JPS63252530A - Ammonia reduction and denitration device and denitration method - Google Patents

Ammonia reduction and denitration device and denitration method

Info

Publication number
JPS63252530A
JPS63252530A JP62087625A JP8762587A JPS63252530A JP S63252530 A JPS63252530 A JP S63252530A JP 62087625 A JP62087625 A JP 62087625A JP 8762587 A JP8762587 A JP 8762587A JP S63252530 A JPS63252530 A JP S63252530A
Authority
JP
Japan
Prior art keywords
reactor
bypass
flow path
exhaust gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62087625A
Other languages
Japanese (ja)
Inventor
Yoshiro Inagaki
稲垣 芳郎
Toshimichi Wada
敏通 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP62087625A priority Critical patent/JPS63252530A/en
Publication of JPS63252530A publication Critical patent/JPS63252530A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2892Exhaust flow directors or the like, e.g. upstream of catalytic device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/011Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
    • F01N13/017Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/206Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2839Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To eliminate the necessity of providing a damper and its controller and enhance denitration performance by providing a bypass flow channel and a primary reactor catalyst layer in the gas flow direction in a manner to equal ize the exhaust gas pressure drops and providing a secondary reactor post- stream. CONSTITUTION:A partition plate 2 is installed along the flowing direction of untreated gas on the inlet side of casing 7 of a denitration reactor, and an exhaust gas flow channel 2A with a primary reactor 4 and a bypass flow channel 2B are demarcated by said partition plate 2. A NH3 injecting device 1 is provided on the pre-stream side of the primary reactor 4 inside the partition plate 2, and a dispersion plate 5 for bypass gas is provided on the outlet side of the bypass flow channel 2B, while a secondary reactor 8 is installed on the post-stream side of the dispersion plate. A denitration treatment can be carried out at low cost and high performance by regulating the bypassing quantity for the purpose of eliminating the necessity of a damper by means of a resistance element 9 to equalize the exhaust gas pressure drops of the bypass flow channel 2B and the primary reactor 4.

Description

【発明の詳細な説明】 を産業上の利用分野〕 本発明はアンモニア還元脱硝装置および脱硝方法に係り
、特にボイラ等の燃焼装置から排出される燃焼排ガス中
の窒素酸化物(NOx)を除去する装置に関する。
[Detailed Description of the Invention] Industrial Application Field] The present invention relates to an ammonia reduction and denitrification device and a denitrification method, and in particular to a method for removing nitrogen oxides (NOx) from combustion exhaust gas discharged from a combustion device such as a boiler. Regarding equipment.

〔従来の技術〕[Conventional technology]

近年、NOX排出濃度の規制強化に伴い、従来の燃焼方
法の改善に加えて、アンモニア(以下、NH3という)
を還元剤として触媒の存在下で脱硝反応を行なう乾式接
触還元方式の脱硝装置を設置するプラントが増加してい
る。この方式において、脱硝装置からの排出NH3濃度
は、後流機器への影響を考慮してできるだけ低濃度にな
るように注入モル比(N Ox / N H3の比)を
制限した運用になっている。しかし、このような運用は
、反面触媒の有効活用を防げるため、本発明者らは、以
前にリークNH3を制限する運用においても、触媒を有
効に利用し、脱硝性能の向上を図り、触媒量を低減する
方法を提案した(特願昭61−26950号)。この方
法は、脱硝反応器を処理ガスの流れ方向に沿って1次と
2次に分割して設け、前流側の1次脱硝反応器に対して
バイパス流路を設け、1次脱硝反応器を高モル比、低S
V(低ガス舒)条件下で運転することにより、1次脱硝
反応器内の触媒の活性を高め、1次、2次反応器を合わ
せた全体の脱硝性能を高めようとするものである。
In recent years, with the tightening of regulations on NOx emission concentrations, in addition to improvements in conventional combustion methods, ammonia (hereinafter referred to as NH3)
An increasing number of plants are installing denitrification equipment using a dry catalytic reduction method, which performs the denitrification reaction in the presence of a catalyst using denitrification as a reducing agent. In this method, the injection molar ratio (ratio of NOx / NH3) is limited so that the concentration of NH3 discharged from the denitrification equipment is as low as possible in consideration of the impact on downstream equipment. . However, on the other hand, such an operation prevents the effective use of the catalyst, so the inventors of the present invention used the catalyst effectively to improve the denitrification performance and to reduce the amount of catalyst, even in the previous operation to limit leaked NH3. proposed a method to reduce this (Japanese Patent Application No. 61-26950). In this method, the denitrification reactor is divided into primary and secondary denitrification reactors along the flow direction of the process gas, and a bypass flow path is provided for the primary denitrification reactor on the upstream side. High molar ratio, low S
By operating under V (low gas pressure) conditions, the activity of the catalyst in the primary denitrification reactor is increased, and the overall denitrification performance of the primary and secondary reactors is increased.

以下、第6図を用いて従来の反応器構造を説明する。こ
の装置は、ケーシング7と、該ケーシング7を仕切板2
によって分割して形成した複数の排ガス流路と、該複数
の排ガス流路列のうち隔列ごとに設けられたアンモニア
注入ノズルIAおよび1次脱硝反応器4と、前記隔列以
外の排ガス流路に設けられたダジパ9と、前記1次脱硝
反応器の後流に設けられた混合室6および2次脱硝反応
器8とから構成される。なお、1はアンモニア流入装置
のパイプである。
Hereinafter, the conventional reactor structure will be explained using FIG. 6. This device includes a casing 7 and a partition plate 2
a plurality of exhaust gas passages divided and formed by a plurality of exhaust gas passages; ammonia injection nozzles IA and primary denitrification reactor 4 provided in every alternate row among the plurality of exhaust gas passage rows; and exhaust gas passages other than the said divided rows. The denitrification reactor 9 includes a mixing chamber 6 and a secondary denitrification reactor 8 provided downstream of the primary denitrification reactor. Note that 1 is a pipe of an ammonia inflow device.

このように構成された脱硝装置において、排ガスがケー
シング7内に導入されると、1次脱硝反応器4を通過す
る処理ガスとバイパス煙道3を通過する未処理ガスとに
分かれる。未処理ガスのバイパス量は、ダンパ9によっ
て最適値になるように調整される。1次脱硝反応器4側
に導入された排ガスはNH3と混合され、1次脱硝反応
器4において脱硝反応が行なわれる。1次脱硝反応器4
を通過した排ガス中に含まれている未反応のN H3と
バイパス煙道3を通過した未反応の排ガスとが前記混合
室6で混合され、次に2次脱硝反応器8に導入されて脱
硝反応が行なわれガス中のNOxが除去されて、ケーシ
ング7の出口へと導かれる。
In the denitrification apparatus configured in this manner, when exhaust gas is introduced into the casing 7, it is separated into treated gas that passes through the primary denitrification reactor 4 and untreated gas that passes through the bypass flue 3. The bypass amount of untreated gas is adjusted by damper 9 to an optimum value. The exhaust gas introduced into the primary denitrification reactor 4 is mixed with NH3, and a denitrification reaction is performed in the primary denitrification reactor 4. Primary denitrification reactor 4
The unreacted NH3 contained in the exhaust gas that has passed through the bypass flue 3 and the unreacted exhaust gas that has passed through the bypass flue 3 are mixed in the mixing chamber 6, and then introduced into the secondary denitrification reactor 8 for denitrification. A reaction takes place, NOx in the gas is removed, and the gas is guided to the outlet of the casing 7.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、ダンパ9の開閉度を変えることにより
、バイパス量を制御し、最適バイパス量を調整できるよ
うになっているものの、ダンパの制御に用いるガス量の
検出器、ダンパおよびその開閉装置、制御機器、動力源
等の設備が必要で、高価となるばかりでなく、制御その
ものも複雑になる。
Although the above conventional technology can control the amount of bypass and adjust the optimum amount of bypass by changing the opening/closing degree of the damper 9, it is possible to control the amount of bypass and adjust the optimum amount of bypass by changing the degree of opening/closing of the damper 9. , control equipment, power sources, and other equipment are required, which not only increases the cost but also makes the control itself complicated.

また、従来技術の反応器において、1次反応器と2次反
応器の中間に設けられている混合室での脱硝処理ガスと
未処理ガスとの混合効果も充分でなく、部分的に高濃度
のり−クNH3が2次反応器より排出され、脱硝性能が
低下するという問題点があった。
In addition, in the conventional reactor, the mixing effect of the denitrified gas and the untreated gas in the mixing chamber provided between the primary reactor and the secondary reactor is not sufficient, resulting in high concentrations in some parts. There was a problem in that the glue NH3 was discharged from the secondary reactor and the denitrification performance deteriorated.

本発明の目的は、1次脱硝反応器のバイパス流路に設け
られているダンパを省略し、これらに関連する制御機器
を不要にすることができるアンモニア還元脱硝装置およ
び脱硝方法を提供することにある。
An object of the present invention is to provide an ammonia reduction and denitrification device and a denitrification method that can omit the damper provided in the bypass flow path of the primary denitrification reactor and eliminate the need for related control equipment. be.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の脱硝装置は、仕切板によって分割された複数の
排ガス流路と、該複数の排ガス流路のうちの所定流路に
設けられたアンモニア注入ノズルおよび1次脱硝反応器
と、前記所定の流路以外のバイパス流路に必要に応じて
設けられた抵抗体およびその出口に配設されたガス分散
手段と、前記1次脱硝反応器の後流に設けられた2次脱
硝反応器とを有することを特徴とする。
The denitrification device of the present invention includes a plurality of exhaust gas flow paths divided by a partition plate, an ammonia injection nozzle and a primary denitrification reactor provided in a predetermined flow path among the plurality of exhaust gas flow paths, and a A resistor provided as necessary in a bypass flow path other than the flow path, a gas dispersion means provided at the outlet thereof, and a secondary denitrification reactor provided downstream of the primary denitrification reactor. It is characterized by having.

具体的には、本発明装置は、脱硝反応器ケーシング内の
入口側に未処理ガスの流れ方向に沿って仕切部材を設け
、その仕切部材によって区画形成された少なくとも1つ
のガス流通空間に触媒を配置して1次反応器を構成し、
少なくとも他の1つのガス流通空間部をバイパス流路と
し、前記仕切部材の内側で前記1次反応器の前流側にア
ンモニア注入手段を設け、前記バイパス流路出口側にバ
イパスガスの分散板を設け、その分散板の後流側に2次
脱硝反応器を配置したものである。
Specifically, the apparatus of the present invention includes a partition member provided along the flow direction of the untreated gas on the inlet side of the denitrification reactor casing, and a catalyst is placed in at least one gas circulation space defined by the partition member. arranged to constitute a primary reactor,
At least one other gas circulation space is a bypass flow path, an ammonia injection means is provided on the upstream side of the primary reactor inside the partition member, and a bypass gas distribution plate is provided on the outlet side of the bypass flow path. A secondary denitrification reactor is placed on the downstream side of the dispersion plate.

また本発明の脱硝方法は、上記バイパス流路内をバイパ
スガスが通過するときの圧力損失と、1次脱硝反応器内
をあらかじめ設定した速度で排ガスが通過するときに生
じる圧力損失とが等しくなるように、バイパス流路の圧
力損失を設定することを特徴とする。さらに具体的には
、前記バイパス流路に所定量の排ガスをバイパスさせた
ときの1次脱硝反応器のガス速度が2次反応器のガス速
度と同一になるように各反応器の圧力損失を調整し、次
いで上記ガス速度でガスが前記1次脱硝反応器を通過す
るときの圧力損失がバイパス流路の圧力損失と等しくな
るようにバイパス流路の圧力損失を設定することを特徴
とする。
Further, in the denitrification method of the present invention, the pressure loss when the bypass gas passes through the bypass flow path is equal to the pressure loss that occurs when the exhaust gas passes through the primary denitrification reactor at a preset speed. The feature is that the pressure loss of the bypass flow path is set as follows. More specifically, the pressure loss of each reactor is adjusted so that the gas velocity of the primary denitrification reactor is the same as the gas velocity of the secondary reactor when a predetermined amount of exhaust gas is bypassed through the bypass flow path. and then setting the pressure loss in the bypass flow path so that the pressure loss when the gas passes through the primary denitrification reactor at the gas velocity is equal to the pressure loss in the bypass flow path.

〔作用〕[Effect]

本発明は、従来ダンパの開閉によって設定されていたバ
イパス量を、バイパス流路を通過する排ガスの圧力損失
と1次反応器触媒層の圧力損失が等しくなるように抵抗
体を設けて設定したので、従来のダンパが不必要になり
、またバイパスガスは、バイパス流路後流側に設けられ
たガス分散板によって分散され、1次反応器の脱硝処理
ガスと充分に混合するので、脱硝装置の性能を高めるこ
とができる。
In the present invention, the bypass amount, which was conventionally set by opening and closing a damper, is set by providing a resistor so that the pressure loss of the exhaust gas passing through the bypass flow path is equal to the pressure loss of the primary reactor catalyst layer. , the conventional damper is no longer necessary, and the bypass gas is dispersed by the gas dispersion plate installed on the downstream side of the bypass flow path and is sufficiently mixed with the denitrification processing gas of the primary reactor, so that the denitrification equipment is Performance can be improved.

〔実施例〕〔Example〕

第1図は、本発明の一実施例を示す説明図である。この
装置は、仕切板2によって分割された複数の排ガス流路
と、該複数の排ガス流路のうちの所定流路2Aに設けら
れたアンモニア注入ノズルIAおよび1次脱硝反応器4
と、前記所定流路以外の排ガス流路2B(バイパス流路
またはバイパス煙道とも称する)に設けられた抵抗体9
およびその出口に配設されたガス分散板5と、前記1次
脱硝反応器4の後流に設けられた混合室6および2次脱
硝反応器8とから構成される。第6図の従来技術と異な
る点は、バイパス流路2B内のダンパ9を省略し、その
代わりに抵抗体9を設けたこと、また従来よりもバイパ
ス流路の断面積を縮小したこと、およびバイパス流路後
流部にV形のガス分散板5を設けたことである。
FIG. 1 is an explanatory diagram showing one embodiment of the present invention. This device includes a plurality of exhaust gas flow paths divided by a partition plate 2, an ammonia injection nozzle IA provided in a predetermined flow path 2A among the plurality of exhaust gas flow paths, and a primary denitrification reactor 4.
and a resistor 9 provided in the exhaust gas flow path 2B (also referred to as a bypass flow path or a bypass flue) other than the predetermined flow path.
and a gas dispersion plate 5 disposed at the outlet thereof, a mixing chamber 6 and a secondary denitrification reactor 8 provided downstream of the primary denitrification reactor 4. The difference from the prior art shown in FIG. 6 is that the damper 9 in the bypass flow path 2B is omitted and a resistor 9 is provided in its place, and that the cross-sectional area of the bypass flow path is reduced compared to the conventional technology. This is because a V-shaped gas distribution plate 5 is provided at the downstream portion of the bypass flow path.

ダンパの代わりに設けた抵抗体の圧力損失は以下のよう
に設定される。
The pressure loss of the resistor provided in place of the damper is set as follows.

(1)脱硝装置(1次および2次反応器4.8)を最も
長く使用する負荷条件における最適バイパス量を決定す
る。
(1) Determine the optimum amount of bypass under the load conditions under which the denitrification equipment (primary and secondary reactors 4.8) will be used for the longest time.

(2)上記のバイパス量をバイパスさせたとき1次反応
器4の触媒層を通過するガス速度が、2次反応器8の触
媒層を通過するガス速度と同一になるように1次反応器
4の触媒層の断面積または長さを選定する。
(2) When bypassing the above-mentioned amount of bypass, the primary reactor is set so that the gas velocity passing through the catalyst layer of the primary reactor 4 is the same as the gas velocity passing through the catalyst layer of the secondary reactor 8. Select the cross-sectional area or length of the catalyst layer in step 4.

(3)1次反応器4の触媒層内を上記速度でガスが通過
するときの圧力損失がバイパス煙道の圧力損失と等しく
なるようにバイパス煙道2Bの圧力損失を設定する。
(3) The pressure loss in the bypass flue 2B is set so that the pressure loss when gas passes through the catalyst layer of the primary reactor 4 at the above speed is equal to the pressure loss in the bypass flue.

(4)バイパス出口ガス流速を適度(ダストを含むガス
の場合15m/S程度)に設定し、この速度で(3)で
設定した圧力損失をもつ抵抗体を選定する。このとき抵
抗体の長さは触媒層長さに合わせたほうが望ましい。
(4) Set the bypass outlet gas flow velocity to a moderate value (approximately 15 m/s for gas containing dust), and select a resistor having the pressure loss set in (3) at this velocity. At this time, it is desirable that the length of the resistor be matched to the length of the catalyst layer.

使用する抵抗体としては、板状構造体、ハニカム構造体
等の形状を有し、摩耗強度が強い材料が好適である。
As the resistor to be used, a material having a shape such as a plate-like structure or a honeycomb structure and having high abrasion strength is suitable.

ガス分散板5としては、バイパス煙道2B出口から高速
で噴出するバイパスガスを分散させる働きをもつもので
、バイパス煙道2Bに両接する触媒層へ均等に配分され
るよう、バイパス煙道2Bの出口部で、その中心線上に
設置される。形状としては、ガス後流側に向かって広が
り部を有する部材(例えば第1図に示すように断面7字
形状のもの)が好ましく、また摩耗強度の強い材料のも
のを選定することが望ましい。バイパス煙道2Bからの
未処理ガスと1次反応器の触媒を通過したガスの混合効
果は、両者の流速比、バイパス煙道の幅等によって影響
されるため、それぞれの脱硝反応器に応じて最も混合効
果の大きいガス分散板を選ぶことが望ましい。
The gas dispersion plate 5 has the function of dispersing the bypass gas ejected at high speed from the outlet of the bypass flue 2B. It is installed on its center line at the exit section. As for the shape, it is preferable to use a member having a widening portion toward the gas downstream side (for example, a 7-shaped cross section as shown in FIG. 1), and it is also desirable to select a material with high abrasion strength. The mixing effect of the untreated gas from the bypass flue 2B and the gas that has passed through the catalyst in the primary reactor is affected by the flow velocity ratio of the two, the width of the bypass flue, etc., so it depends on each denitrification reactor. It is desirable to select the gas distribution plate that has the greatest mixing effect.

また、図示してはいないが、2次反応器8に導入される
排ガスを整流する整流部材を混合室6に設けることも可
能である。これは、1次反応器4と2次反応器8との距
離が充分とれず、混合室6で混合した排ガスが自然整流
されない場合に好都合である。
Although not shown, it is also possible to provide a rectifying member in the mixing chamber 6 for rectifying the exhaust gas introduced into the secondary reactor 8. This is convenient when the distance between the primary reactor 4 and the secondary reactor 8 is insufficient and the exhaust gases mixed in the mixing chamber 6 are not naturally rectified.

前述のように1次反応器4と2次反応器8のガス流速は
同一になるように設定されるが、この速度は計画負荷時
に最も効率のよい流速になるように選定され、この負荷
時には1次、2次反応器ともに、脱硝反応が効率よく行
なわれることになる。
As mentioned above, the gas flow rates in the primary reactor 4 and the secondary reactor 8 are set to be the same, but this rate is selected to be the most efficient flow rate at the planned load. The denitrification reaction will be carried out efficiently in both the primary and secondary reactors.

一方、負荷が変化しガス量、温度等の排ガス条件が異な
ってきたとき、本発明の装置、すなわちバイパス量が一
定に固定されダンパを省略した装置で脱硝性能が維持で
きるかどうかについて述べる。
On the other hand, we will discuss whether the denitrification performance can be maintained with the device of the present invention, that is, with the bypass amount fixed constant and the damper omitted, when the load changes and the exhaust gas conditions such as gas amount and temperature change.

第3図は、負荷変化に対する1次反応器の最適バイパス
比の変化を示したものである。ここでいうバイパス比と
は、1次反応器4を通過する全ガス量に対する、バイパ
ス煙道3を通過するガス量の比を表わしている。この図
でわかるように、低負荷帯を除いて最適バイパス比はほ
ぼ一定となる。
FIG. 3 shows the change in the optimum bypass ratio of the primary reactor with respect to the load change. The bypass ratio here represents the ratio of the amount of gas passing through the bypass flue 3 to the total amount of gas passing through the primary reactor 4. As can be seen from this figure, the optimal bypass ratio is almost constant except in the low load range.

第4図は、負荷変化に対する2つのバイパス制御法を、
2次反応器の出口NOx濃度を用いて比較したものであ
る。最適バイパス比制御とは、第3図の最適バイパス比
になるようにバイパス量を制御する方法で、ダンパを用
いた従来技術に相当し、またバイパス比固定制御とは1
00%負荷で最適バイパス比を設定し、負荷が変化して
もこのバイパス比を一定に保つ制御法で、本発明方法に
相当する。図よりこの再制御法による2次反応器出口N
Ox値はほぼ一致している。低負荷帯においても、第3
図に示した両制御値のズレにもかかわらず、第4図の低
負荷帯でほぼ同等の性能が得られるのは、低負荷におい
てはガス量が低下しているため、バイパス比が変化して
もバイパス量の変化が小さいためである。したがって、
負荷が変化した場合でも、本発明に使用するバイパス比
固定制御によれば、最適バイパス比と同等の性能が得ら
れることがわかる。一方、同じく第4図において、負荷
が変化した場合でも出口NOx9度はほとんど一定で、
脱硝性能はほぼ一定であるとみなせるが、これは負荷が
下がったとき、排ガス温度の低下が触媒性能に与えるマ
イナス効果と排ガス量の低下により生じるプラス効果等
が相殺されているためで、一般の脱硝性能の挙動と同じ
である。
Figure 4 shows two bypass control methods for load changes.
The comparison was made using the NOx concentration at the outlet of the secondary reactor. Optimal bypass ratio control is a method of controlling the amount of bypass to achieve the optimal bypass ratio shown in Figure 3, and corresponds to the conventional technology using a damper.
This control method sets the optimum bypass ratio at 00% load and keeps this bypass ratio constant even when the load changes, and corresponds to the method of the present invention. From the figure, the secondary reactor outlet N by this recontrol method
The Ox values are almost the same. Even in the low load range, the third
Despite the difference between the two control values shown in the figure, the reason why almost the same performance is obtained in the low load range shown in Figure 4 is because the gas amount decreases at low loads, so the bypass ratio changes. This is because the change in bypass amount is small even if therefore,
It can be seen that even when the load changes, according to the fixed bypass ratio control used in the present invention, performance equivalent to the optimum bypass ratio can be obtained. On the other hand, also in Figure 4, even when the load changes, the outlet NOx9 degree is almost constant,
The denitrification performance can be considered to be almost constant, but this is because when the load decreases, the negative effect of the decrease in exhaust gas temperature on catalyst performance is offset by the positive effect of the decrease in exhaust gas volume, etc. The behavior is the same as that of denitrification performance.

次に、第5図(A)、(B)は、バイパス煙道2B出口
のガス分散板5の効果について説明したものである。1
次反応器4の触媒層内のガス流速は、排ガス中のダスト
濃度によって決定されるが、一般には4〜8 m / 
S程度の範囲である。一方、バイパスガス流速は前述し
たように約15m/Sである。この分子&Fi5がない
場合は、(B)に示すように高速でしかも狭い断面積の
ダクトから噴出されたバイパスガスは後流方向へ突出し
、触媒層からの処理ガスと混合するのに長い距離を要す
る。一方、分散板5を設けた場合(B)は、バイパスガ
スは、斜め下方へ噴出、拡散されるため短い距離でガス
の混合することができ、混合室6の容量も小さくて済む
Next, FIGS. 5A and 5B illustrate the effect of the gas distribution plate 5 at the outlet of the bypass flue 2B. 1
The gas flow rate within the catalyst layer of the next reactor 4 is determined by the dust concentration in the exhaust gas, but is generally 4 to 8 m/
It is in the range of about S. On the other hand, the bypass gas flow rate is about 15 m/s as described above. In the absence of this molecule &Fi5, as shown in (B), the bypass gas ejected from the duct with a high speed and narrow cross-sectional area protrudes in the downstream direction and takes a long distance to mix with the process gas from the catalyst layer. It takes. On the other hand, when the dispersion plate 5 is provided (B), the bypass gas is ejected diagonally downward and diffused, so that the gases can be mixed over a short distance, and the capacity of the mixing chamber 6 can also be small.

次に第2図は、本発明の他の実施例を示すものであるが
、バイパス煙道3の断面積を極端に縮小してガスの圧力
損失を高め、第1図で用いた抵抗体9を省略するように
したものである。この実施例によれば、バイパス煙道3
の幅は例えば数十能と狭くなり、バイパスガス流速は約
40〜50m/Sに及ぶため、ダストを含まないクリー
ンな排ガスに好ましく通用される。この実施例によれば
、抵抗体を省略できる分だけ反応器断面積が狭(なり、
また構造も単純、化することができる。
Next, FIG. 2 shows another embodiment of the present invention, in which the cross-sectional area of the bypass flue 3 is extremely reduced to increase the gas pressure loss, and the resistor 9 used in FIG. is omitted. According to this embodiment, the bypass flue 3
The width of the bypass gas is narrow, for example, several tens of meters, and the bypass gas flow velocity ranges from about 40 to 50 m/s, so it is preferably used for clean exhaust gas that does not contain dust. According to this embodiment, the cross-sectional area of the reactor is narrowed to the extent that the resistor can be omitted.
Also, the structure can be simplified and simplified.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来、1次反応器のバイパス煙道内に
設けられていたダンパを省略することができ、これに不
随するダンパ制御用ガス量検出器を初めとする機器を省
略することができる。
According to the present invention, the damper conventionally provided in the bypass flue of the primary reactor can be omitted, and the accompanying equipment including the gas amount detector for controlling the damper can be omitted. can.

また、簡単なガス分散板を設けることにより、排ガス自
体でガスを混合することができ、好適な混合効果が得ら
れるため、混合距離が短くなり、装置をコンパクトにで
きる。さらに、均一なNH3分散により装置全体の脱硝
性能も高めることができる。以上述べたように、本発明
を用いることにより低価格で高性能の脱硝装置を提供す
ることができる。
Further, by providing a simple gas distribution plate, the exhaust gas itself can mix the gases, and a suitable mixing effect can be obtained, so that the mixing distance can be shortened and the apparatus can be made more compact. Furthermore, the denitrification performance of the entire device can also be improved by uniform NH3 dispersion. As described above, by using the present invention, a high-performance denitrification device can be provided at a low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例を示す脱硝装置の断面図、第
2図は、本発明の他の実施例を示す脱硝装置の断面図、
第3図は、負荷変化に対する1次反応器の最適バイパス
比を説明する説明図、第4図は、負荷変化に対して、2
次反応器出口NOx濃度を用いて、2つのバイパス比制
御方法を比較した説明図、第5図(A)、(B)は、ガ
ス分散坂の効果を説明した図、第6図は、従来技術によ
る脱硝装置の断面図である。 1・・・N H3注入装置、2・・・仕切板、2A・・
・排ガス流路、2B・・・バイパス流路、3・・・バイ
パス煙道、4・・・1次反応器、5・・・バイパスガス
分散板、6・・−混合室、7・・・ケーシング、8・・
・2次反応器、9・・・抵抗体。 代理人 弁理士 川 北 武 長 第1図 第2図 第3図 第4図 負荷(’/、)
FIG. 1 is a sectional view of a denitrification device showing an embodiment of the present invention, and FIG. 2 is a sectional view of a denitrification device showing another embodiment of the invention.
Figure 3 is an explanatory diagram illustrating the optimum bypass ratio of the primary reactor with respect to load changes, and Figure 4 is an explanatory diagram illustrating the optimum bypass ratio of the primary reactor with respect to load changes.
Next, an explanatory diagram comparing two bypass ratio control methods using the reactor outlet NOx concentration. Figures 5 (A) and (B) are diagrams explaining the effect of the gas dispersion slope. Figure 6 is a diagram comparing the two bypass ratio control methods using the reactor outlet NOx concentration. 1 is a cross-sectional view of a denitrification device according to the technology; FIG. 1...N H3 injection device, 2...Partition plate, 2A...
・Exhaust gas flow path, 2B...Bypass flow path, 3...Bypass flue, 4...Primary reactor, 5...Bypass gas distribution plate, 6...-Mixing chamber, 7... Casing, 8...
-Secondary reactor, 9...resistor. Agent Patent Attorney Takenaga Kawakita Figure 1 Figure 2 Figure 3 Figure 4 Load ('/,)

Claims (2)

【特許請求の範囲】[Claims] (1)仕切板によって分割された複数の排ガス流路と、
該複数の排ガス流路のうちの所定流路に設けられたアン
モニア注入ノズルおよび1次脱硝反応器と、前記所定の
流路以外のバイパス流路に必要に応じて設けられた抵抗
体およびその出口に配設されたガス分散手段と、前記1
次脱硝反応器の後流に設けられた2次脱硝反応器とを有
することを特徴とするアンモニア還元脱硝装置。
(1) A plurality of exhaust gas flow paths divided by partition plates,
An ammonia injection nozzle and a primary denitrification reactor provided in a predetermined flow path among the plurality of exhaust gas flow paths, and a resistor and its outlet provided as necessary in a bypass flow path other than the predetermined flow path. a gas dispersion means disposed in the above-mentioned 1;
An ammonia reduction denitrification device comprising a secondary denitrification reactor provided downstream of the secondary denitrification reactor.
(2)複数の排ガス流路と、該複数の排ガス流路のうち
の所定流路に設けられたアンモニア注入ノズルおよび1
次脱硝反応器と、前記所定の流路以外のバイパス流路に
必要に応じて設けられた抵抗体およびその出口に配設さ
れたガス分散手段と、前記1次脱硝反応器の後流に設け
られた2次脱硝反応器とを有する脱硝装置を運転するに
当たり、上記バイパス流路内を排ガスが通過するときの
圧力損失と、1次脱硝反応器内にあらかじめ設定した速
度で排ガスが通過するときの圧力損失とが等しくなるよ
うに、バイパス流路の圧力損失を設定することを特徴と
する脱硝方法。
(2) a plurality of exhaust gas flow paths, an ammonia injection nozzle provided in a predetermined flow path among the plurality of exhaust gas flow paths;
A secondary denitrification reactor, a resistor provided as necessary in a bypass flow path other than the predetermined flow path, and a gas dispersion means provided at the outlet thereof, and a gas dispersion means provided downstream of the primary denitrification reactor. When operating a denitrification device having a secondary denitrification reactor, the pressure loss when the exhaust gas passes through the bypass flow path and when the exhaust gas passes through the primary denitrification reactor at a preset speed. A denitration method characterized by setting the pressure loss of the bypass flow path so that the pressure loss of the bypass flow path is equal to the pressure loss of the bypass flow path.
JP62087625A 1987-04-09 1987-04-09 Ammonia reduction and denitration device and denitration method Pending JPS63252530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62087625A JPS63252530A (en) 1987-04-09 1987-04-09 Ammonia reduction and denitration device and denitration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62087625A JPS63252530A (en) 1987-04-09 1987-04-09 Ammonia reduction and denitration device and denitration method

Publications (1)

Publication Number Publication Date
JPS63252530A true JPS63252530A (en) 1988-10-19

Family

ID=13920157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62087625A Pending JPS63252530A (en) 1987-04-09 1987-04-09 Ammonia reduction and denitration device and denitration method

Country Status (1)

Country Link
JP (1) JPS63252530A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006097131A1 (en) * 2005-03-16 2006-09-21 Emitec Gesellschaft Für Emissionstechnologie Mbh Honeycomb body comprising means for supplying a reactant and corresponding method and waste gas system
US8961915B1 (en) * 2013-09-25 2015-02-24 Ohio State Innovation Foundation Wet scrubber for ammonia capture
US10239016B2 (en) 2016-12-07 2019-03-26 Nuorganics LLC Systems and methods for nitrogen recovery from a gas stream
US10513466B2 (en) 2017-01-16 2019-12-24 Nuorganics LLC System and method for recovering nitrogenous compounds from a gas stream

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006097131A1 (en) * 2005-03-16 2006-09-21 Emitec Gesellschaft Für Emissionstechnologie Mbh Honeycomb body comprising means for supplying a reactant and corresponding method and waste gas system
US8961915B1 (en) * 2013-09-25 2015-02-24 Ohio State Innovation Foundation Wet scrubber for ammonia capture
US9364787B2 (en) 2013-09-25 2016-06-14 Ohio State Innovation Foundation Wet scrubber apparatus for ammonia capture
US9808758B2 (en) 2013-09-25 2017-11-07 Ohio State Innovation Foundation Wet scrubber apparatus for ammonia capture
US10239016B2 (en) 2016-12-07 2019-03-26 Nuorganics LLC Systems and methods for nitrogen recovery from a gas stream
US10513466B2 (en) 2017-01-16 2019-12-24 Nuorganics LLC System and method for recovering nitrogenous compounds from a gas stream
US10934223B2 (en) 2017-01-16 2021-03-02 Nuorganics LLC System and method for recovering nitrogenous compounds from a gas stream

Similar Documents

Publication Publication Date Title
US6905658B2 (en) Channelized SCR inlet for improved ammonia injection and efficient NOx control
US4302431A (en) Process for controlling nitrogen oxides in exhaust gases and apparatus therefor
KR100366679B1 (en) Static mixer
US4820492A (en) Apparatus for denitration
CN101649765B (en) Exhaust gas system
US8747788B1 (en) Aftertreatment module having angled catalyst bank
US7069716B1 (en) Cooling air distribution apparatus
JP4023906B2 (en) Gas purification equipment containing nitrogen oxides
KR940003603A (en) Reduction method of NOx reduction in flue gas stream
US5853683A (en) Hybrid SCR/SNCR process
US20060176764A1 (en) Mixing system
US4218422A (en) Converter structure
KR19990044992A (en) Pollutant decomposition device of exhaust gas by catalyst
US5275230A (en) Regenerative preheater and method for operating the same
US20040265198A1 (en) Power generation aftertreatment system
JPS63252530A (en) Ammonia reduction and denitration device and denitration method
US20130152555A1 (en) Fluid injection lance with balanced flow distribution
RU2141867C1 (en) Combination feeding and mixing device
US4521388A (en) NOx reduction in flue gas
JP3554997B2 (en) Exhaust gas denitration equipment
JP3002452B1 (en) High efficiency flue gas denitration system
KR102153836B1 (en) Denitrification apparatus that improves denitrification efficiency using pellet catalyst
JPH0975672A (en) Exhaust gas denitration apparatus
JPH0635817B2 (en) Method for removing nitrogen oxides from diesel engine exhaust gas
JP2021126619A5 (en)