塵、及
び圧縮により生じた凝縮水を除去した後、吸着槽3に入
る。吸着槽3内は入口側に活性アルミナ系吸湿剤4.出
口側に分子篩炭5が充填された二層構造となっており、
空気中水分の大部分はあらかじめ吸湿剤で除き、酸素ガ
ス及び残された水分の殆どは分子篩炭に吸着され、高純
度で然も大気圧露点が極めて低い窒素ガスは貯槽6に貯
えられる。
The raw air taken in from the three-way valve 8 is pressurized by the compressor 1, and after removing dust contained in the outside air and condensed water produced by compression in the filter 2, it enters the adsorption tank 3. Inside the adsorption tank 3, there is an activated alumina moisture absorbent 4 on the inlet side. It has a two-layer structure filled with molecular sieve charcoal 5 on the outlet side,
Most of the moisture in the air is removed in advance using a moisture absorbent, oxygen gas and most of the remaining moisture are adsorbed by molecular sieve charcoal, and nitrogen gas, which is highly pure and has an extremely low atmospheric dew point, is stored in the storage tank 6.

分子篩炭による酸素と窒素の分離には、初期の吸着速度
差を利用するため、30秒〜180秒と言う短時間に吸
着操作を終わり、再生操作に移行しなければならない。
In the separation of oxygen and nitrogen using carbon molecular sieve, the initial adsorption rate difference is utilized, so the adsorption operation must be completed in a short time of 30 seconds to 180 seconds, and then the regeneration operation must be started.

分子篩炭の特性によって最適値は異なるが、吸着時間で
得られる窒素ガスの純度は変化する。
Although the optimum value differs depending on the characteristics of the molecular sieve charcoal, the purity of the nitrogen gas obtained changes depending on the adsorption time.

吸着剤及び分子篩炭に吸着されたガスを脱着するための
再生操作は弁11と三方弁9を閉止、弁10を開き、サ
イレンサーを通して脱着ガスを大気中に放出し吸着槽3
内を一旦大気圧近傍にまで減圧する。次に弁10を閉止
、残、た脱着ガスは三方弁8を経由、圧縮機1を真空ポ
ンプとして活用することによって、三方弁9で放出され
、吸着槽3内を大気圧以下にする。
In the regeneration operation for desorbing the gas adsorbed on the adsorbent and molecular sieve coal, the valve 11 and the three-way valve 9 are closed, the valve 10 is opened, and the desorbed gas is released into the atmosphere through the silencer, and the adsorption tank 3
Temporarily reduce the pressure inside to near atmospheric pressure. Next, the valve 10 is closed, and the remaining desorbed gas is released through the three-way valve 8 through the three-way valve 9 by utilizing the compressor 1 as a vacuum pump, thereby bringing the inside of the adsorption tank 3 below atmospheric pressure.

再生時間は吸着時間とほぼ同一でよい。再生操作が完了
すると、再び吸着操作を行い、連続的に、二つの操作を
繰り返す。
The regeneration time may be approximately the same as the adsorption time. When the regeneration operation is completed, the adsorption operation is performed again, and the two operations are continuously repeated.

貯槽6は間歇的に得られる窒素ガスの品質を均一化する
目的も兼ね備えてあり、その効果を発運しうる内容積が
最低限必要である。
The storage tank 6 also has the purpose of uniformizing the quality of the nitrogen gas obtained intermittently, and a minimum internal volume is required to achieve this effect.

又、貯槽内及び貯槽出口部の圧力センサー7゜残存酸素
濃度計12は1図示していないが、いづれも制御系統に
連結されており、装置20の運転、停止、弁類の開閉、
その他の操作と共に全て自動的にコントロールされる。
Further, pressure sensors 7 and residual oxygen concentration meters 12 inside the storage tank and at the exit of the storage tank are not shown in the figure, but they are all connected to the control system, and are used to operate and stop the device 20, open and close valves, etc.
All other operations are automatically controlled.

上記の装置20を用い、適切な条件を選ぶと得られる窒
素ガスは純度99%以上、大気圧露点−60°C以下の
品質を充分実証することができた。
By using the above-mentioned apparatus 20 and selecting appropriate conditions, it was possible to sufficiently demonstrate the quality of the nitrogen gas obtained with a purity of 99% or more and an atmospheric pressure dew point of -60°C or less.

貯槽6中の窒素ガス圧力&7.2 kg/ cAG〜6
kg/cJG程度で通信ケーブルに直接供給する事は出
来ない。 従って、窒素ガスを調節弁16で当該ケーブ
ルの設定された供給圧力まで減圧し、フィルタし13に
おいて除塵後ヘッダーで分配のうえ。
Nitrogen gas pressure in storage tank 6 & 7.2 kg/cAG~6
kg/cJG cannot be directly supplied to communication cables. Therefore, the nitrogen gas is reduced in pressure by the control valve 16 to the set supply pressure of the cable, filtered, and then distributed by the header after dust removal in the filter 13.

弁17を開(ことによりそれぞれの通信ケーブル15に
供給する。その過程で流量計14.或いは通信ケーブル
15を保護するための安全弁18等を必要により設置す
る。
The valve 17 is opened (thereby supplying the respective communication cables 15). During this process, a safety valve 18 or the like is installed to protect the flowmeter 14 or the communication cable 15, if necessary.

通信ケーブル15が新しく、リーク量が小さい場合、P
SA方式窒素ガス分離装置20の供給能力は過大となる
ため、圧力センサー7で貯槽6の圧力が上限値に到達し
た事を検出すれば、下限値に低下するまでの間、装!2
0の運転を自動的に停止する。
If the communication cable 15 is new and the leakage amount is small, P
The supply capacity of the SA type nitrogen gas separation device 20 is excessive, so if the pressure sensor 7 detects that the pressure in the storage tank 6 has reached the upper limit, the system will continue to operate until the pressure drops to the lower limit. 2
0 operation will be automatically stopped.

又1通信ケーブル15の被覆部に異常が発生しガスのリ
ーク量が急増すると、ケーブルのガス注入口近くに設置
されている流量センサー14.或イハケーブルのガス区
間途中に設けた圧力センサー19で変化を検出し、警報
等を作動させることで早期の覚知が可能となる。
Also, if an abnormality occurs in the coating of the communication cable 15 and the amount of gas leaks rapidly, the flow rate sensor 14 installed near the gas inlet of the cable. Early detection is possible by detecting changes with a pressure sensor 19 installed in the middle of the gas section of the IHA cable and activating an alarm.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一例を示すフローシートである。図中、
1は空気圧縮機、2.13はフィルター、3は吸着槽、
槽内の4は吸湿剤、5は分子篩炭、6は窒素ガス貯槽、
7.19は圧力センサー。 12は酸素濃度計、14は流量センサー、15は通信ケ
ーブル、8.9は自動三方弁、10.11は自動二方弁
、16は調節弁、17は手動弁、18は安全弁、20は
PSA方式窒素ガス分離装置である。
The drawing is a flow sheet showing an example of the present invention. In the figure,
1 is an air compressor, 2.13 is a filter, 3 is an adsorption tank,
4 in the tank is a moisture absorbent, 5 is a molecular sieve charcoal, 6 is a nitrogen gas storage tank,
7.19 is a pressure sensor. 12 is an oxygen concentration meter, 14 is a flow rate sensor, 15 is a communication cable, 8.9 is an automatic three-way valve, 10.11 is an automatic two-way valve, 16 is a control valve, 17 is a manual valve, 18 is a safety valve, 20 is a PSA This is a nitrogen gas separation device.

Claims (3)

【特許請求の範囲】[Claims] (1)圧力変動吸着方式気体分離装置で空気中の窒素を
分離し、得られた窒素ガスを通信ケーブル内へ連続的に
供給することを特徴とする通信ケーブル保守方法。
(1) A communication cable maintenance method characterized by separating nitrogen from the air using a pressure fluctuation adsorption type gas separation device and continuously supplying the obtained nitrogen gas into the communication cable.
(2)圧力変動吸着方式気体分離装置を構成する吸着剤
の一部又は全部が分子篩炭である特許請求範囲第1項記
載の通信ケーブル保守方法。
(2) The communication cable maintenance method according to claim 1, wherein part or all of the adsorbent constituting the pressure fluctuation adsorption type gas separation device is molecular sieve charcoal.
(3)通信ケーブル内に供給する窒素ガスの純度が95
%(容量)以上、窒素ガス中に残存する水分量が大気圧
露点で−40℃以下である特許請求範囲第1項及び第2
項記載の通信ケーブル保守方法。
(3) The purity of nitrogen gas supplied into the communication cable is 95
% (volume) or more, and the amount of moisture remaining in the nitrogen gas is -40°C or less at atmospheric pressure dew point, Claims 1 and 2
Communication cable maintenance method described in section.
JP62087743A 1987-04-09 1987-04-09 Method of keeping communication cable Pending JPS63253814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62087743A JPS63253814A (en) 1987-04-09 1987-04-09 Method of keeping communication cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62087743A JPS63253814A (en) 1987-04-09 1987-04-09 Method of keeping communication cable

Publications (1)

Publication Number Publication Date
JPS63253814A true JPS63253814A (en) 1988-10-20

Family

ID=13923413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62087743A Pending JPS63253814A (en) 1987-04-09 1987-04-09 Method of keeping communication cable

Country Status (1)

Country Link
JP (1) JPS63253814A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995000827A1 (en) * 1993-06-19 1995-01-05 W. Von Der Heyde Gmbh Process and device for testing the tightness of hollow bodies

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995000827A1 (en) * 1993-06-19 1995-01-05 W. Von Der Heyde Gmbh Process and device for testing the tightness of hollow bodies

Similar Documents

Publication Publication Date Title
US5409526A (en) Apparatus for supplying high purity fluid
US9109418B1 (en) Method and apparatus for improving the integrity of a pipeline
EP1091182B1 (en) Gas reclaiming equipment
US20130019749A1 (en) Method for Recovering High-Value Components from Waste Gas Streams
EP0458350B1 (en) Improved control of pressure swing adsorption operations
CA2055851A1 (en) Continuous method for removing oil vapor from feed gases containing water vapor
US20080307798A1 (en) Cryogenic liquid tank and method
US20120210872A1 (en) Removal of krypton and xenon impurities from argon by mof adsorbent
CN113365717A (en) Method and installation for purifying a high-flow gas stream
CN113398713A (en) On-line purification system for sulfur hexafluoride gas of on-transport equipment
US4475930A (en) Pressure swing adsorption system using product gas as replacement for purge gas
JPS63253814A (en) Method of keeping communication cable
KR102268136B1 (en) control mathod and control device in oxygen generator
US4492592A (en) Combined desiccation of substantially supercritical CO2
US6932945B2 (en) Adsorbent based gas delivery system with integrated purifier
JPS63254801A (en) Maintaining method for hollow high frequency power transmission line
JP3342844B2 (en) Operation control device for oxygen concentrator and operation control method for oxygen concentrator
US20080271466A1 (en) Method and System for Purifying Liquified Gases
JP2003194297A (en) Hydrogen station
JPH05155603A (en) Method for concentrating gaseous chlorine and device therefor
JP7239416B2 (en) Gas separator and maintenance service system
JPH028198B2 (en)
US11583799B2 (en) Process for conditioning a container comprising a granular material
CA3088987C (en) Adjustable inert gas generation assembly for water-based fire protection systems
CN115382389A (en) Tail gas treatment method and system