JPS63252348A - Sample image display device - Google Patents

Sample image display device

Info

Publication number
JPS63252348A
JPS63252348A JP62086637A JP8663787A JPS63252348A JP S63252348 A JPS63252348 A JP S63252348A JP 62086637 A JP62086637 A JP 62086637A JP 8663787 A JP8663787 A JP 8663787A JP S63252348 A JPS63252348 A JP S63252348A
Authority
JP
Japan
Prior art keywords
crt
sample
aspect ratio
displaying
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62086637A
Other languages
Japanese (ja)
Inventor
Yutaka Sato
裕 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP62086637A priority Critical patent/JPS63252348A/en
Publication of JPS63252348A publication Critical patent/JPS63252348A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase a degree of freedom during CRT displaying and to enlarge an application range of display modes by arbitrarily setting an aspect ratio of a scanning region of electron beams or the like. CONSTITUTION:When amplification degrees of a horizontal scanning signal amplifying circuit 12 and a vertical scanning signal amplifying circuit 13 are controlled independently of each other, an aspect ratio of a scanning region on a sample 18 can be arbitrarily set. Accordingly when electron beams scanned in the same aspect ratio as a display region of a displaying CRT 17, an image of the sample 18 can be displayed all over the screen on the displaying CRT 17 and so a circular pattern on the sample 18 is prevented from being seen an ellipse on the CRT 17. The CRT displaying region is hence used effectively and besides a complicated circuit is not required for the correction of the displaying region on the CRT.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は走査型電子顕微鏡等の試料像表示装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a sample image display device such as a scanning electron microscope.

〔従来の技術〕[Conventional technology]

従来走査型電子顕微鏡等の装置に於いて試料像を表示す
る場合、試料の正方形の領域を電子ビーム等で走査し、
ここから得られる信号を専用の高解像度陰極線管(以後
CRTと記す)上の正方形の領域に試料像として表示し
ていた。試料面上の走査領域の大きさは電子顕微鏡等の
観察倍率に合せて、ある範囲内で任意に変える事は出来
たが、観察できるのは試料面上の常に正方形の領域であ
った。
Conventionally, when displaying a sample image in a device such as a scanning electron microscope, a square area of the sample is scanned with an electron beam, etc.
The signals obtained from this were displayed as a sample image in a square area on a dedicated high-resolution cathode ray tube (hereinafter referred to as CRT). The size of the scanning area on the sample surface could be arbitrarily changed within a certain range according to the observation magnification of the electron microscope, etc., but what could always be observed was a square area on the sample surface.

また、走査型電子顕微鏡等の電子ビーム偏向器あるいは
表示用CRTの走査信号の帯域の制約からスロースキャ
ンによる画像しか得られず、その為明るい所ではCRT
上の画像が見にくいと言う欠点が育った。
In addition, due to the limitations of the scanning signal band of the electron beam deflector of a scanning electron microscope or a CRT for display, images can only be obtained by slow scanning.
I have developed a drawback that the image above is difficult to see.

近年マイクロエレクトロニクスの著しい進歩により、電
子ビーム等の走査によって得られる画像信号を一旦半導
体記憶素子からなるフレームメモリに蓄え、これを随時
読み出してCRT上に表示する事により通常のTV受像
機と同様に明るい所でもちらつきなく、容易に観察する
ことが出来る走査型電子顕微鏡等の装置が開発されてい
る。
In recent years, with remarkable advances in microelectronics, image signals obtained by scanning with electron beams, etc. are temporarily stored in a frame memory made of semiconductor memory elements, and by reading them out at any time and displaying them on a CRT, the image signals can be read out at any time and displayed on a CRT. Devices such as scanning electron microscopes have been developed that allow easy observation without flickering even in bright places.

しかし、これらの装置に使用されるCRTのほとんどが
、縦横比約3:4の表示領域を持ち長方形の画像領域を
表示するように出来ているにもかかわらず、電子ビーム
等を走査する偏向器は従来どうり試料上の正方形の領域
を走査する為、表示用のCRT上にも正方形の領域に画
像を表示している。これは試料上のパターンを表示用C
RT上に縦横比の狂いなく忠実に再現する為である。
However, although most of the CRTs used in these devices have a display area with an aspect ratio of approximately 3:4 and are designed to display a rectangular image area, they do not require a deflector to scan the electron beam, etc. Since the conventional method scans a square area on a sample, an image is also displayed in a square area on a display CRT. This is C for displaying the pattern on the sample.
This is to faithfully reproduce the image on RT without any deviation in aspect ratio.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の試料像表示方法は前述のように、表示用CRTの
長方形の表示領域の一部に正方形の領域の画像を表示し
ているため、CRTの表示領域を有効利用しておらず、
また通常重版されているCRTの正方形の領域にフレー
ムメモリからの画像を表示する為には、そのC’RTを
改造して水平方向の表示領域を狭くするか、あるいは第
3図に示すようにフレームメモリから読み出される画像
信号を表示用CRTに送る際、メモリからの読み出しク
ロックに細工をして画像信号の前後に適当なダミーの信
号を付加する等の付加操作が必要となる。
As mentioned above, the conventional sample image display method displays an image of a square area in a part of the rectangular display area of the display CRT, which does not effectively utilize the display area of the CRT.
In addition, in order to display the image from the frame memory in the square area of a normally reprinted CRT, the C'RT must be modified to narrow the horizontal display area, or as shown in Figure 3. When sending the image signal read from the frame memory to the display CRT, it is necessary to perform additional operations such as modifying the read clock from the memory and adding appropriate dummy signals before and after the image signal.

本発明はこの様な従来の表示装置の欠点を解決し、CR
7表示領域を有効に使用すると共にCRT上の表示領域
を補正する為の複雑な回路を不要にしようとするもので
ある。
The present invention solves the drawbacks of such conventional display devices and
The purpose of this invention is to effectively use the seven display areas and to eliminate the need for a complicated circuit for correcting the display area on the CRT.

〔問題点を解決する為の手段〕[Means for solving problems]

走査型電子顕微鏡を例にして第り図に本発明の構成を示
す。
The configuration of the present invention is shown in FIG. 2, taking a scanning electron microscope as an example.

第1図に於いて、1は電子銃、2.4は電子ビーム制限
用アパーチャ、3はブランカ−15は水平方向用偏向器
、6は垂直方向用偏向器、7は対物レンズ、8はディテ
クター、9は電子銃制御回路、10はブランキング制御
回路、11は水平、垂直走査信号発生回路、12は水平
走査信号増幅回路、13は垂直走査信号増幅回路、14
は対物レンズ制御回路、15は画像信号増幅回路、16
はフレームメモリ、17はCR7表示器、18は観察試
料である。
In Figure 1, 1 is an electron gun, 2.4 is an electron beam limiting aperture, 3 is a blanker, 15 is a horizontal deflector, 6 is a vertical deflector, 7 is an objective lens, and 8 is a detector. , 9 is an electron gun control circuit, 10 is a blanking control circuit, 11 is a horizontal and vertical scanning signal generation circuit, 12 is a horizontal scanning signal amplification circuit, 13 is a vertical scanning signal amplification circuit, 14
15 is an objective lens control circuit, 15 is an image signal amplification circuit, and 16 is an objective lens control circuit.
17 is a frame memory, 17 is a CR7 display, and 18 is an observation sample.

各要素及び基本構成は従来の走査型電子顕微鏡のそれと
大差はない0本発明の特徴は、12.13の二つの走査
信号増幅回路の制御の仕方にある。
Each element and basic configuration are not much different from those of a conventional scanning electron microscope.The feature of the present invention lies in the method of controlling the two scanning signal amplification circuits in 12.13.

即ち前述の様に従来の走査型電子顕微鏡は上記二つの走
査信号増幅回路の増幅度を等しく保ったまま、観察倍率
に応じて回路の増幅度を変化させていた。従って試料面
上の常に正方形の領域を電子ビームで走査する事になっ
た訳である。
That is, as described above, in the conventional scanning electron microscope, the amplification degree of the two scanning signal amplification circuits is kept equal, and the amplification degree of the circuit is changed according to the observation magnification. Therefore, a square area on the sample surface was always scanned with the electron beam.

本発明は、12の水平走査信号増幅回路と13の垂直走
査信号増幅回路の増幅度をそれぞれ独立に制御する事に
より、従来技術の欠点を解決するものである。
The present invention solves the drawbacks of the prior art by independently controlling the amplification degrees of the 12 horizontal scanning signal amplification circuits and the 13 vertical scanning signal amplification circuits.

〔作 用〕[For production]

本発明によれば走査型電子顕微鏡等の装置に於いて、電
子ビームの水平、垂直走査信号の増幅度を各々独立に制
御する事により、試料上の走査領域の縦横比を任意に設
定する事が出来るので、表示用CRTの表示領域と同じ
縦横の比率で電子ビームを走査し、表示用CRT上に試
料像を画面一杯に表示する事が出来る。勿論この場合C
RT上の画像パターンの縦横比は試料上のパターンのそ
れと同一であるから、試料上円形のパターンがCRT上
で楕円に見えたりする事はない。
According to the present invention, in a device such as a scanning electron microscope, the aspect ratio of the scanning area on a sample can be arbitrarily set by independently controlling the amplification degree of the horizontal and vertical scanning signals of the electron beam. Therefore, the electron beam can be scanned in the same aspect ratio as the display area of the display CRT, and the sample image can be displayed on the display CRT to fill the entire screen. Of course in this case C
Since the aspect ratio of the image pattern on the RT is the same as that of the pattern on the sample, a circular pattern on the sample will not appear as an ellipse on the CRT.

さらに電子ビーム走査領域とCR7表示領域との縦横比
を同一にする事により表示用CRTを改造したり、フレ
ームメモリから読み出した画像信号を複雑に加工したり
する必要がまったく無くなる。
Furthermore, by making the aspect ratio of the electron beam scanning area and the CR7 display area the same, there is no need to modify the display CRT or to perform complicated processing on the image signal read from the frame memory.

〔実施例〕〔Example〕

本発明の実施例を第1図にしたがって説明する。 An embodiment of the present invention will be described with reference to FIG.

1の電子銃から射出され、アパーチャ2.4を通り抜け
た電子ビームは、偏向器5.6で水平、垂直方向に偏向
された後、対物レンズ7で収束されて観察試料18に当
たる、この時、試料から発生する2次電子あるいは反射
電子は、ディテクター8に入り電気信号に変換され、画
像信号増幅回路15でフレームメモリ16の入力に必要
なレベルまで増幅されてから、フレームメモリ内のA/
Dコンバーターで各画素毎にデジタル量に変換されて、
一枚の画像として記憶される。
The electron beam emitted from the electron gun 1 and passing through the aperture 2.4 is deflected horizontally and vertically by the deflector 5.6, and then converged by the objective lens 7 and hits the observation sample 18. At this time, Secondary electrons or reflected electrons generated from the sample enter the detector 8 and are converted into electrical signals. The image signal amplification circuit 15 amplifies the secondary electrons or reflected electrons to the level required for input to the frame memory 16.
Each pixel is converted into a digital quantity by a D converter,
It is stored as a single image.

一方、水平、垂直走査信号発生回路11は、第2図に示
すように、電子顕微鏡の水平、垂直方向偏向器5.6を
ドライブする為の2111aの鋸歯状波信号と、フレー
ムメモリ16に画像を取込む為に必要な水平、垂直の2
つの同期信号とを発生する。
On the other hand, the horizontal and vertical scanning signal generation circuit 11 generates a sawtooth wave signal 2111a for driving the horizontal and vertical deflectors 5.6 of the electron microscope and an image in the frame memory 16, as shown in FIG. Horizontal and vertical 2 necessary to capture
generates two synchronization signals.

走査信号増幅回路12.13は、電子顕微鏡の観察倍率
に合わせて、水平、垂直走査信号発生回路11からの鋸
歯状波信号を増幅するのであるが、本発明では観察倍率
だけでなく表示用CRTの表示領域の縦横比等に対応し
た係数をかけた倍率で各々独立に増幅する。
The scanning signal amplification circuits 12 and 13 amplify the sawtooth wave signals from the horizontal and vertical scanning signal generation circuits 11 in accordance with the observation magnification of the electron microscope. Each is amplified independently by a multiplication factor corresponding to the aspect ratio of the display area.

例えば表示領域の縦横比が3=4のCRTを使用した場
合、従来の観察倍率から要求される増幅度かに倍であっ
たとすると、水平走査信号増幅回路12の増幅度は(4
/3)XK’、垂直走査信号増幅器13の増幅度はKと
なるようにそれぞれ異なった値に設定する。そうすると
水平方向用偏向器5は、垂直方向用偏向器6よりも4/
3倍だけ電子ビームを大きく偏向する事になり、その結
果試料面18上に於いて電子ビームは、縦横比3:4の
長方形の領域を走査する事になる。
For example, if a CRT with a display area aspect ratio of 3=4 is used, and if the amplification required by the conventional observation magnification is twice as high, then the amplification of the horizontal scanning signal amplification circuit 12 is (4
/3) XK', the amplification degree of the vertical scanning signal amplifier 13 is set to different values so that it becomes K. Then, the horizontal deflector 5 is 4/4
The electron beam is greatly deflected by three times, and as a result, the electron beam scans a rectangular area with an aspect ratio of 3:4 on the sample surface 18.

試料18から得られた信号は前述の様に画像信号増幅回
路15で増幅された後、フレームメモリ16内にデジタ
ル量となって蓄えられる。このときフレームメモリの画
素数の縦横比が3:4になっている必要はない0例えば
、従来多く用いられたような縦横の画素数の等しいnX
nのフレームメモリを使用した場合、1水平走査周期内
の走査線数をnとして、これと等しいクロック数で画像
信号をサンプリングすると、試料上の画像が横方向に3
/4に圧縮されてメモリに取込まれる事になるが、CR
Tに表示される際横方向だけが4/3倍に拡大されて表
示されるので結局倍率が元に戻り不都合を生じない。 
フレームメモリがらの画像データはCRTの同期引き込
み範囲に合うようなりロンクレートで読み出され、D/
A変(典された後CRT用の同期信号と一緒にCR7表
示器17に送られて電子顕微鏡像となってCRTの表示
領域いっばいに表示される。
The signal obtained from the sample 18 is amplified by the image signal amplification circuit 15 as described above, and then stored in the frame memory 16 as a digital quantity. At this time, it is not necessary that the aspect ratio of the number of pixels in the frame memory is 3:4. For example, it is not necessary that the aspect ratio of the number of pixels in the frame memory is 3:4.
When using a frame memory of
It will be compressed to /4 and taken into memory, but CR
When displayed on T, only the horizontal direction is enlarged to 4/3 times, so the magnification returns to the original size and no inconvenience occurs.
The image data from the frame memory is read out at a slow rate to match the synchronization pull-in range of the CRT, and the D/
After being converted to A-transformation, it is sent to the CR7 display 17 together with a synchronizing signal for the CRT, and is displayed as an electron microscope image in the entire display area of the CRT.

〔発明の効果〕〔Effect of the invention〕

以上の様に本発明によれば、電子ビーム等の走査領域の
縦横比を任意に設定する事が出来るのでCR7表示の際
の自由度が増し表示形態の応用範囲が広がる。
As described above, according to the present invention, the aspect ratio of the scanning area of an electron beam or the like can be set arbitrarily, so the degree of freedom in CR7 display is increased, and the range of application of display formats is expanded.

例えば電子ビーム等の走査領域の縦横比をCRTの表示
領域のそれに合せる事により、縦横比の合った画像をC
RTの表示領域全面に写し出す事が出来、かつ横長の表
示領域を持つ一般的なCRTをなんら改造する事なく使
用出来、またフレームメモリからの画像読み出し時に読
み出しクロックや画像信号に特別な操作を加える必要も
無いと言う利点がある。
For example, by matching the aspect ratio of the scanning area of an electron beam, etc. to that of the display area of a CRT, an image with the matching aspect ratio can be created by
It can be projected onto the entire display area of the RT, and a general CRT with a horizontally long display area can be used without any modification, and special operations are added to the read clock and image signal when reading images from the frame memory. The advantage is that it is not necessary.

また試料面上に於ける電子ビームの走査領域は、表示用
CRTの縦横比に合せるだけでなく任意の縦横比に設定
する事が出来るので、第3図に示すように複数の試料像
を一つのCRT上にマルチスクリーンで表示するような
場合も必要な形状の領域の試料像を取込む事が出来大変
有効である。
In addition, the scanning area of the electron beam on the sample surface can be set not only to match the aspect ratio of the display CRT, but also to any aspect ratio, so multiple sample images can be unified as shown in Figure 3. This method is very effective even when displaying on multiple screens on one CRT, since it is possible to capture a sample image in a region of the required shape.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の概略構成図、第2図は同実
施例における水平、垂直の走査、同期信号を示す図、第
3図は同実施例の応用例を示す図、第4図は従来の各種
信号を示す図である。 〔図面の簡単な説明〕
FIG. 1 is a schematic diagram of an embodiment of the present invention; FIG. 2 is a diagram showing horizontal and vertical scanning and synchronization signals in the embodiment; FIG. 3 is a diagram showing an application example of the embodiment; FIG. 4 is a diagram showing various conventional signals. [Brief explanation of the drawing]

Claims (2)

【特許請求の範囲】[Claims] (1)電子ビーム当の荷電粒子線で試料面を2次元的に
走査し、これによって試料から得られる信号を、上記荷
電粒子線による試料面の走査に対応して走査される陰極
線管等による表示器に、試料像として表示する装置にお
いて、 試料面上の水平方向と垂直方向の走査幅を各々独立に制
御することにより試料面上の任意の縦横比の領域の画像
を表示することを特徴とする試料像表示装置。
(1) The sample surface is two-dimensionally scanned with a charged particle beam equivalent to an electron beam, and the signals obtained from the sample are transmitted using a cathode ray tube or the like that is scanned in correspondence with the scanning of the sample surface with the charged particle beam. A device that displays a sample image on a display, which is characterized by displaying an image of an area with an arbitrary aspect ratio on the sample surface by independently controlling the scanning width in the horizontal and vertical directions on the sample surface. sample image display device.
(2)上記表示器の表示領域の縦横比に合わせて上記荷
電粒子線を試料面で走査することを特徴とする特許請求
の範囲第1項記載の試料像表示装置。
(2) The sample image display device according to claim 1, wherein the charged particle beam scans the sample surface in accordance with the aspect ratio of the display area of the display device.
JP62086637A 1987-04-08 1987-04-08 Sample image display device Pending JPS63252348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62086637A JPS63252348A (en) 1987-04-08 1987-04-08 Sample image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62086637A JPS63252348A (en) 1987-04-08 1987-04-08 Sample image display device

Publications (1)

Publication Number Publication Date
JPS63252348A true JPS63252348A (en) 1988-10-19

Family

ID=13892534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62086637A Pending JPS63252348A (en) 1987-04-08 1987-04-08 Sample image display device

Country Status (1)

Country Link
JP (1) JPS63252348A (en)

Similar Documents

Publication Publication Date Title
US7271853B2 (en) Apparatus and method for correcting distortion of image and image displayer using the same
JP2869827B2 (en) Scanning electron microscope
JP2000092409A (en) Video display device
JPH0729539A (en) Focused ion beam device
JPS63252348A (en) Sample image display device
JPH07262950A (en) Scanning electron microscope
JP2887361B2 (en) Imaging method and imaging apparatus for transmission electron microscope or electron energy loss analysis electron microscope
US5963274A (en) Vertical/horizontal interpolation device and method in convergence system
US5536192A (en) Method for measuring convergence of a color cathode ray tube and apparatus thereof
US3333057A (en) High density microfacsimile system
US4737640A (en) Electron microscope
JPS5842938B2 (en) scanning electron microscope
JPS63150842A (en) Scanning electron microscope
JPH0360297A (en) Image pickup device and its operating method
JPS6033336B2 (en) Imaging device
JPS6040753B2 (en) X-ray television equipment
JPH07130321A (en) Scanning electron microscope
JP2775812B2 (en) Charged particle beam equipment
JPH0696711A (en) Display method for image of scanning electron microscope
JP3057230B1 (en) Image correction apparatus and method, and image display apparatus
JP2000260381A (en) Processing device for scanning image
JPS5811073B2 (en) Sample scanning type sample image display device using particle beam
JPH02215035A (en) Sample image display device
KR830002860Y1 (en) Scanning apparatus for scanning electron microscope and similar devices
AU2001100380A4 (en) Entirely-D.S.P.-based correction for design-based distortion and outer pin-cushion mis-alignment in direct-view C.R.T's.