JPS63253661A - Manufacture of semiconductor memory device - Google Patents

Manufacture of semiconductor memory device

Info

Publication number
JPS63253661A
JPS63253661A JP62086780A JP8678087A JPS63253661A JP S63253661 A JPS63253661 A JP S63253661A JP 62086780 A JP62086780 A JP 62086780A JP 8678087 A JP8678087 A JP 8678087A JP S63253661 A JPS63253661 A JP S63253661A
Authority
JP
Japan
Prior art keywords
contact
cell plate
cvdsio2
memory device
semiconductor memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62086780A
Other languages
Japanese (ja)
Inventor
Hideki Ito
英樹 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP62086780A priority Critical patent/JPS63253661A/en
Publication of JPS63253661A publication Critical patent/JPS63253661A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To improve the coverage of a wiring material at the time when the wiring material is applied through a post-process by flattening the intermediate insulating film of a region, in which there is a cell plate, and a contact peripheral section through another process. CONSTITUTION:CVDSiO2 21 is grown onto a cell plate 13 consisting of polycrystalline silicon, etc. The cell plate is patterned, and CVDSiO2 21 and the cell plate 13 are etched. The rounding treatment of an etched corner section is executed through a flow, thus shaping a rounding section 22. CVDSiO2 23 is grown, and CVDSiO2 23 and CVDSiO2 10 are etched through the photolithography of a contact, thus forming a contact hole 24. A taper 25 is shaped through a contact flow. An Al alloy 26 is applied through a sputtering method, and patterned.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、スタックト形キャパシタを持つ半導体記憶装
置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a semiconductor memory device having a stacked capacitor.

(従来の技術) 従来、このような分野の技術としては、例えば、特公昭
60−2784号、特開昭59−175153号等が挙
げられる。
(Prior Art) Conventional techniques in this field include, for example, Japanese Patent Publication No. 60-2784 and Japanese Patent Application Laid-Open No. 59-175153.

第2図は従来の半導体記憶装置の製造工程断面図である
FIG. 2 is a cross-sectional view of the manufacturing process of a conventional semiconductor memory device.

以下、この図を用いて順を追って説明する。The following is a step-by-step explanation using this figure.

まず、第2図(a)はトランジスタキャパシタ等の素子
の形成が終了した状態を示す断面図であり、図中、1は
シリコン基板、2はそのシリコン基板上に選択的に形成
される素子分離用酸化膜、3はMOS )ランジスタの
ゲート酸化膜、4は多結晶等のゲート電極、5はW−シ
リサイド等のゲート電極配線材料、6はPSG (ph
ospho−silicate glass)サイドウ
オール、7は?IOS )ランジスタのソース拡散層、
8はそのドレイン拡散層、9はセルコンタクト、10は
ドープされないCVD5i(h等の中間絶縁層、11は
多結晶シリコン等のキャパシタ電極、12は窒化膜等の
キャパシタ電極、13は多結晶シリコン等のセルプレー
トである。次に、その上に、第2図(b)に示すように
、中間絶縁膜として常圧CVD法によるPSGもしくは
BPSG (リン及びボロンをドープしたSiO□)1
4を成長させる。次に、第2図(C)に示すように、P
SG、 BPSG(以下、CVD5iO□と総称する)
ともに900℃以上で粘性が低下する特性があるため、
フロー(平滑化のための熱処理)を行うことにより、凹
凸形状上に成長したCVD5iO□14は裏面張力によ
り、滑らかな形状14′となる。なお、pscにおいて
は18W%(P2O3)以上で、BPSGにおいては9
W%([+203)、13W%(hos)以上で図に示
したように完全に平らな表面を得ることができる。この
後、第2図(d)に示すように、ホトリソ、エツチング
を経てコンタクト15を形成する。次いで、第2図(e
)に示すように、コンタクトフローを行い、コンタクト
の上部の角を滑らかな形状15′にする。次いで、第2
図(f)に示されるように、コンタクトホールに配線材
料であるA1合金16をスパッタ法により被着する。な
お、第2図(e)工程でのコンタクトフローは、このへ
1合金16を被着する際にカバレンジ(T 2 / 丁
+ )を向上させる為に必要である。
First, FIG. 2(a) is a cross-sectional view showing a state in which the formation of elements such as transistor capacitors has been completed. 3 is the gate oxide film of the MOS) transistor, 4 is the gate electrode such as polycrystal, 5 is the gate electrode wiring material such as W-silicide, 6 is PSG (ph
Ospho-silicate glass) side wall, 7? IOS) transistor source diffusion layer,
8 is its drain diffusion layer, 9 is a cell contact, 10 is an intermediate insulating layer such as undoped CVD5i (h), 11 is a capacitor electrode such as polycrystalline silicon, 12 is a capacitor electrode such as a nitride film, 13 is polycrystalline silicon, etc. Next, as shown in Fig. 2(b), PSG or BPSG (SiO□ doped with phosphorus and boron) 1 is deposited on top of it by atmospheric pressure CVD as an intermediate insulating film.
Grow 4. Next, as shown in FIG. 2(C), P
SG, BPSG (hereinafter collectively referred to as CVD5iO□)
Both have the characteristic that their viscosity decreases at temperatures above 900°C.
By performing flow (heat treatment for smoothing), the CVD5iO□ 14 grown on the uneven shape becomes a smooth shape 14' due to back surface tension. In addition, in psc, it is 18W% (P2O3) or more, and in BPSG, it is 9
At W% ([+203), 13 W% (hos) or higher, a completely flat surface can be obtained as shown in the figure. Thereafter, as shown in FIG. 2(d), contacts 15 are formed through photolithography and etching. Next, Figure 2 (e
), the contact flow is performed to form the upper corner of the contact into a smooth shape 15'. Then the second
As shown in Figure (f), A1 alloy 16, which is a wiring material, is deposited in the contact hole by sputtering. Note that the contact flow in the step of FIG. 2(e) is necessary in order to improve the coverage range (T 2 /T+) when applying the 1st alloy 16 to this.

(発明が解決しようとする問題点) しかしながら、上記した中間絶縁膜成長からコンタクト
形成までの工程は、256KDRAM等に用いられる2
N多結晶シリコンプロセスでは十分なものであるが、3
N多結晶シリコンプロセスでは最上層の多結晶シリコン
上にも十分な膜厚を保らcvnSiO□の平坦化を行な
わなければならないので、コンタクトのアスペクト比が
大きくなり、それにより配線材であるアルミニューム(
Ajりのカバレンジが悪くなり(0〜30%)、抵抗の
増加、断線等が起きやすくなる。fた、カバレンジを良
くするため、コンタクトフローを過度に行いコンタクト
のテーバ角を大きくすると最上層の多結晶シリコン上の
中間絶縁膜K (CVD5iO□)が薄くなるため、A
Iとの短路などが発生しやすくなると共に、回路にCM
O5構造を用いた場合、Pチャネル側のコンタクトでは
CVD5iO□の中からリンがSi基板内に拡散してし
まい、コンタクト部の拡散層′の表面温度が低下し、抵
抗が増加しやすくなる。
(Problems to be Solved by the Invention) However, the process from the growth of the intermediate insulating film to the formation of contacts described above is difficult to achieve with the 256K DRAM, etc.
N polycrystalline silicon process is sufficient, but 3
In the N-polycrystalline silicon process, it is necessary to maintain a sufficient film thickness on the top layer of polycrystalline silicon and planarize the cvnSiO□, so the aspect ratio of the contact becomes large, which causes the aluminum wiring material to be flattened. (
The coverage range of Aj is poor (0 to 30%), and resistance increases and wire breakage are more likely to occur. Furthermore, in order to improve the coverage, if the contact flow is excessively applied and the Taber angle of the contact is increased, the intermediate insulating film K (CVD5iO□) on the top layer of polycrystalline silicon becomes thinner.
Short circuits with I are more likely to occur, and CM is added to the circuit.
When an O5 structure is used, phosphorus from CVD5iO□ diffuses into the Si substrate at the contact on the P channel side, which lowers the surface temperature of the diffusion layer' in the contact portion and tends to increase the resistance.

(問題点を解決するための手段) 本発明は、上記問題点を解決するために、スクノクト形
キャパシタを有する半導体記憶装置の製造方法において
、セルプレート多結晶シリコンのパクニングをCVD5
iOz成長後に行い、フローすることによりセルプレー
トが存在する部分のCVD5iO0を平坦化した後、再
びCVD5iOzを成長させ、コンタクトのパターニン
グを行い、コンタクトフローするようにしたものである
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides a method for manufacturing a semiconductor memory device having a Scnoct-type capacitor, in which the cell plate polycrystalline silicon is punctured by CVD.
After iOz growth, the CVD5iO0 in the area where the cell plate is present is planarized by flow, and then CVD5iOz is grown again and contacts are patterned to perform contact flow.

(作用) 本発明によれば、上記したように、セルプレトが存在す
る領域とコンタクト周辺部との中間絶縁膜の平坦化を別
工程で行うようにしたので、セルプレートが存在する領
域では中間絶縁膜の表面は略完全に平坦化され、コンタ
クト部分では滑らかに大きなテーパー角でコンタクトを
形成することができる。従って、後の工程で配線材を被
着する際に配線材のカバレンジの向上を図ることができ
る。
(Function) According to the present invention, as described above, the intermediate insulating film between the region where the cell plate exists and the area around the contact is planarized in a separate process. The surface of the film is almost completely flattened, and a contact can be formed smoothly at a large taper angle at the contact portion. Therefore, the coverage of the wiring material can be improved when the wiring material is applied in a later step.

(実施例) 以下、本発明の実施例について図面を参照しながら詳細
に説明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の実施例を示す半導体記憶装置の製造工
程断面図である。
FIG. 1 is a cross-sectional view of the manufacturing process of a semiconductor memory device showing an embodiment of the present invention.

まず、第1図(a)に示すように、多結晶シリコン等の
セルプレート13上ニCVD5iOz21を(hOst
1m度13w%以上、Bt03濃度9W%以上) 40
00〜6000人程度成長させる。なお、その他の点は
前記した第2図(a)及び(b)と同様であり、説明は
省略する。
First, as shown in FIG. 1(a), CVD5iOz21 (hOst
1m degree 13w% or more, Bt03 concentration 9w% or more) 40
00 to 6,000 people. The other points are the same as those shown in FIGS. 2(a) and 2(b), and the explanation will be omitted.

次に、第1図(b)に示すように、セルプレートのパタ
ーニングの為のホトリソを行い、CVD5iO□21及
びセルプレート(多結晶シリコン)13のエツチングを
行う。
Next, as shown in FIG. 1(b), photolithography is performed to pattern the cell plate, and the CVD5iO□ 21 and the cell plate (polycrystalline silicon) 13 are etched.

次に、第1図(c)に示すように、900℃〜1000
℃程度で約20分フローを行い、エツチングされたコー
ナ部の丸め処理を行い、丸み部22を形成する。
Next, as shown in FIG. 1(c),
Flow is carried out for about 20 minutes at a temperature of about 0.degree. C., and the etched corner portions are rounded to form rounded portions 22.

次に、第1図(d) ニ示すように、CVD5iOz2
3を2000〜4000人程度(BzOi全面pzos
c度5w〜15w%程度)成長させる。
Next, as shown in FIG. 1(d), CVD5iOz2
3 to about 2,000 to 4,000 people (BzOi full-scale pzos
5w to 15w%).

次に、第1図(e)に示すように、コンタクトのホトリ
ソを行イCVD5iOz23及びCVD5iOzlOの
工7チングを行いコンタクトホール24を形成する。
Next, as shown in FIG. 1(e), contact photolithography is performed and CVD5iOz23 and CVD5iOzlO are etched to form a contact hole 24.

次に、第1図(r)に示すように、コンタクトフローを
800〜950℃程度で10分〜20分程度行いテーバ
25をつける。
Next, as shown in FIG. 1(r), contact flow is performed at about 800 to 950° C. for about 10 to 20 minutes to attach a taber 25.

次に、第1図(g)に示すように、A/合金26をスバ
ンタ法により被着し、パターニングする。
Next, as shown in FIG. 1(g), A/alloy 26 is deposited by the Svanta method and patterned.

この時のカバレッジ(7!/TI)は推定で40〜70
%の1直が可能である。
The coverage at this time (7!/TI) is estimated to be 40-70
% of 1 shift is possible.

なお、本発明は上記実施例に限定されるものではなく、
本発明の趣旨に基づいて種々の変形が可能であり、これ
らを本発明の範囲から排除するものではない。
Note that the present invention is not limited to the above embodiments,
Various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.

(発明の効果) 以上、詳細に説明したように、本発明によれば、セルプ
レートが存在する領域とコンタクト周辺部との中間絶縁
膜の平坦化を別工程で行うようにしたので、セルプレー
トが存在する領域では中間絶縁膜の表面は完全に平坦化
され、コンタクト部分では滑らかに大きなテーバー角で
コンタクトを形成することができる。従って、後の工程
で配線材を被着する際に配線材のカバレッジの向上を図
ることができる。
(Effects of the Invention) As described above in detail, according to the present invention, the planarization of the intermediate insulating film between the region where the cell plate exists and the peripheral area of the contact is performed in a separate process. In the region where , the surface of the intermediate insulating film is completely flattened, and a contact can be formed smoothly at a large Taber angle at the contact portion. Therefore, it is possible to improve the coverage of the wiring material when the wiring material is applied in a later step.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す半導体記憶装置の製造工
程断面図、第2図は従来の半導体記憶装置の製造工程断
面図である。 l・・・シリコン基板、2・・・素子分画用酸化膜、3
・・・ゲート酸化膜、4・・・ゲート1掻、5・・・ゲ
ート電極配線材料、6−PSG(phospho−si
licate glass)サイドウオール、7・・・
ソ°−ス拡散層、8・・・ドレイン拡散層、9・・・セ
ルコンタクト、10・・・中間鞄縁層(CVD5iOz
) 、11・・・キャパシタ電極(多結晶シリコン)、
12・・・キャパシタ誘電体(窒化膜)、13・・・セ
ルプレート(多結晶シリコン) 、21.23・・・C
V[1Sin、、22・・・丸み部、24・・・コンタ
クトホール、25・・・テーバ、26・・・^1合金。 特許出願人 沖電気工業株式会社 代 理 人  弁理士 清  水   9第1 図 (
ぞのり 第2 図 (そのI) 第2図(その2)
FIG. 1 is a cross-sectional view of the manufacturing process of a semiconductor memory device showing an embodiment of the present invention, and FIG. 2 is a cross-sectional view of the manufacturing process of a conventional semiconductor memory device. l...Silicon substrate, 2...Oxide film for element fractionation, 3
...Gate oxide film, 4...Gate 1 scratch, 5...Gate electrode wiring material, 6-PSG (phospho-si
licate glass) side wall, 7...
Source diffusion layer, 8... Drain diffusion layer, 9... Cell contact, 10... Intermediate bag edge layer (CVD5iOz
), 11... Capacitor electrode (polycrystalline silicon),
12... Capacitor dielectric (nitride film), 13... Cell plate (polycrystalline silicon), 21.23... C
V[1Sin, 22...Rounded portion, 24...Contact hole, 25...Taber, 26...^1 alloy. Patent applicant Oki Electric Industry Co., Ltd. Representative Patent attorney Shimizu 9 Figure 1 (
Zonoori Figure 2 (Part I) Figure 2 (Part 2)

Claims (2)

【特許請求の範囲】[Claims] (1)スタックト形キャパシタを有する半導体記憶装置
の製造方法において、 (a)中間絶縁膜となる第1のシリコン酸化膜とセルプ
レートとなる堆積膜を同時にパターニングする工程と、 (b)熱処理を行い、セルプレートの存在する領域のみ
を平坦化する工程と、 (c)第2のシリコン酸化膜を成長させる工程と、(d
)コンタクトのパターニングを行い、そのコンタクトの
熱処理を行うことにより、テーパー角の大きなコンタク
トを形成する工程を順に施すことを特徴とする半導体記
憶装置の製造方法。
(1) A method for manufacturing a semiconductor memory device having a stacked capacitor, which includes (a) simultaneously patterning a first silicon oxide film that will become an intermediate insulating film and a deposited film that will become a cell plate, and (b) performing heat treatment. , a step of planarizing only the region where the cell plate exists; (c) a step of growing a second silicon oxide film; and (d) a step of growing a second silicon oxide film.
) A method for manufacturing a semiconductor memory device, characterized in that the steps of patterning a contact and heat-treating the contact to form a contact with a large taper angle are sequentially performed.
(2)前記工程(a)における堆積膜は多結晶シリコン
であることを特徴とする半導体記憶装置の製造方法。
(2) A method for manufacturing a semiconductor memory device, wherein the deposited film in step (a) is polycrystalline silicon.
JP62086780A 1987-04-10 1987-04-10 Manufacture of semiconductor memory device Pending JPS63253661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62086780A JPS63253661A (en) 1987-04-10 1987-04-10 Manufacture of semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62086780A JPS63253661A (en) 1987-04-10 1987-04-10 Manufacture of semiconductor memory device

Publications (1)

Publication Number Publication Date
JPS63253661A true JPS63253661A (en) 1988-10-20

Family

ID=13896268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62086780A Pending JPS63253661A (en) 1987-04-10 1987-04-10 Manufacture of semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS63253661A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290044A (en) * 1989-02-17 1990-11-29 Matsushita Electron Corp Manufacture of semiconductor device
US5025301A (en) * 1986-03-26 1991-06-18 Hitachi, Ltd. DRAM which uses MISFETS in the peripheral circuit
EP0449000A2 (en) * 1990-03-08 1991-10-02 Fujitsu Limited Layer structure having contact hole for fin-shaped capacitors in DRAMS and method of producing the same
US5362666A (en) * 1992-09-18 1994-11-08 Micron Technology, Inc. Method of producing a self-aligned contact penetrating cell plate
US6482689B2 (en) 2000-11-09 2002-11-19 Micron Technology, Inc. Stacked local interconnect structure and method of fabricating same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5025301A (en) * 1986-03-26 1991-06-18 Hitachi, Ltd. DRAM which uses MISFETS in the peripheral circuit
JPH02290044A (en) * 1989-02-17 1990-11-29 Matsushita Electron Corp Manufacture of semiconductor device
US6528369B1 (en) 1990-03-08 2003-03-04 Fujitsu Limited Layer structure having contact hole and method of producing same
US5705420A (en) * 1990-03-08 1998-01-06 Fujitsu Limited Method of producing a fin-shaped capacitor
US6144058A (en) * 1990-03-08 2000-11-07 Fujitsu Limited Layer structure having contact hole, method of producing the same, fin-shaped capacitor using the layer structure, method of producing the fin-shaped capacitor and dynamic random access memory having the fin-shaped capacitor
EP0449000A2 (en) * 1990-03-08 1991-10-02 Fujitsu Limited Layer structure having contact hole for fin-shaped capacitors in DRAMS and method of producing the same
US5362666A (en) * 1992-09-18 1994-11-08 Micron Technology, Inc. Method of producing a self-aligned contact penetrating cell plate
USRE36644E (en) * 1992-09-18 2000-04-04 Micron Technology, Inc. Tapered via, structures made therewith, and methods of producing same
US6482689B2 (en) 2000-11-09 2002-11-19 Micron Technology, Inc. Stacked local interconnect structure and method of fabricating same
US6498088B1 (en) 2000-11-09 2002-12-24 Micron Technology, Inc. Stacked local interconnect structure and method of fabricating same
US6544881B2 (en) 2000-11-09 2003-04-08 Micron Technology, Inc. Stacked local interconnect structure and method of fabricating same
US6555478B2 (en) 2000-11-09 2003-04-29 Micron Technology, Inc. Stacked local interconnect structure and method of fabricating same
US6831001B2 (en) 2000-11-09 2004-12-14 Micron Technology, Inc. Method of fabricating a stacked local interconnect structure
US6858525B2 (en) 2000-11-09 2005-02-22 Micron Technology, Inc. Stacked local interconnect structure and method of fabricating same
US7314822B2 (en) 2000-11-09 2008-01-01 Micron Technology, Inc. Method of fabricating stacked local interconnect structure

Similar Documents

Publication Publication Date Title
KR100187870B1 (en) Gate stack structure of a field effect transistor
JP2658824B2 (en) Method for manufacturing semiconductor device
JPH0661342A (en) Manufacture of trench element isolation film
JPH07307339A (en) Even process
JP3689756B2 (en) Method for forming gate electrode of semiconductor element
JPH08204145A (en) Method of manufacturing semiconductor device
JPH05218347A (en) Semiconductor memory cell and its manufacture
JPS63253661A (en) Manufacture of semiconductor memory device
US6753559B2 (en) Transistor having improved gate structure
JP3565993B2 (en) Method for manufacturing semiconductor device
KR100323638B1 (en) Semiconductor device with wiring layer of low resistance and method for manufacturing the same
US5714038A (en) Method for forming contact hole of semiconductor device
JPH0562967A (en) Manufacture of semiconductor device
JPH1174507A (en) Manufacture of semiconductor device
JPH0454390B2 (en)
JP3348264B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
KR100228272B1 (en) Process for forming contact of semiconductor device and structure thereof
JPH02310927A (en) Formation of interlayer insulating film in multilayer interconnection of semiconductor device
KR19980058438A (en) Silicide Formation Method of Semiconductor Device
JP2894764B2 (en) Method for manufacturing semiconductor device
JPS61100936A (en) Manufacture of semicondcutor device
JPH0685195A (en) Manufacture of semiconductor storage device
JPS61160976A (en) Manufacture of semiconductor device
JPH06188263A (en) Manufacture of self-alignment type thin film transistor
JPH08306860A (en) Manufacture of semiconductor element having capacitor